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Background
• Intrinsic axial	flows	observed	in	linear	device	(CSDX)
• Linear	device	studies	suggest	dynamical competition	between	

mean	perpendicular	and	parallel	flows
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– Dynamical: 𝑉" and	𝑉∥ exchange	
energy	with	the	background	
turbulence,	and	each	other.	
à Energy	balance	between	𝑉"
and	𝑉∥	
à Tradeoff	between	V" and	V∥



Experimental	observations:	𝑉"& and 𝑉∥&
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• 𝑉∥& scaling	with	𝛻𝑛) • 𝑉"& scaling	with	𝛻𝑛)
– Tradeoff between	𝑉"& and	𝑉∥&

– 𝑉"& saturation by	𝑉∥&
– Analogy	to	Rice-type	scaling:	
Δ𝑉∥ ∝ 𝛻𝑇 [Rice	et	al,	PRL,	2011]



Measurements:	Parallel	Reynolds	Stress	 𝑣./𝑣.∥
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Π∥123 scaling	with	𝛻𝑛)

|Reynolds	force|≫|axial	pressure	gradient|
à 𝑉∥ driven	by	turbulenceà 𝑉∥& ∼ 𝛻𝑛)

Negative	of	
other	forces



Outline	of	the	Rest
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• Introduction
– Key	questions	and	why	
– Current	status	of	model	

• Exploration	of	coupling
– Study	turbulent	energy	branching	between	𝑉∥ and	𝑉"
– Reynolds	power	ratio	𝑃∥1 𝑃"1⁄ decreases	as	𝑉" increases	

à tradeoff	between	𝑉" and	𝑉∥
– 𝑃∥1 𝑃"1⁄ maximum	occurs	when	 𝛻𝑉∥ is	below	the	PSFI	(parallel	shear	

flow	instability)	threshold	à saturation	of	intrinsic	𝑉∥
• Are	shear	suppression	“rules”	correct?
– Revisiting	the	resonance	effect
– Wave-flow	resonance	suppresses	instability
– 𝑉"& weakens	resonance	à enhances	instability
– Implication	for	zonal	flow	dynamics



Key	Questions	and	Why

• What’s	the	coupling	between	mean perpendicular	and	
parallel	flows	(𝑉" and	𝑉∥)?
– How	do	they	interact?	à How	do	they	compete	for	energy	from	the	
background	turbulence?

– How	does	𝑉∥ affect	the	production	and	saturation	of	intrinsic	𝑉"?	
• Why	should	we	care?
– Relevant	to	L-H	transition

• Both	𝑉"& and	𝑉∥ increase,	during	transition.	
• The	coupling	of	the	two	is	relevant	to	transition	threshold	and	dynamics.	

– Linear	device	(CSDX)	studies	suggest	competition	between	𝑉" and 𝑉∥
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Why	linear	device?

• Relevance:	zero	magnetic	shear	ß Enhanced-confinement	states	
(H-mode)	favor	low	magnetic	shear.	

• Self-generated,	sheared	𝑉"	(zonal	flow)	observed,	which	regulates	
the	drift	wave	turbulence.

• Intrinsic 𝑉∥ observed:	driven	by	drift	wave	turbulence	(𝛻𝑛))	via	
turbulent	Reynolds	work,	i.e.	−𝜕/ 𝑣./𝑣.∥ 𝑉∥.
→	New	in	linear	device	(zero	magnetic	shear).	New	mechanism	for	
𝑉∥ generation	proposed.	[Li	et	al,	PoP 2016	&	2017]

• Advantage	of	CSDX:	unique	measurements	of	parallel	Reynolds	
stress	 𝑣./𝑣.∥ and	Reynolds	power	(−𝜕/ 𝑣./𝑣.∥ 𝑉∥)
à Not achieved	in	tokamak	cores	or	other	linear	devices.	
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Current	status	of	model
• Conventional	wisdom	of	𝑉" → 𝑉∥ coupling:

