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Abstract / Introduction/Objectives

Abstract A two-field model for staircase dy-
namics relevant to both beta-plane geostrophic
and drift-wave plasma turbulence is stud-
ied numerically and analytically. The model
evolves an averaged potential vorticity (PV)
whose flux is both driven by, and regulates, an
enstrophy field, ε. The model’s closure uses a
mixing length concept. Its link with bistabil-
ity, vital to staircase generation, is analysed and
verified by integrating the equations numeric-
ally.

Introduction The turbulent transport and
structure formation phenomenon known as a
’staircase’, originally introduced in [2] manifests
itself as follows:

• stably stratified density profile in the ocean
occasionally reorganizes into layers separated
by thin interfaces

• density gradient flattens in the layers and
steepens in the interfaces→’staircase’

• pre-existing turbulent transport is supported
by, and regulates, the gradient

• positive feedback provided by a profile rip-
pling instability is equivalent to a ’negative
diffusivity’ that enhances the profile corrug-
ation instead of smoothing it

• negative diffusion corresponds to a descend-
ing branch of an “S-curve” in the flux - gradi-
ent relation, i.e. a range of ∇n for which
δΓ/δ (−∇n) < 0

• feedback loop drives the transport support-
ing turbulence out of the regions with steeper
profiles into adjacent regions with the flatter
ones, thus settling at a bistable equilibrium

Objectives

1. identification of conditions and the parameter
space for staircase formation

2. demonstration of staircase persistence by dir-
ect numerical integration of the model equa-
tions

3. finding exact analytic steady state solutions
and exploiting them for code verification

4. elucidation of staircase dynamics, long time
evolution, merger events and the role of do-
main boundaries
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Formulation Consider potential vorticity (PV), q, of a geo-
strophic fluid, e.g., on a rapidly rotating planet. It consists of the
planetary vorticity (on β-plane) and fluid vorticity:

q = βy + ∆ψ

where ψ is the stream function, and y is a latitudinal coordinate.
Equation for q:

∂q
∂t
−∇ψ×∇q = ν∆ψ + f (1)

Decompose q and ψ into a mean and fluctuating parts

q = 〈q (y, t)〉+q̃ (x, y, t)

with q̃ = ∆ψ̃. Separate the x-averaged component Q ≡ 〈q〉 from
fluctuating part squared (enstrophy), ε =

〈
q̃2
〉

/2. The closure

problem for 〈∇ψ̃×∇∆ψ̃〉 arises. For fluctuations statistically ho-
mogeneous in x-direction the x-averaged PV flux Γq is:

−
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.

Next, we apply a Fickian Ansatz: Γq = −De∂Q/∂y, where
De
(
ε, Qy

)
is the PV diffusivity. This is assumed to follow a

mixing-length hypothesis, De ∼ l |∇ψ̃|, where l
(
ε, Qy

)
is the mix-

ing length, introduced phenomenologically as [1]:

1
l2

=
1
l20
+

1
l2R

. (2)

Here, l0 is a fixed contribution to the mixing length l that char-
acterizes the turbulence, e.g., the stirring scale. lR is the Rhines
scale at which dissipation of ε balances its production, so lR =

lR
(
ε, Qy

)
. In turbulent cascades where wave form of energy co-

exists with turbulent eddies, the Rhines scale is where these two
intersect, i.e., where kṽ ∼ ωk [3]. When the turbulent energy in-
verse cascade reaches this scale, it is intercepted and transported
further by waves both in wave-number and configuration space.
The only dimensionless combination of the variables entering
eq.(2) is l20Q2

y/ε. So, we may generalize the relation in eq.(2) and

write l0/l =
(

1 + l20Q2
y/ε
)κ

. We choose κ = 2. Replacing the eddy
velocity in the Fick’s law by l0

√
ε and measuring y in units of l0,

we can write the averaged eq.(1) for Q as shown above with ad-
ded (small) constant diffusivity D. Applying similar arguments
to the turbulent part of PV, ε, and adding the terms responsible
for its production, damping and unstable growth, we obtain the
above evolution equation for the enstrophy ε.

Staircase Prerequisites/Formation/Merger

• SC result from the loss of stability of a ground state solution
for Q and ε, characterized by the constant values ε = εB and
Qy = Q′B that annihilate the enstrophy production-dissipation
term:

R ≡
Q2

y(
1 + Q2

y/ε
)2 −

ε

ε0
+ γ = 0

• stationary SC structure is a quasi-periodic sequence of regions
with alternating upper and lower stable ε values

• time-asymptotically, this solution can be calculated analytically

Numerical solution in long-time
asymptotic regime, shown with
the solid line. Exact analytic
solution represented by the two
branches shown with red and
green squares (ψ = Qy/

√
ε)

• quasi-stationary SC forms quickly (t � 1) with n steps separ-
ated by shear layers with steep gradient of the mean vorticity
Qy and suppressed enstrophy level, ε

• number n is determined by the maximum growth rate

• over a longer time (but still � 1), most of n steps merge with
their neighbours and the total number of steps becomes ≈ n/2.
After this initial phase the staircase persists for a much longer
time
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•Q-flux grows rapidly, and strongly deviates from its globally
constant value precisely at the merger locations

• shown is a sequence of mergers of 12 initial steps. They proceed
symmetrically from the boundaries towards the centre

• process continues until the mergers converge at the centre and

the central two steps merge into a bigger step
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• flux remains constant when no mergers occur[
ε1/2

(
1 + Q2

y/ε
)−2

+ D
]

Qy ≡ b = const

• the flux builds up in two phases (slow and fast) before it drops
abruptly to its averaged value after the merger

• the first phase is an initial growth that lasts to about t ≈ 0.065.
The flux increase remains relatively small, < 0.01

• the second phase is explosive and can be accurately fit by the
following function,

F = F0 + B/ (t0− t)α

with t0 ≈ 0.0863, B ≈ 0.000806, α ≈ 0.879, and a residual flux
F0 ≈ −0.0171.
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