Edge Shear Flows and Particle Transport near the Greenwald Limit of the HL-2A Tokamak

R. Hong,¹ G.R. Tynan,^{1,3} P.H. Diamond,^{2,3} L. Nie,³ D. Guo,³ T. Long,³ R. Ke,^{3,4} Y. Wu,^{3,5} B. Yuan^{3,5}, and M. Xu³

¹CER, University of California San Diego, USA
 ²CASS, University of California San Diego, USA
 ³Southwestern Institute of Physics, China
 ⁴Tsinghua University, China
 ⁵University of Science and Technology of China

TTF 2017, Apr 25

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Numbers DE-FG02-04ER54738.

Motivation and Background

- High density is desirable, but usually limited by $n_G = \frac{I_p}{\pi a^2}$
- Conventionally, n_G is explained by radiation models
 - Radiation power balanced with heating power \Rightarrow n_{lim}
 - Presume shrinkage of current profile ∇J_p due to edge cooling
- Edge cooling can be triggered by enhanced edge transport
- Enhanced particle flux at high density¹
 - Driven by collisionality dependent instabilities
 - ? Destruction of edge shear layer reverse of *L-H* transition
- ► We seek to measure the evolution of edge shear flows when n_G is approached

¹LaBombard '05 NF

Experimental Setup on HL-2A

- Midplane probe array measures n_e, T_e and φ_{fl}
- $\begin{array}{l} \bullet \hspace{0.2cm} \tilde{v}_{E} = -\nabla \tilde{\phi_{\mathrm{fl}}} / B \Longrightarrow \\ \langle \tilde{v}_{\theta} \tilde{v}_{r} \rangle, \hspace{0.2cm} \langle \tilde{n}_{e} \tilde{v}_{r} \rangle \end{array}$

- Density scanning experiment, $\bar{n}_e = 0.8 \text{ to } 3.0 \times 10^{19} \text{ m}^{-3}$, i.e. $0.3 - 0.9 n_G$
- Ohmic heated in LSN geometry with $I_p = 150 \text{ kA}$ and $B_T = 1.3 \text{ T}$

As line-averaged density, \bar{n}_e , is raised from 0.3 to 0.8 n_G

- Density gradient increases
- Electron temperature flattens
- Pressure gradient increases
- ► Peak value of E_r decreases, where $E_r = -\partial_r(\phi_{fl} + 2.8T_e)$ \Rightarrow Collapsed $E_r \times B$ shear flows

Energy Transfer from Turbulence to Shear Flow

As line-averaged density is raised

- Edge phase velocity decreases
- Turbulent Reynolds stress drops
- Reynolds power, $\mathcal{P}_{Re} = -\langle v_{\theta} \rangle \partial_r \langle \tilde{v}_{\theta} \tilde{v}_r \rangle$, collapses
- Indicating mean flow (zonal flow) gains less kinetic energy from turbulence

Inhibition of Eddy-Tilting Process

- ▶ Tilting angle (anisotropy) of eddies decreases as \bar{n}_e/n_G is raised
- Shear decorrelation is inhibited at high density

Collisional Damping Effects

 Mean flow shearing rate, ω_{sh} = |∂_rV_θ|, is averaged over

 $-1 < r - r_{sep} < 1 \text{ cm}$

 Lower \u03c8_{sh} associated with higher collision rates

- Reynolds power P_{Re} averaged over the same region
- \$\mathcal{P}_{Re}^{av}\$ decreases as collision rate increases

Enhanced Turbulent Particle Flux

As \bar{n}_e is raised from 0.3 to 0.8 n_G

- Particle flux increases substantially
- Amplitude of density fluctuations increases
- No obvious change in $|\tilde{v}_r|$
- Cross-correlation between density and velocity increases
- ► $k_{\parallel}^2 v_{te}^2 / \omega v_e$ drops from about 2 to 0.3 ⇒ non-adiabatic electron response

GAMs Increase at Higher Density

As \bar{n}_e/n_G is raised

- GAMs' amplitude increases
- GAMs gain more energy from ambient turbulence (40 < f < 100 kHz)

Why GAMs do *not* mitigate turbulent transport?

