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• Mesoscale temperature profile corrugation and nonlinear drive 

• Bistable spreading of the turbulence intensity:

• Motivations

Outline

—subcritical excitation

—propagation
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Motivations
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How turbulent fluctuations penetrates stable domains?

→ Anomalous transport 

→ Collapse of H-mode

Most previous works treat turbulence spreading as a Fisher front. 



Conventional wisdom: Fisher front with a nonlinear diffusivity 
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A ≡ −∂xT

Nontrivial solution requires:

〈A〉 > Ac ⇒ I ∝ 〈A〉 − Ac

*insufficient near marginal state

**can be strongly damped in subcritical region

linear excitation nonlinear propagation

Generic structure of Fisher spreading equation:

Suffering from two serious drawbacks:



Motivations

Inagaki2013

A hysteretic relation between turbulence intensity and temperature gradient 
also observed:
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The turbulence intensity is unistable in the Fisher model. However: 

⇒ An indication of bistability of the turbulence intensity!
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??

We missed something here??
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In this talk, we propose the missed piece is the nonlinear drive induced by 
the corrugation of the temperature field.  



The key for nonlinear turbulence excitation:
 temperature corrugation by inhomogeneous turbulent mixing.
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⇑
Inevitable consequence of potential enstrophy conservation

A consistent treatment of 
multi-scale, multi-field couplings is required…



maximum value of β was found to be β ≈ 0.36 [40], but at a
slightly larger λ. This highlights the role played by the
second rough wall in further decreasing the role of the BLs
in transporting heat. We should note here that in spite of the
differences in geometry, our results have a correspondence
with those of Waleffe et al. [25] and Sondak et al. [26]
in that there is a length scale in each setting (λopt in ours
and 2π=αopt in theirs) that optimizes heat transport. The
optimization occurs through the manipulation of the
coherent structures that transport heat, though in detail it
is accomplished in different ways.
Our results are consistent with those of Goluskin &

Doering [1], who used the background method to compute
upper bounds [49] on Nu for R-B convection in a domain
with rough upper and lower surfaces that have square-
integrable gradients. They prove that Nu ≤ CRa1=2, where
C depends on the geometry of roughness. Our results show
that for the optimal wavelength, the heat transport is
Nu − 1 ¼ 0.0042 × Ra0.483, with the value of C being four
orders of magnitude larger than ours, but with an exponent
approaching their result. Importantly, their approach pro-
vides a key framework for exploring a range of amplitudes
and wavelengths using our methodology. Finally, our
findings demonstrate that the scaling of the ultimate regime
is nearly achieved in two dimensions using rough walls.
Roche et al. [33] interpreted their observation of β ¼ 1=2
as being due to a laminar to turbulent transition of the BLs.
Here, we interpret the ultimate state being achieved by the
enhanced BL–core flow interaction driven by the rough-
ness, which generates a larger number of intense plumes.
In summary, we have studied convection in a rectangular

cell of Γ ¼ 2 with rough upper and lower surfaces. At a
fixed roughness amplitude, varying the wavelength λ
results in a spectrum of exponents in the Nu-Ra scaling
relation. At λopt, the maximum exponent βmax ¼ 0.483 is

achieved, and in the limits λ ≪ λopt and λ ≫ λopt, the planar
value of β is recovered, which may underlie why certain
experiments found no effect of periodic roughness on β
[30–32]. The observation of βmax ≈ 0.5 here has been
facilitated by the use of very large amplitude roughness
relative to existing studies [33,35,38], indicating the prom-
ise of examining this state experimentally for more mod-
erate values of Ra than have been previously necessary.
Indeed, by varying both amplitude and wavelength over a
significant range, the systematic effects of the BLs, and
thus, the molecular properties of the fluid, may be realized,
comparing and contrasting the concept of a laminar-to-
turbulent BL transition, with the enhanced forcing asso-
ciated with unstable BL’s triggered by the roughness as
seen here.
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FIG. 4. A snapshot of the temperature field for λ ¼ 0.1 and Ra ¼ 2 × 109. To see the effects of roughness, the flow field here can be
contrasted with that in the smooth case studied by Johnston & Doering [28]. See also Fig. 3 of [40], which shows the transition from the
planar to the rough flow field in the case of one rough wall.
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Roughened temperature profile enhances turbulent heat flux.

