

Competition of Mean Perpendicular and Parallel Flows in a Linear Device

J.C. Li, P.H. Diamond, R. Hong, G. Tynan -- CASS, Department of Physics & CER, MAE at UCSD, USA

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Numbers DE-FG02-04ER54738.

Background

- *Intrinsic* axial flows observed in linear device (CSDX)
- Linear device studies suggest *dynamical* competition between mean perpendicular and parallel flows

- **Dynamical:** V_{\perp} and V_{\parallel} exchange energy with the background turbulence, and each other.
 - → Energy balance between V_{\perp} and V_{\parallel}
 - \rightarrow *Tradeoff* between V_{\perp} and V_{\parallel}

Experimental observations: V'_{\perp} and V'_{\parallel}

- V'_{\parallel} scaling with ∇n_0
 - Analogy to *Rice-type scaling*: $\Delta V_{\parallel} \propto \nabla T$ [Rice et al, PRL, 2011]

- V'_{\perp} scaling with $abla n_0$
 - Tradeoff between V'_{\perp} and V'_{\parallel}

Measurements: Parallel Reynolds Stress $\langle \tilde{v}_r \tilde{v}_{\parallel} \rangle$

|Reynolds force|>>|axial pressure gradient| $\rightarrow V_{\parallel}$ driven by turbulence $\rightarrow V_{\parallel}' \sim \nabla n_0$

Outline of the Rest

- Introduction
 - Key questions and why
 - Current status of model
- Exploration of coupling
 - Study turbulent energy branching between V_{\parallel} and V_{\perp}
 - Reynolds power ratio $P_{\parallel}^R / P_{\perp}^R$ decreases as V_{\perp} increases \rightarrow tradeoff between V_{\perp} and V_{\parallel}
 - $P_{\parallel}^{R}/P_{\perp}^{R}$ maximum occurs when $|\nabla V_{\parallel}|$ is below the PSFI (parallel shear flow instability) threshold \rightarrow saturation of intrinsic V_{\parallel}
- Are shear suppression "rules" correct?
 - Revisiting the resonance effect
 - Wave-flow resonance suppresses instability
 - V'_{\perp} weakens resonance \rightarrow enhances instability
 - Implication for zonal flow dynamics

Key Questions and Why

- What's the coupling between *mean* perpendicular and parallel flows (V_{\perp} and V_{\parallel})?
 - How do they interact? → How do they compete for energy from the background turbulence?
 - How does V_{\parallel} affect the production and saturation of intrinsic V_{\perp} ?
- Why should we care?
 - Relevant to L-H transition
 - Both V'_{\perp} and V_{\parallel} increase, during transition.
 - The coupling of the two is relevant to transition threshold and dynamics.
 - Linear device (CSDX) studies suggest competition between V_{\perp} and V_{\parallel}

Why linear device?

- Relevance: zero magnetic shear ← Enhanced-confinement states (H-mode) favor low magnetic shear.
- Self-generated, sheared V_{\perp} (zonal flow) observed, which regulates the drift wave turbulence.
- Intrinsic V_{||} observed: driven by drift wave turbulence (∇n₀) via turbulent Reynolds work, i.e. -∂_r ⟨ṽ_r ṽ_{||}⟩V_{||}.
 → New in linear device (zero magnetic shear). New mechanism for V_{||} generation proposed. [Li et al, PoP 2016 & 2017]
- Advantage of CSDX: *unique measurements of parallel Reynolds* stress $\langle \tilde{v}_r \tilde{v}_{\parallel} \rangle$ and Reynolds power $(-\partial_r \langle \tilde{v}_r \tilde{v}_{\parallel} \rangle V_{\parallel})$ \rightarrow Not achieved in tokamak cores or other linear devices.

Current status of model

- Conventional wisdom of $V_{\perp} \rightarrow V_{\parallel}$ coupling:
 - $-V'_{\perp}$ breaks the symmetry in k_{\parallel} , but requires finite magnetic shear
 - *Not applicable* in linear device (straight magnetic field)
- $V_{\parallel} \rightarrow V_{\perp}$ coupling:
 - 3D coupled drift-ion acoustic wave system [Wang et al, PPCF 2012]
 - Coupling between fluctuating PV and parallel compression $\langle \tilde{q} \nabla_{\parallel} \tilde{v}_{\parallel} \rangle$ breaks PV conservation
 - \rightarrow Sink/source for fluctuating potential enstrophy density
 - \rightarrow Zonal flow generation
 - Perpendicular flow dynamics:

