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Motivation and Background

/

High density is desirable, but usually limited by ng = Lz
na

v

v

Conventionally, ng is explained by radiation models

— Radiation power balanced with heating power = njm
— Presume shrinkage of current profile VJ, due to edge cooling

v

Edge cooling can be triggered by enhanced edge transport

\{

Enhanced particle flux at high density’

— Driven by collisionality dependent instabilities
? Destruction of edge shear layer — reverse of L-H transition

v

We seek to measure the evolution of edge shear flows when ng is
approached
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Experimental Setup on HL-2A
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Equilibrium Profiles

As line-averaged density, e, is
raised from 0.3 t0 0.8 ng

» Density gradient increases
» Electron temperature flattens
» Pressure gradient increases

» Peak value of E, decreases,
where E, = —0,(¢py + 2.8T,)
= Collapsed E; x B shear
flows
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Energy Transfer from Turbulence to Shear Flow

As line-averaged density is raised

» Edge phase velocity
decreases ) —e—08n¢| DD

» Turbulent Reynolds stress
drops

» Reynolds power,
Pre = —(vg) 3 (VgV,),
collapses

» Indicating mean flow (zonal
flow) gains less kinetic energy
from turbulence
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Inhibition of Eddy-Tilting Process

fie/ng ~ 0.6 fe/ne ~ 0.8

fe/ng ~ 0.3

0)
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» Joint PDF of radial and poloidal velocities P(¥,, 79) was measured
inside separatrix
» Tilting angle (anisotropy) of eddies decreases as ne/ng is raised

» Shear decorrelation is inhibited at high density



Collisional Damping Effects
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Enhanced Turbulent Particle Flux
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As Ny is raised from 0.3 t0 0.8 ng
» Particle flux increases substantially
» Amplitude of density fluctuations o

increases =
_ £ 05 1
» No obvious change in |7/] =
0 L L L

» Cross-correlation between density 12 ‘ ‘ —

and velocity increases .
V,e/wve drops from about 2 to 0.3 ('*W

=> non-adiabatic electron response
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GAMs Increase at Higher Density

As Ne/ng is raised

» GAMs’ amplitude increases

» GAMs gain more energy from

ambient turbulence (40 < f < 100
kHz)

> Tyl ) = =Re(Vi, - (Vusog - Vuvig))
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Shearing Rate of GAMs Less than Mean Flow

0.3n¢, Envelope ~ 7 x 10“1‘&(1/.\

Why GAMs do not mitigate turbulent
transport?

waan (10° rad/s)

» Eddy turnover rate
Weddy ~ 0.4 —1.2%x10°s™"
» Mean flow shearing rate
wsh ~3-5x10°s™"
» GAMs shearing rate
waam ~ 0.7 —1x10%s™"

waan (10° rad /s)

> wgam < 0.3 X wgp -4 :
1050 1051 1052 1053 1054 1055

Time (ms)
Mean flow plays leading role in shear
decorrelation VM-V
WGAM = %, where

VM is at different probe steps
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Feedback Loop to Edge Cooling

» Ne/ng T triggers
non-adiabatic electron
response and damping
of zonal flows

» Both effects increase
particle and heat
fluxes, which reduce
Te and lead to edge
cooling

» Edge cooling then
triggers MHD activities
and even disruptions
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Future Plan

» Effect of magnetic stress (ByB;) should be included at larger
AMHD
> The signs of magnetic stress and Reynolds stress are opposite for
drift-Alfven waves, i.e. & Vg = =V, [(%a¥,) — (BoB,)/(4mnim;)]

» Perturbative experiments are required to clarify which is affected
by collisionality first
> Collisional damping of shear flows, V;
» Collapse of turbulent drive, (@ 7,)

» In addition to poloidal sheared flows, toroidal rotation can also
regulate turbulent transport
» Both Vy and V,, can be driven by turbulence, coupling between
them deserves further studies
» Simultaneous measurements of poloidal and toroidal Reynolds
stress are ongoing
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Thank You



Reynolds Work Scaling
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Particle Flux Scaling
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» Turbulent particle flux increases with density gradient
» It drops when shearing rate increases
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Density Fluctuation Scaling
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Cross-Correlation Scaling
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Dispersion Relation
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Link to Radiation Models

Turbulence Feedback Route
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Predator-Prey Model for Shear Flow and Turbulence

Power balance between the turbulence and zonal flows

K =-0T+P-vK (1)
atk = —0,7——77 + (Yeff — Ydecor)k (2)

v

_ 1 o 1
K=3 (vo)? and K = > (v2)

v

Shear flow production term P = (¥,¥g) 0, (ve)
T = (V) (voy and T = (¥,72)
Reynolds power Pre = =0, T + P = —{(vg) &, (,75)

v

v

20/21



Bispectral Energy Transfer

The study of the nonlinear energy transfer from turbulence to the shear
flows utilizes the bispectral analysis

To(f, f1) = —Re (v () - (vo(f = f1) - VoV (F1)))

» T,(f, f;) measures the transfer of energy between velocity
fluctuations at frequency f and their gradient fluctuations at f; at a
specific location

» A positive 7,(f, f;) indicates v(f) gains energy from V_ v(f;)
» Total nonlinear energy transfer 7,(f) = >, 7,(f, f)
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