An example from Rayleigh-Bernard convection

9



How mesoscale fields impact evolution of turbulence intensity? 

Drive:     ∇T( )meso

Dissipation:     V ′
ZF

local force balance V ′
ZF ∝ ∇2T( )meso

⇒ Generally, drive&dissipation act in different regions.

How the turbulence intensity is excited and spreads in the presence of a 
corrugated temperature profile?
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The Model: bistable turbulence Intensity

The basic structure of 𝐼’s evolution is

For a mean field approximation, Θ( !Am ) !Am = Θ( !Am ) !Am +Θ( !Am ) !Am
! ! Θ( !Am ) !Am
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nonlinear drive
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Relation between 

〈Θ(A!m )A!m 〉 and I ?
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Strength of Mesoscopic  ∇𝑇 Fluctuations

∂
∂t
T +∇⋅QT = χneo

∂2

∂x2
T + Sδ (x)

T = T + !T = T +T!m + !Ts T!m :meso scale; !Ts :micro scale,  QT = !vT ,

Multiplying T  on both sides of ∗( )  and carrying out a double average .. s m
  yields

A0 QT m
+ !Am !v !T s m

" χneo
!Am
2

m

Define two types of average: 
.. s − micro timescale; .. m − meso timescale

(*)

Entropy balance of the turbulence:

entropy production due 
to turbulent mixing of the 
mean temperature field

entropy dissipation due 
to neoclassical diffusion

triple coupling between 
micro and meso scales

⇒ T s m
= T m ≡ T
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The essential process
 for subcritical

 turbulence excitation



A closure on the triple coupling: ‘negative’ thermal conductivity 

!Am !v !T s
= !Am !v !T s

up gradient heat flux on mesoscale !v !T
s
= χm

!Am = − χm
!Am

χm < 0 the negative diffusivity.

𝑇’s profile gets corrugated by the inhomogeneous turbulent mixing.
14

Zeldovich relation in multi-cale coupling system:

The underlying physics: roll-over of         vs                duo to ZF shear.Qm ∂xTm

⇒



The closed loop

inhomogeneous mixing

‘negative’ heat flux 
on mesoscale

T’s corrugation

local excitation of turbulence

enhancing
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Bistable spreading of the turbulence intensity: subcritical excitation

16
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induce mesoscale temperature corrugation is inhomoge-
neous turbulent mixing. This also is the most general way
to understand zonal flow structure generation[14]. We re-
mark here that there are other ways to generate temper-
ature gradient corrugations, such as by finite time delay
e↵ect between Q̃

m

and @

x

T̃

m

[15], by magnetic islands[16]
and so on. Via inhomogeneous mixing, the turbulent heat
flux at the strong zonal flow shear region drops, so the
thermal energy ‘piles up’ around the shear layer and tem-
perature profile steepens locally and so is corrugated. An
important detail is that zonal shear / @

2
x
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m

(from local
radial force balance), relevant when the dominant non-
linear process is zonal flow–turbulence interaction(Fig.2).
The temperature corrugation / @

x

T̃

m

, where therT and
I interaction is dominant. Therefore zonal shear and
mesoscale temperature gradient drive act at somewhere
di↵erent, but nearby, locations. As we focus how the
temperature corrugations impact turbulence excitation,
the zonal shear evolution is not included explicitly. The
process of corrugation formation is equivalent to a sec-
ondary flux that is locally ‘up’ the mesoscale temperature
gradient, i.e., Q̃

T,m
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is a ‘negative’ thermal conductivity[17], which re-
flects up-gradient feature of the mesoscale heat flux. Such
negative conductivity is rooted in the bistability of the
system. The triple coupling term in Eqn.(4) then fol-
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that �
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would resemble the ‘negative’ viscosity, which
characterizes secondary growth as in the modulational
instability of a seed zonal shear. The mean turbulent
heat flux is hQ
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Eqn.(5) is a generalized Zeldovich relation[18] and it in-
dicates that the temperature corrugation strength is pro-
portional to the turbulence intensity. With Eqn.(2), the
‘loop’ of the model is now closed.