– 𝑉"& breaks	the	symmetry	in	𝑘∥,	but	requires	finite	magnetic	shear
– Not	applicable in	linear	device	(straight	magnetic	field)

• 𝑉∥ → 𝑉" coupling:	
– 3D	coupled	drift-ion	acoustic	wave	system [Wang	et	al,	PPCF	2012]
– Coupling	between	fluctuating	PV	and	parallel	compression	 𝑞.𝛻∥𝑣.∥
breaks	PV	conservation
à Sink/source	for	fluctuating	potential	enstrophy density
à Zonal	flow	generation

– Perpendicular	flow	dynamics:

𝜕
𝜕𝑡 𝑉" − 𝐿?

𝑞.@

2 ∼ −𝜈C𝑉" + 𝐿?
𝜕
𝜕𝑟 𝑣.F

𝑞.@

2 + 𝜇 𝛻𝑞. @ − 𝑞.𝛻∥𝑣.∥

𝑞.𝛻∥𝑣.∥ ∼ −H
𝛥𝜔K
𝜔K@

�

K

𝑘∥@ 𝜙K @ < 0collisional	
damping

PV	diffusion



Section	II:	Exploration	of	𝑉"-𝑉∥ Coupling
• Hasegawa-Wakatani drift	wave

à near	adiabatic	electron:		
𝑛. = 1 − 𝑖𝛿 𝜙, 𝛿 ≪ 1
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• Prescribed	flows	vary	in	x	direction:
𝑉" = 𝑉"abF sin 𝑞F 𝑥 − 𝐿F 2⁄ ;	𝑉∥ = −𝑉∥abF sin 𝑞F 𝑥 − 𝐿F 2⁄

• Fourier	decomposition	in	y,	z	directions:
𝑓e = ∑ 𝑓K 𝑥 	𝑒C KhijK∥k 𝑒lC mnjCon p�

K ,	where	𝑓e = 𝑛., 𝑣.∥, 𝜙q

• Solve	for	growth	rate,	frequency,	and	eigenmode function	𝜙K 𝑥 for	drift	wave	
instability (𝛻𝑛) driven) with	prescribed	𝑉" and	𝑉∥

• Goal:	study	how	extrinsic	flows	

affect	Reynolds	powers

à generation	of	intrinsic	flows

à turbulent	energy	branching	

between	intrinsic	V" and	V∥

• Analogy	to	biasing	experiments



Bottom	Line:	𝛻𝑛) is	the	Primary	Instability	Drive

• KH	is	not	important	
– 𝑉"&& drive	weaker	than	𝛻𝑛)
drive,	i.e.	 𝑘i𝜌3@𝑉"&& ≪ 𝜔∗2

– 𝑉" affects	the	drift	wave	
instability	via	wave-flow	
resonance	𝜔K − 𝑘i𝑉"
(see	Section	III)
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• PSFI	stable	in	CSDX

• Other	potential	drives:
– 𝑉"&& à Kelvin-Helmholtz	instability	
– 𝛻𝑉∥ à Parallel	shear	flow	instability	



𝛻𝑉∥ has	little	effect	on	drift	wave	instability
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• Influence	drift	wave	instability	via	frequency	shift

• 𝛾K ∼ 𝜔∗2 − 𝜔K ∼
Kuvwxv

yjKuvwxv
𝜔∗2 +

KzK∥wx{x|∥
}

m∗~



Definition:	Reynolds	Power

• Mean	flow	evolution	is	powered	by	Reynolds	power
1
2
𝜕 𝑉∥

@

𝜕𝑡 ∼ −
𝜕
𝜕𝑥 𝑣.F𝑣.∥ 𝑉∥

– Parallel	Reynolds	power	of	a	single	eigenmode

𝑃∥1 = � 𝑑𝑥 −
𝜕
𝜕𝑥 𝑣.F,K∗ 𝑣.∥,K 𝑉∥

��

)