$$\frac{\partial}{\partial t} \left[V_{\perp} - L_n \left\langle \frac{\tilde{q}^2}{2} \right\rangle \right] \sim -\nu_i V_{\perp} + L_n \left[\frac{\partial}{\partial r} \left\langle \tilde{v}_x \frac{\tilde{q}^2}{2} \right\rangle + \mu \langle (\nabla \tilde{q})^2 \rangle - \left\langle \tilde{q} \nabla_{\parallel} \tilde{v}_{\parallel} \right\rangle \right]$$

collisional
damping
$$\langle \tilde{q} \nabla_{\parallel} \tilde{v}_{\parallel} \rangle \sim -\sum_k \frac{|\Delta \omega_k|}{\omega_k^2} k_{\parallel}^2 |\phi_k|^2 < 0$$

Section II: Exploration of V_{\perp} - V_{\parallel} Coupling

- Goal: study how extrinsic flows affect Reynolds powers
 - \rightarrow generation of intrinsic flows

→ turbulent energy branching between intrinsic V_{\perp} and V_{\parallel}

• Analogy to biasing experiments

• Hasegawa-Wakatani drift wave \rightarrow near adiabatic electron: $\tilde{n} = (1 - i\delta)\phi, \delta \ll 1$

$$\frac{D}{Dt}\tilde{n} + \tilde{v}_r \frac{\nabla n_0}{n_0} + \nabla_{\parallel} \tilde{v}_{\parallel} = D_{\parallel} \nabla_{\parallel}^2 (\tilde{n} - \tilde{\phi}),$$

$$\frac{D}{Dt} \nabla_{\perp}^{2} \tilde{\phi} + \tilde{v}_{r} V_{\perp}'' = D_{\parallel} \nabla_{\parallel}^{2} (\tilde{n} - \tilde{\phi}),$$
$$\frac{D}{Dt} \tilde{v}_{\parallel} + \tilde{v}_{r} V_{\parallel}' = \nabla_{\parallel} \tilde{n},$$

- Prescribed flows vary in x direction: $V_{\perp} = V_{\perp}^{max} \sin[q_x(x - L_x/2)]; V_{\parallel} = -V_{\parallel}^{max} \sin[q_x(x - L_x/2)]$
- Fourier decomposition in y, z directions: $\tilde{f} = \sum_{k} f_{k}(x) e^{i(k_{y}y+k_{\parallel}z)} e^{-i(\omega_{k}+i\gamma_{k})t}$, where $\tilde{f} = \tilde{n}, \tilde{v}_{\parallel}, \tilde{\phi}$
- Solve for growth rate, frequency, and eigenmode function $\phi_k(x)$ for **drift wave** instability (∇n_0 driven) with prescribed V_{\perp} and V_{\parallel}

Bottom Line: ∇n_0 is the Primary Instability Drive

- Other potential drives:
 - − $V_{\perp}^{\prime\prime}$ → Kelvin-Helmholtz instability
 - − ∇V_{\parallel} → Parallel shear flow instability

- KH is not important
 - V''_{\perp} drive weaker than ∇n_0 drive, i.e. $|k_y \rho_s^2 V''_{\perp}| \ll \omega_{*e}$
 - V_{\perp} affects the drift wave instability via wave-flow resonance $\omega_k - k_y V_{\perp}$ (see Section III)
- PSFI stable in CSDX

∇V_{\parallel} has little effect on drift wave instability

Influence drift wave instability via frequency shift

•
$$\gamma_k \sim \omega_{*e} - \omega_k \sim \frac{k_\perp^2 \rho_s^2}{1 + k_\perp^2 \rho_s^2} \omega_{*e} + \frac{k_\theta k_\parallel \rho_s c_s V_\parallel}{\omega_{*e}}$$

Definition: Reynolds Power

• Mean flow evolution is powered by Reynolds power

$$\frac{1}{2} \frac{\partial \left| V_{\parallel} \right|^2}{\partial t} \sim - \frac{\partial}{\partial x} \left\langle \tilde{v}_x \tilde{v}_{\parallel} \right\rangle V_{\parallel}$$

- Parallel Reynolds power of a single eigenmode

$$P_{\parallel}^{R} = \int_{0}^{L_{x}} dx \left[-\frac{\partial}{\partial x} \left(\tilde{v}_{x,k}^{*} \tilde{v}_{\parallel,k} \right) \right] V_{\parallel}$$

Perpendicular Reynolds power of a single eigenmode

$$P_{\perp}^{R} = \int_{0}^{L_{x}} dx \left[-\frac{\partial}{\partial x} \left(\tilde{v}_{x,k}^{*} \tilde{v}_{y,k} \right) \right] V_{\perp}$$