To have a more physical understanding of how tem-
perature corrugation impacts turbulence excitation and
spreading into the subcritical region, we keep only the
averaged drive e↵ect in Eqn.(2), i.e., ⇥(Ã
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Without the temperature corrugation e↵ect(2nd term
on the RHS) Eqn.(6) has the conventional Fisher form,
i.e., reduces to Eqn.(1). But Eqn.(6) now contains a
new term, which results from the treatment of corru-
gation. Eqn.(6) is driven by two processes: local tur-
bulence excitation and turbulence spreading. The spa-
tial coupling term in Eqn.(6) has two consequences:
steepening(/ (@

x

I)2) and flattening(/ @

2
x

I). Com-
bined together, they facilitate the formation of a front,
which separates the domains of the di↵erent homoge-
neous solutions(Fig.1)[19, 20]. Thus, the ‘inner’- and
‘outer’ solutions can be discussed separately. First, we
discuss the local turbulence excitation process, i.e., the
outer solution. By ‘turning o↵’ the inhomogeneous term,
Eqn.(6) can be written in variational form as
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For the subcritical case(hAi < A

C

), it is straightforward
to show that Eqn.(7) has two stable steady solutions.
Setting �F/�I = 0, these follow as

I = 0 and I = I+, (9)

with the stable excited solution
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|. In other words, by in-
cluding the temperature corrugation e↵ect, the unistable
system(Eqn.(1)) is replaced by one which is bistable.
Typically, one has F (I+) < F (0), so the laminar state
I = 0 is metastable, while the excited state I = I+ is ab-
solutely stable(Fig.3). Eqn.(10) implies the excited tur-
bulence intensity / hAi2 has a stronger scaling then the
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I’s evolution with subcritical drive(Fitzhugh-Nagumo type, not Fisher!)

On the subcritical excitation
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‘outer’ solutions can be discussed separately. First, we
discuss the local turbulence excitation process, i.e., the
outer solution. By ‘turning o↵’ the inhomogeneous term,
Eqn.(6) can be written in variational form as

@

@t

I = ��F (I)

�I

, (7)

where the potential F is

F (I) = �1

2
�0 (hAi �A

C

) I2�2

5

s
�

2
0D0hAi2

�

neo

+ |�
m

|I
5/2+

1

3
�

nl

I

3
.

(8)
For the subcritical case(hAi < A

C

), it is straightforward
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cluding the temperature corrugation e↵ect, the unistable
system(Eqn.(1)) is replaced by one which is bistable.
Typically, one has F (I+) < F (0), so the laminar state
I = 0 is metastable, while the excited state I = I+ is ab-
solutely stable(Fig.3). Eqn.(10) implies the excited tur-
bulence intensity / hAi2 has a stronger scaling then the
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induce mesoscale temperature corrugation is inhomoge-
neous turbulent mixing. This also is the most general way
to understand zonal flow structure generation[14]. We re-
mark here that there are other ways to generate temper-
ature gradient corrugations, such as by finite time delay
e↵ect between Q̃
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and @
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[15], by magnetic islands[16]
and so on. Via inhomogeneous mixing, the turbulent heat
flux at the strong zonal flow shear region drops, so the
thermal energy ‘piles up’ around the shear layer and tem-
perature profile steepens locally and so is corrugated. An
important detail is that zonal shear / @
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(from local
radial force balance), relevant when the dominant non-
linear process is zonal flow–turbulence interaction(Fig.2).
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, where therT and
I interaction is dominant. Therefore zonal shear and
mesoscale temperature gradient drive act at somewhere
di↵erent, but nearby, locations. As we focus how the
temperature corrugations impact turbulence excitation,
the zonal shear evolution is not included explicitly. The
process of corrugation formation is equivalent to a sec-
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Eqn.(5) is a generalized Zeldovich relation[18] and it in-
dicates that the temperature corrugation strength is pro-
portional to the turbulence intensity. With Eqn.(2), the
‘loop’ of the model is now closed.

To have a more physical understanding of how tem-
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Without the temperature corrugation e↵ect(2nd term
on the RHS) Eqn.(6) has the conventional Fisher form,
i.e., reduces to Eqn.(1). But Eqn.(6) now contains a
new term, which results from the treatment of corru-
gation. Eqn.(6) is driven by two processes: local tur-
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system(Eqn.(1)) is replaced by one which is bistable.
Typically, one has F (I+) < F (0), so the laminar state
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FIG. 3: Configuration of the potential energy F (I). Dashed
curve: impact of mean E ⇥B shear on F (I).