– Perpendicular	Reynolds	power	of	a	single	eigenmode

𝑃"1 = � 𝑑𝑥 −
𝜕
𝜕𝑥 𝑣.F,K∗ 𝑣.i,K 𝑉"

��

)

• Effects	of	extrinsic	𝑉∥ and	𝑉" on	the	ratio	𝑃∥1 𝑃"1⁄ are	studied
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Coupling	of	𝑉" and	𝑉∥ ↔ Ratio	of	Reynolds	Powers

• Ratio	𝑃∥1 𝑃"1⁄ 	decreases	with	𝑉"
à Energy	branching	of	𝑉∥ reduced
à 𝑉" reduces	generation	of	𝑉∥
à Competition between	𝑉" and	𝑉∥

• Increase	𝑉∥ à 𝑃∥1 𝑃"1⁄ turnover	
before 𝛻𝑉∥ hits	PSFI	threshold
àMax	energy	branching	of	𝑉∥ below	
PSFI	threshold
à 𝑉∥ saturates	below PSFI	threshold

Reduced	model	developed	to	study	the	coupling	à See	poster	43 on	Thursday	afternoon



Section	III:	Revisiting	Shearing	Effects

• Are	conventional	shear	suppression	“rules”	correct?
• Aim	to	test	well	known	(mis)conceptions	about	shearing	effects	on	stability
• Conventional	wisdoms:	

– 𝐸×𝐵 flow	shear	suppresses	instability	ß Is	it	correct?
– Wave-flow	resonance	effect	is	often	overlooked,	though	was	mentioned	in	

past	works.
• Findings:

– Explore	linear	instability,	using	fixed	extrinsic	flows
– Wave-flow	resonance	stabilizes	drift	wave	instability
– Perpendicular	flow	shear	weakens	the	resonance,	and	thus	destabilizes the	

instability
• Implications	for	zonal	flow	generation	and	saturation:

– Revisit	predator-prey	model	with	resonance	effects
àMechanism	for	collisionless zonal	flow	damping	(without	involving	tertiary	
instability,	such	as	KH)

14



Wave-flow	resonance

• Hasegawa-Wakatani drift	wave	model,	with	extrinsic	𝑉"

• KH	drive	negligibleà 𝛻𝑛) driven	instability
• Near	adiabatic	electron:	𝑛. = 1 − 𝑖𝛿 𝜙,	𝛿 ≪ 1
• 𝛿 = 𝜔∗2 − 𝜔K + 𝑘i𝑉" 𝑘∥@𝐷∥@� = 𝜈2C 𝜔∗2 − 𝜔K + 𝑘i𝑉" 𝑘∥@𝑣��2@�

• In	the	limit	of	strong	resonance,	i.e.	𝛾K ≪ 𝜔K − 𝑘i𝑉" ≪ 𝜔∗2,	
𝛿 → 𝜈2C𝜔∗2 𝑘∥@𝑣��2@⁄

• Resonance	affects	the	eigenmode scale	à Influence	instability
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• Resonance:	𝜔K − 𝑘i𝑉" − 𝑘∥𝑉∥
𝑘∥ 𝑘i� ≪ 1à Resonance	dominated	by	𝜔K − 𝑘i𝑉"



Resonance	and	Instability	Related	to	Mode	Scale

• Eigenmode equation	with	resonant	effect:

Effectively,	𝑘"@𝜌3@
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• Mode	scale	defined	as	𝐿al@𝜌3@ ≡ 𝜌3@ ∫ 𝑑𝑥 𝜕F𝜙 @��
) 	 ∫ 𝑑𝑥 𝜙 @��

) 	�

• Results:

• In	the	limit	of	strong	resonance	
𝛾K ≪ 𝜔K − 𝑘i𝑉" ≪ 𝜔∗2

• Eigenmode	peaks	(𝐿al@𝜌3@
increases)	as	resonance	
becomes	stronger	

• Resonance	suppresses	drift	
wave	instability



Perpendicular	flow	shear	destabilizes turbulence
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• Mean	perpendicular	flow	shear	
increases	mode	scale	𝐿a 𝜌3⁄ 	
àWeakens	resonance
à Enhances	instability

• KH	drive	negligible compared	to	𝛻𝑛)



Implications	for	Zonal	Flow	Dynamics
• Connection	to	collisionless damping	of	ZF
• Zonal	flow	evolution	àMean	enstrophy equation:

• Vorticity	(𝜌 ≡ 𝛻"@𝜙)	flux: 𝑣./𝜌. = −𝐷w
� w
�/

+ Γw123

𝜕
𝜕𝑡 �𝑑𝑟

𝜌 @

2

�

�
= �𝑑𝑟 𝑣./𝜌.

𝑑 𝜌
𝑑𝑟

�

�
− 𝜈C �𝑑𝑟 𝜌 @

�

�
+ ⋯

Conserves	enstrophy between	
mean	flow	and	fluctuations

𝜕
𝜕𝑡�𝑑𝑟

𝜌 @

2

�

�
= −�𝑑𝑟𝐷w

𝑑 𝜌
𝑑𝑟

@�

�
+ �𝑑𝑟Γw123

𝑑 𝜌
𝑑𝑟

�

�
− 𝜈C �𝑑𝑟 𝜌 @

�

�
+ ⋯

• 𝜈C → 0à Dimits	shift	regimeà Resonance	gives	collisionless damping
• Collisionless damping	by	turbulent	viscosity:	𝑑 𝜌 𝑑𝑟⁄ ∼ Γw123 𝐷w�
• Resonance	sets	𝐷w à ZF	damping

Γw123 = 𝑘i𝑐3@ 𝜙K @ 𝛾K𝜔∗2 + 𝛼? 𝜔∗2 − 𝜔K + 𝑘i𝑉"
𝜔K − 𝑘i𝑉" + 𝑖𝛼?

@ −
𝛾K 𝜔∗2

𝜔K − 𝑘i𝑉"
@ , 𝐷w = 𝑘i@𝑐3@ 𝜙K @ 𝛾K

𝜔K − 𝑘i𝑉"
@



Collisionless ZF	damping	by	vorticity	flux	resonance
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𝛾K = linear	instability	(𝛾�)	+	resonance	absorption	𝛾1 ∼ 𝛾1 𝜔K − 𝑘i𝑉"

Analogy	to	ion-acoustic	absorption	during	collapse	of	Langmuir	waves

• Resonance	replaces	need	for	KH:

• Resonance	induces	collisionless damping	through	𝐷w
• Revisit	predator-prey	model	with	resonance	effect	

àMechanism	for	collisionless damping,	without	KH

Drift	Wave	
Turbulence

Wave-Flow	
Resonance

𝑉"
Γw123

𝐷w

ZF	drive

ZF	dissipation

Resonance	effects



Summary
• Experimental	observations	suggest	competition between	mean	𝑉"

and	𝑉∥
• Reynolds	power	ratio	𝑃∥1 𝑃"1⁄ changes	with	prescribed	extrinsic	

mean	flows
– 𝑃∥1 𝑃"1⁄ 	decreases	with	𝑉" à tradeoff	between	𝑉" and	𝑉∥
– 𝑃∥1 𝑃"1⁄ maximum	occurs	before 𝛻𝑉∥ hits	PSFI	threshold

• Testing	misconceptions	of	shearing	effects	on	stability
– Wave-flow	resonance	suppresses	instability
– 𝑉"& weakens	resonance	à 𝑉"& enhances instability	à
– Resonance	produces	turbulent	viscosity

à collisionless damping	of	ZF,	without	involving	KH
– Suggest	revisit	predator-prey	model	with	resonance effects

àmechanism	for	collisionless ZF	damping,	without	tertiary	instability
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