• Effects of extrinsic V_{\parallel} and V_{\perp} on the ratio $P_{\parallel}^{R}/P_{\perp}^{R}$ are studied

Coupling of V_{\perp} and $V_{\parallel} \leftrightarrow$ Ratio of Reynolds Powers

- Ratio P^R_{||} / P^R_⊥ decreases with V_⊥
 → Energy branching of V_{||} reduced
 → V_⊥ reduces generation of V_{||}
 - \rightarrow *Competition* between V_{\perp} and V_{\parallel}

- Increase $V_{\parallel} \rightarrow P_{\parallel}^{R}/P_{\perp}^{R}$ turnover **before** ∇V_{\parallel} hits PSFI threshold \rightarrow Max energy branching of V_{\parallel} below PSFI threshold
 - $\rightarrow V_{\parallel}$ saturates *below* PSFI threshold

Reduced model developed to study the coupling \rightarrow See poster 43 on Thursday afternoon

Section III: Revisiting Shearing Effects

- Are conventional shear suppression "rules" correct?
- Aim to test well known (mis)conceptions about shearing effects on stability
- Conventional wisdoms:
 - $E \times B$ flow shear suppresses instability \leftarrow Is it correct?
 - Wave-flow resonance effect is often overlooked, though was mentioned in past works.
- Findings:
 - Explore linear instability, using *fixed extrinsic flows*
 - Wave-flow resonance stabilizes drift wave instability
 - Perpendicular flow shear weakens the resonance, and thus *destabilizes* the instability
- Implications for zonal flow generation and saturation:
 - Revisit predator-prey model with resonance effects

→ Mechanism for *collisionless* zonal flow damping (without involving tertiary instability, such as KH)

Wave-flow resonance

- Resonance: $\omega_k k_y V_{\perp} k_{\parallel} V_{\parallel}$ $|k_{\parallel}|/k_y \ll 1 \rightarrow$ Resonance dominated by $\omega_k - k_y V_{\perp}$
- Hasegawa-Wakatani drift wave model, with extrinsic V_{\perp}

$$\begin{split} \frac{D}{Dt} \tilde{n} &+ \tilde{v}_r \frac{\nabla n_0}{n_0} = D_{\parallel} \nabla_{\parallel}^2 (\tilde{n} - \tilde{\phi}), \\ \frac{D}{Dt} \nabla_{\perp}^2 \tilde{\phi} &+ \tilde{v}_r V_{\perp}'' = D_{\parallel} \nabla_{\parallel}^2 (\tilde{n} - \tilde{\phi}) \end{split}$$

- KH drive negligible $\rightarrow \nabla n_0$ driven instability
 - Near adiabatic electron: $\tilde{n} = (1 i\delta)\phi$, $\delta \ll 1$
 - $\delta = \left(\omega_{*e} \omega_k + k_y V_{\perp}\right) / k_{\parallel}^2 D_{\parallel}^2 = v_{ei} \left(\omega_{*e} \omega_k + k_y V_{\perp}\right) / k_{\parallel}^2 v_{The}^2$
- In the limit of strong resonance, i.e. $\gamma_k \ll \omega_k k_y V_\perp \ll \omega_{*e}$, $\delta \rightarrow v_{ei} \omega_{*e} / k_{\parallel}^2 v_{The}^2$
- Resonance affects the eigenmode scale \rightarrow Influence instability

Resonance and Instability Related to Mode Scale

• Eigenmode equation with resonant effect:

$$(\omega_k - k_y V_{\perp} + i\gamma_k) \rho_s^2 \partial_x^2 \phi = \left[(1 + k_y^2 \rho_s^2 - i\delta)(\omega_k - k_y V_{\perp} + i\gamma_k) - \omega_{*e} \right] \phi$$

• Mode scale defined as $L_m^{-2}\rho_s^2 \equiv \rho_s^2 \int_0^{L_x} dx |\partial_x \phi|^2 / \int_0^{L_x} dx |\phi|^2$

• **Results:**

$$\omega_{k} - k_{y}V_{\perp} = \frac{\omega_{*e}(1 + k_{y}^{2}\rho_{s}^{2} + L_{m}^{-2}\rho_{s}^{2})}{(1 + k_{y}^{2}\rho_{s}^{2} + L_{m}^{-2}\rho_{s}^{2})^{2} + \delta^{2}}, \quad \text{Effectively, } k_{\perp}^{2}\rho_{s}^{2}$$

$$\gamma_{k} = \frac{\delta(\omega_{k} - k_{y}V_{\perp})}{1 + k_{y}^{2}\rho_{s}^{2} + L_{m}^{-2}\rho_{s}^{2}} = \frac{\delta\omega_{*e}}{(1 + k_{y}^{2}\rho_{s}^{2} + L_{m}^{-2}\rho_{s}^{2})^{2} + \delta^{2}}.$$