Fisher model(/ (hAi�A

C

)). To initiate local excitation,
I must exceed a threshold I

C

= I�, which is set by the
height of potential barrier of F (Fig.3).

We thus have arrived a physics picture where the
system given by Eqn.(7) can be viewed as a ‘sea’ of
laminar(I = 0) and excited(I = I+) domains. To un-
derstand how these domains are connected, one needs
incorporate the spatial coupling term in Eqn.(6). For a
front(i.e., the inner solution), one has I(x, t) = I(z) with
z = x � c

⇤
t(c⇤–speed of the front propagation). Eqn.(6)

becomes
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where I

0 ⌘ dI/dz. The propagation of the front is
driven by two e↵ects: (1) the free energy di↵erence of
the two homogeneous states, and (2) the spatial steep-
ening of the turbulence intensity due to nonlinear dif-
fusion. For the type of front sketched in Fig.1, one
has F (+1) � F (�1) = F (0) � F (I+) > 0(Fig.3) and
I

0
< 0, so that both e↵ects make a positive contribu-

tion to c

⇤. Since Eqn.(12) is invariant under the trans-
formations I
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0 and c
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⇤, the front with
F (+1) = F (I+) and F (�1) = F (0) has a propagat-
ing velocity �c

⇤. A simple observation of Eqn.(13) is
that c⇤ has a basic structure c

⇤ = aL+ b

L

with a, b con-
stant(determined by the turbulence intensity) and L the

characteristic size of the front layer. Then, one can ex-
pect that there exists a lower limit on the velocity of
the front, c⇤ � 2
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[21]. An exact solution of
Eqn.(12) is not crucial here. We instead pursue the ba-
sic scaling of c
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where the basic scalings of drift wave turbulence �0hAi /
!⇤e = k
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V⇤e(V⇤e electron diamagnetic drift velocity, k
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poloidal wave number), D0 ' �
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(Bohm-like thermal
conductivity), �
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D0/�nl is the mixing length(or characteris-

tic wavelength) of the drift wave turbulence. Evidently,
the outer solutions(I(z = �1) and I(z = +1)) of the
bistable front are stable. The stability of the inner so-
lution is unclear and requires further analysis. In fact,
an unstable inner solution would induce the splitting of
the front and hence facilitate the spreading of the tur-
bulence. The possibility for the existence of a unstable
inner solution is an interesting topic to explore in the
future.

The linear dissipation e↵ect of the mean E ⇥ B shear
can be incorporated directly into this bistable turbulence
spreading model. This can up-shift the critical tempera-
ture gradient A

C

, so that the extent of the subcritical re-
gion is enlarged[22]. Excitation of the turbulence fluctu-
ations then becomes harder(Fig.3), and the amplitude of
I+ is decreased. For a strong enough mean E⇥B shear(or
transport barrier), the relative stability of the laminar-
and excited states can be reversed, i.e., the excited state
can become metastable and the laminar state becomes
absolutely stable, so that the system tends to evolve
to a laminar state(as in a transport barrier). So, the
bistable model for turbulence excitation and spreading
also provides a stimulating framework for understanding
transition processes between L- and H modes. Through
residual term of Reynolds stress[23], the energy of the
turbulence can be coupled to the parallel flow, one can
expect that the parallel flow shear would induce a non-
linear saturation e↵ect to I’s evolution, and hence reduce
the amplitude of the excited solution and the spreading
speed of the front.
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turbulence can be coupled to the parallel flow, one can
expect that the parallel flow shear would induce a non-
linear saturation e↵ect to I’s evolution, and hence reduce
the amplitude of the excited solution and the spreading
speed of the front.
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Propagation speed of the bistable front:

Bistable Dynamics of Turbulence Spreading in a Corrugated Temperature Profile

Z. B. Guo⇤ and P. H. Diamond
University of California, San Diego, California 92093, USA

We present a new model of turbulence spreading in magnetically confined plasma. A basic question
in turbulence spreading is how to sustain finite amplitude fluctuations in a stable subcritical region,
where linear dissipation of the turbulence is strong? The answer to this question relies on a consistent
treatment of mesoscale temperature profile corrugation and microscale turbulence. We argue that
inhomogeneous mixing of the turbulence corrugates the mean temperature profile, and that the
temperature corrugation then induces subcritical bifurcation of the turbulence. Thus, the system
will transition from a metastable ‘laminar’ state to an absolutely stable, excited state. Incorporating
spatial coupling of the locally excited turbulent regions, a front forms. This front connects the
excited- and laminar states, and penetrates the linear stable region e�ciently. We argue that such
bistable turbulence spreading can explain observations of hysteresis in the intensity of L-mode core
turbulence.

A longstanding issue in anomalous transport in mag-
netically confined plasmas systems is how turbulent fluc-
tuations may penetrate stable regions(e.g. a transport
barrier), where the free energy is incapable of driving
linear instabilities. The mechanism most frequently in-
volved for this is so-called turbulence spreading[1–5].
Turbulence spreading provides a natural way to con-
taminate stable domains[6], as in the H!L transition
phenomena[7]. Most previous works treat turbulence
spreading as a Fisher front. But Fisher fronts are in fact
heavily damped in the subcritical domains(shown below),
and so do not e↵ectively penetrate these. Thus, an im-
proved treatment of the turbulence spreading is neces-
sary. To achieve a su�cient penetration depth, a way
to subcritically excite local turbulence is needed. In this
work, we show that inhomogeneous mixing–specifically
mesoscale corrugation of the temperature profile–can
provide such nonlinear drive. Hence, this new model of
bistable turbulence spreading is constructed.

First, we briefly discuss the ‘standard model’–based
on nonlinear Fisher fronts–of turbulence spreading. This
has the generic structure[8]:
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I is a linear driving term. Here the linear growth
rate �
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is proportional to the mean temperature gradi-
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2 is a local nonlinear saturation term. D
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is the nonlinear di↵usion term, which describes spatial
coupling of the turbulence field. In the linearly unstable
regime, there are two homogeneous, steady solutions for
Eqn.(1): I = 0(unstable) and I = �
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I). Therefore, the Fisher
turbulence spreading front su↵ers strong damping in the
subcritical region, so the depth that the turbulence can
penetrate into this region is quite limited. The resolu-
tion of this dilemma of Eqn.(1) relies on incorporating
the nonlinear drive e↵ect of the turbulence field, i.e., in-

cluding a treatment of how the spreading front modi-
fies the local gradient and stability as it passes. This
induces bistability of the turbulence, in contrast to the
Fisher model, which is unistable. In this work, we show
that temperature profile corrugation can provide such a
nonlinear drive, and so sustain a finite amplitude of tur-
bulence intensity in the subcritical region. This enables
turbulence spreading, and reconciles �

l

< 0 with that
phenomenon.

I(z = −∞) = γ l /γ nl  at t1 & t2

I(z = +∞) = 0 at t1

I(z = +∞) ≠ 0 at t2

c(t1) c(t2 ) < c(t1)

I(z = −∞) = I+  at t1 & t2

I(z = +∞) = 0 at t1 & t2

c(t1) c(t2 ) = c(t1)

(A)

(B)

FIG. 1: (A) Turbulence front in Fisher equation based model
and the front is modified by local growth; (B) turbulence
front in the bistability model. c(t) is the front speed at t and
t2 > t1.

Temperature corrugations in magnetically confined
plasma system have long been observed[9]. These were
generally believed to play a secondary role in the su-
percritical region and usually were dismissed in various
anomalous transport models. An exception is Ref[10].
In this work, we show that the temperature corrugation
plays an essential role in driving turbulence penetration
of the subcritical region. i.e., it can overcome the local

