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Motivation and Background

I High density is desirable, but usually limited by nG =
Ip
πa2

I Conventionally, nG is explained by radiation models
– Radiation power balanced with heating power⇒ nlim
– Presume shrinkage of current profile +Jp due to edge cooling

I Edge cooling can be triggered by enhanced edge transport

I Enhanced particle flux at high density1

– Driven by collisionality dependent instabilities
? Destruction of edge shear layer — reverse of L-H transition

I We seek to measure the evolution of edge shear flows when nG is
approached
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Experimental Setup on HL-2A

I Midplane probe array
measures ne, Te and φfl

I ṽE = −+φ̃fl/B⇒
〈ṽθ ṽr〉, 〈ñeṽr〉

I Density scanning experiment,
n̄e = 0.8 to 3.0 × 1019 m−3,
i.e. 0.3 − 0.9 nG

I Ohmic heated in LSN
geometry with Ip = 150 kA
and BT = 1.3 T
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Equilibrium Profiles

As line-averaged density, n̄e, is
raised from 0.3 to 0.8 nG

I Density gradient increases
I Electron temperature flattens
I Pressure gradient increases
I Peak value of Er decreases,

where Er = −∂r(φfl + 2.8Te)
⇒ Collapsed Er × B shear
flows
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Energy Transfer from Turbulence to Shear Flow

As line-averaged density is raised
I Edge phase velocity

decreases
I Turbulent Reynolds stress

drops
I Reynolds power,
PRe = −〈vθ〉∂r 〈ṽθ ṽr〉,
collapses

I Indicating mean flow (zonal
flow) gains less kinetic energy
from turbulence
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Inhibition of Eddy-Tilting Process

I Joint PDF of radial and poloidal velocities Ð(ṽr , ṽθ) was measured
inside separatrix

I Tilting angle (anisotropy) of eddies decreases as n̄e/nG is raised
I Shear decorrelation is inhibited at high density
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Collisional Damping Effects

I Mean flow shearing
rate, ωsh = |∂rVθ |, is
averaged over
−1 < r − rsep < 1 cm

I Lower ωsh associated
with higher collision
rates
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same region

I Pav
Re decreases as

collision rate increases
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Enhanced Turbulent Particle Flux

As n̄e is raised from 0.3 to 0.8 nG

I Particle flux increases substantially
I Amplitude of density fluctuations

increases
I No obvious change in |ṽr |
I Cross-correlation between density

and velocity increases
I k2

‖v
2
te/ωνe drops from about 2 to 0.3

⇒ non-adiabatic electron response
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GAMs Increase at Higher Density

As n̄e/nG is raised
I GAMs’ amplitude increases
I GAMs gain more energy from

ambient turbulence (40 < f < 100
kHz)

I Tv (f , f1) = −Re
〈
v∗⊥,f ·

(
v⊥,f−f1 · +⊥v⊥,f1

)〉
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Shearing Rate of GAMs Less than Mean Flow

Why GAMs do not mitigate turbulent
transport?

I Eddy turnover rate
ωeddy ∼ 0.4 − 1.2 × 105 s−1

I Mean flow shearing rate
ωsh ∼ 3 − 5 × 105 s−1

I GAMs shearing rate
ωGAM ∼ 0.7 − 1 × 105 s−1

I ωGAM . 0.3 × ωsh

Mean flow plays leading role in shear
decorrelation ωGAM =

VGAM
1 −VGAM

2
∆12

, where
VGAM
1,2 is at different probe steps
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Feedback Loop to Edge Cooling

I n̄e/nG ↑ triggers
non-adiabatic electron
response and damping
of zonal flows

I Both effects increase
particle and heat
fluxes, which reduce
Te and lead to edge
cooling

I Edge cooling then
triggers MHD activities
and even disruptions

n̄e/nG ↑

Non-Adiabatic
Response Zonal Flows ↓

〈ñeṽr 〉 ↑
⇒ Q e

conv ↑

Edge Cooling

k 2‖ v
2
t e

ωνe
↓ νZF ↑, PRe ↓
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Future Plan

I Effect of magnetic stress 〈B̃θB̃r〉 should be included at larger
αMHD
I The signs of magnetic stress and Reynolds stress are opposite for

drift-Alfven waves, i.e. ∂tVθ = −+r
[〈ṽθ ṽr〉 − 〈B̃θB̃r〉/(4πnimi)

]
I Perturbative experiments are required to clarify which is affected

by collisionality first
I Collisional damping of shear flows, V ′θ
I Collapse of turbulent drive, 〈$̃ ṽr〉

I In addition to poloidal sheared flows, toroidal rotation can also
regulate turbulent transport
I Both Vθ and Vϕ can be driven by turbulence, coupling between

them deserves further studies
I Simultaneous measurements of poloidal and toroidal Reynolds

stress are ongoing
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Thank You



Reynolds Work Scaling
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Particle Flux Scaling
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I Turbulent particle flux increases with density gradient
I It drops when shearing rate increases

15 / 21



Density Fluctuation Scaling

0.4 0.6 0.8

L−1
Pe

(cm−1)

0.04

0.06

0.08

0.1

〈ñ
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Cross-Correlation Scaling
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Dispersion Relation

S(kθ|f)

Vθ ≈ 4.8 km/s
at r − rsep ≈ −2 cm
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Link to Radiation Models

n̄e/nG ↑ k 2‖ v
2
t e

ωνe
↓, µZF ↑

〈ñeṽr 〉 & Q e
conv ↑

Te ↓
Edge Cooling

MHD Feedback
Route

Distruption

Turbulence Feedback Route
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Predator-Prey Model for Shear Flow and Turbulence

Power balance between the turbulence and zonal flows

∂tK̄ = −∂r T̄ + P − νK̄ (1)
∂tK̃ = −∂r T̃ − P + (γeff − γdecor)K̃ (2)

I K̄ =
1
2
〈vθ〉2 and K̃ =

1
2

〈
ṽ2
θ

〉
I Shear flow production term P = 〈ṽr ṽθ〉 ∂r 〈vθ〉
I T̄ = 〈ṽr ṽθ〉 〈vθ〉 and T̃ =

〈
ṽr ṽ2

θ

〉
I Reynolds power PRe = −∂r T̄ + P = − 〈vθ〉 ∂r 〈ṽr ṽθ〉
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Bispectral Energy Transfer

The study of the nonlinear energy transfer from turbulence to the shear
flows utilizes the bispectral analysis

Tv(f , f1) = −Re 〈v∗⊥(f ) · (v⊥(f − f1) · +⊥v⊥(f1))〉

I Tv(f , f1) measures the transfer of energy between velocity
fluctuations at frequency f and their gradient fluctuations at f1 at a
specific location

I A positive Tv(f , f1) indicates v(f ) gains energy from +⊥v(f1)
I Total nonlinear energy transfer Tv(f ) =

∑
f1 Tv(f , f1)
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