• In the limit of strong resonance $\gamma_k \ll \omega_k - k_y V_\perp \ll \omega_{*e}$

$$\omega_k - k_y V_{\perp} \sim \omega_{*e} L_m^2 / \rho_s^2$$

$$\gamma_k \sim \delta(\omega_k - k_y V_{\perp}) L_m^2 \sim \delta \omega_{*e} L_m^4 / \rho_s^2$$

 Resonance suppresses drift wave instability

Perpendicular flow shear *destabilizes* turbulence

- Mean perpendicular flow shear increases mode scale L_m/ρ_s
 → Weakens resonance
 → Enhances instability
- KH drive **negligible** compared to ∇n_0

Implications for Zonal Flow Dynamics

- Connection to collisionless damping of ZF
- Zonal flow evolution \rightarrow Mean enstrophy equation:

$$\frac{\partial}{\partial t} \int dr \frac{\langle \rho \rangle^2}{2} = \int dr \langle \tilde{v}_r \tilde{\rho} \rangle \frac{d \langle \rho \rangle}{dr} - \nu_i \int dr \langle \rho \rangle^2 + \cdots$$

• Vorticity (
$$\rho \equiv \nabla_{\perp}^2 \phi$$
) flux: $\langle \tilde{v}_r \tilde{\rho} \rangle = -D_{\rho} \frac{d \langle \rho \rangle}{dr} + \Gamma_{\rho}^{Res}$

Conserves enstrophy between mean flow and fluctuations

$$\frac{\partial}{\partial t} \int dr \frac{\langle \rho \rangle^2}{2} = -\int dr D_\rho \left(\frac{d\langle \rho \rangle}{dr}\right)^2 + \int dr \Gamma_\rho^{Res} \frac{d\langle \rho \rangle}{dr} - \nu_i \int dr \langle \rho \rangle^2 + \cdots$$

• $v_i \rightarrow 0 \rightarrow$ Dimits shift regime \rightarrow Resonance gives collisionless damping

- Collisionless damping by turbulent viscosity: $d\langle \rho \rangle/dr \sim \Gamma_{\rho}^{Res}/D_{\rho}$
- Resonance sets $D_{\rho} \rightarrow ZF$ damping

$$\Gamma_{\rho}^{Res} = k_{y}c_{s}^{2}|\phi_{k}|^{2} \left[\frac{\gamma_{k}\omega_{*e} + \alpha_{n}(\omega_{*e} - \omega_{k} + k_{y}V_{\perp})}{\left|\omega_{k} - k_{y}V_{\perp} + i\alpha_{n}\right|^{2}} - \frac{|\gamma_{k}|\omega_{*e}}{\left|\omega_{k} - k_{y}V_{\perp}\right|^{2}} \right], \ D_{\rho} = k_{y}^{2}c_{s}^{2}|\phi_{k}|^{2} \frac{|\gamma_{k}|}{\left|\omega_{k} - k_{y}V_{\perp}\right|^{2}}$$

Collisionless ZF damping by vorticity flux resonance

• Resonance replaces need for KH:

 $\gamma_k = \text{linear instability } (\gamma_L) + \text{resonance absorption } \gamma_R \sim \gamma_R (\omega_k - k_y V_\perp)$ Analogy to ion-acoustic absorption during collapse of Langmuir waves

- Resonance induces collisionless damping through D_{ρ}
- Revisit predator-prey model with resonance effect
 → Mechanism for collisionless damping, without KH

Summary

- Experimental observations suggest competition between mean V_{\perp} and V_{\parallel}
- Reynolds power ratio $P_{\parallel}^R/P_{\perp}^R$ changes with prescribed extrinsic mean flows
 - $P_{\parallel}^{R}/P_{\perp}^{R}$ decreases with $V_{\perp} \rightarrow$ tradeoff between V_{\perp} and V_{\parallel}
 - $P_{\parallel}^{R}/P_{\perp}^{R}$ maximum occurs **before** ∇V_{\parallel} hits PSFI threshold
- Testing misconceptions of shearing effects on stability
 - Wave-flow resonance suppresses instability
 - − V'_{\perp} weakens resonance → V'_{\perp} enhances instability →
 - − Resonance produces turbulent viscosity
 → collisionless damping of ZF, without involving KH
 - − Suggest revisit predator-prey model with resonance effects
 → mechanism for collisionless ZF damping, without tertiary instability