:C* > 0



How the bistable spreading happens?
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damping and hence allow e�cient turbulence spreading.
The underlying physics mechanism is(Fig.2) inhomoge-

neous turbulent mixing[11], which reduces the turbulent
heat flux at certain locations while increasing the temper-
ature gradient at adjacent locations. This is equivalent
to inducing a negative heat flux on mesoscales. Thermal
energy then accumulates near such locations, so that the
temperature gradient sharpens locally, resulting the for-
mation of corrugations. These temperature corrugations
will enhance the local temperature gradient drive and so
induce local turbulence excitation. A significant di↵er-
ence from the traditional Fisher model is that both the
excited state and the ‘laminar’ state are stable, i.e., the
system is bistable. Thus a stable turbulence front forms
and spreads. Bistability of the turbulence–the core of our
model–has been observed in experiment[12]. Inagaki et al
discovered an S� curve relation between the turbulence
intensity and the temperature gradient, which strongly
suggests turbulence bistability. Note that while bistable
S� curve relations, linking flux and gradient, have long
been observed, this corresponding observation for fluctu-
ation intensity in L-mode(without internal transport bar-

rier observed!) is unique. Incorporating the nonlinear

inhomogeneous mixing of  
the temperature gradient

turbulence pulse driven  
by temperature corrugation 

an initial turbulence pulse

T

x

FIG. 2: Sketch of bistable turbulence spreading induced by
inhomogeneous mixing. Blue line: subcritical mean tempera-
ture profile.

drive of temperature corrugations, Eqn.(1) is revised to
the following form(A ⌘ �@
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m

)Ã
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where the linear growth rate is explicitly written as
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) with hAi the mean temperature gra-
dient and A
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the critical gradient. Note: more precisely,
L
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lnT ) is the drive term, and it has a
similar trends as A. The incremental temperature gra-
dient induced by profile corrugation is denoted as Ã

m

.

Since only a positive temperature gradient corrugation
acts as a drive, a step function ⇥(Ã

m

) is introduced in
Eqn.(2). A negative corrugation would render the turbu-
lence stable. Note that the local nonlinear saturation is
composed of two processes: ZF flow shear(/ |hV

ZF

i0|I)
and mode-mode coupling(/ I

2). Since the amplitude of
zonal flow shear is proportional to the turbulence inten-
sity gradient via Reynolds stress, i.e., |hV
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/I–the characteristic scale of the turbu-

lence intensity envelope), the local saturation term is
written as �
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is a coe�cient which includes
both mode-mode coupling and zonal flow shearing ef-
fects. Equivalently, the zonal flow shear e↵ect can also
be related to a nonlinear shift of the threshold A
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average, i.e., h...i ⌘ hh...i
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an average over
micro-timescales and h...i

m

over mesoscales(i.e, the cor-
rugation scale). A simple observation of Eqn.(2) is that,
in the subcritical region(hAi < A

C

), a strong enough
temperature corrugation can induce the local excitation
of the turbulence. To know ‘how strong is strong?’, one
needs a relation between the corrugation strength and
the turbulence intensity, which constitutes a ‘closure’ of
Eqn.(2).
To obtain the relation between ⇥(Ã

m

)Ã
m

and I, we
start from the temperature evolution equation
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where Q

T

= ṽT is the turbulent heat flux with ṽ the
E ⇥ B convection velocity. S

inj

accounts for the heat-
ing(centroid, x = 0). For the background heat flux in
Eqn.(3), the neoclassical term(�

neo
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T ) is retained[13].
As compared with the conventional form of tempera-
ture evolution equation[13], a factor 2/3 was absorbed
into �

neo

and inter-species thermal coupling was ignored.
Multiplying by T on both sides of Eqn.(3) and carry-
ing out the double average, one obtains the corrugation
strength
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In this work, we are interested in how strongly the tur-
bulence intensity is excited and how far it spreads, for
a given corrugated profile. As we explore the e↵ect of
a statistical ensemble of temperature corrugations, ap-
proximation @

t

hÃ2i ' 0 was used in deriving Eqn.(4).
In obtaining Eqn.(4), we assumed hT̃ 2

m

i � hT̃ 2
s

i with T̃

s

temperature fluctuation at microscale. The triple cou-
pling term in Eqn.(4) reflects meso- and micro-scale cou-
pling and so contains the physics of temperature cor-
rugation. With the double average, it follows that:
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is the mesoscale turbulent heat flux. A natural way to
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Summary&future work
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Mesoscale temperature profile corrugations provide a natural way for 
subcritical turbulence excitation, and the following spreading. 

Next:

Temperature profile evolution needs to be treated in a more consistent 
way;

Stability problem of the front, i.e., can the front be splitter by any 
external/internal noise?