- Eddy turnover rate $\omega_{eddy} \sim 0.4 - 1.2 \times 10^5 \, \mathrm{s}^{-1}$
- Mean flow shearing rate ω_{sh} ~ 3 – 5 × 10⁵ s⁻¹
- GAMs shearing rate $\omega_{\text{GAM}} \sim 0.7 - 1 \times 10^5 \,\text{s}^{-1}$
- $\omega_{\text{GAM}} \lesssim 0.3 imes \omega_{\text{sh}}$

Mean flow plays leading role in shear decorrelation

$$\begin{split} \omega_{\rm GAM} &= \frac{V_1^{\rm GAM} - V_2^{\rm GAM}}{\Delta_{12}}, \, \text{where} \\ V_{1,2}^{\rm GAM} \, \text{is at different probe steps} \end{split}$$

Feedback Loop to Edge Cooling

- *n
 _e*/n_G ↑ triggers non-adiabatic electron response and damping of zonal flows
- Both effects increase particle and heat fluxes, which reduce *T_e* and lead to edge cooling
- Edge cooling then triggers MHD activities and even disruptions

Future Plan

- Effect of magnetic stress $\langle \tilde{B}_{\theta} \tilde{B}_r \rangle$ should be included at larger α_{MHD}
 - ► The signs of magnetic stress and Reynolds stress are opposite for drift-Alfven waves, i.e. $\partial_t V_\theta = -\nabla_r \left[\langle \tilde{v}_\theta \tilde{v}_r \rangle \langle \tilde{B}_\theta \tilde{B}_r \rangle / (4\pi n_i m_i) \right]$
- Perturbative experiments are required to clarify which is affected by collisionality first
 - Collisional damping of shear flows, V'_{θ}
 - Collapse of turbulent drive, $\langle \tilde{\sigma} \tilde{v}_r \rangle$
- In addition to poloidal sheared flows, toroidal rotation can also regulate turbulent transport
 - Both V_θ and V_φ can be driven by turbulence, coupling between them deserves further studies
 - Simultaneous measurements of poloidal and toroidal Reynolds stress are ongoing

Thank You

Reynolds Work Scaling

Particle Flux Scaling

- Turbulent particle flux increases with density gradient
- It drops when shearing rate increases

Density Fluctuation Scaling

Cross-Correlation Scaling

Dispersion Relation

Link to Radiation Models

Power balance between the turbulence and zonal flows

$$\partial_t \bar{K} = -\partial_r \bar{T} + \mathcal{P} - \nu \bar{K} \tag{1}$$

$$\partial_t \tilde{K} = -\partial_r \tilde{T} - \mathcal{P} + (\gamma_{\text{eff}} - \gamma_{\text{decor}}) \tilde{K}$$
(2)

•
$$\bar{K} = \frac{1}{2} \langle v_{\theta} \rangle^2$$
 and $\tilde{K} = \frac{1}{2} \left\langle \tilde{v}_{\theta}^2 \right\rangle$

• Shear flow production term $\mathcal{P} = \langle \tilde{v}_r \tilde{v}_\theta \rangle \partial_r \langle v_\theta \rangle$

•
$$\overline{T} = \langle \tilde{v}_r \tilde{v}_\theta \rangle \langle v_\theta \rangle$$
 and $\widetilde{T} = \langle \tilde{v}_r \tilde{v}_\theta^2 \rangle$

• Reynolds power $\mathcal{P}_{Re} = -\partial_r \bar{T} + \mathcal{P} = -\langle v_\theta \rangle \partial_r \langle \tilde{v}_r \tilde{v}_\theta \rangle$

The study of the nonlinear energy transfer from turbulence to the shear flows utilizes the bispectral analysis

$$\mathcal{T}_{\mathbf{v}}(f, f_1) = -\operatorname{\mathsf{Re}} \left\langle \mathbf{v}_{\perp}^*(f) \cdot (\mathbf{v}_{\perp}(f - f_1) \cdot \nabla_{\perp} \mathbf{v}_{\perp}(f_1)) \right\rangle$$

- $T_v(f, f_1)$ measures the transfer of energy between velocity fluctuations at frequency *f* and their gradient fluctuations at f_1 at a specific location
- A positive $\mathcal{T}_{v}(f, f_{1})$ indicates v(f) gains energy from $\nabla_{\perp} v(f_{1})$
- ► Total nonlinear energy transfer $T_v(f) = \sum_{f_1} T_v(f, f_1)$