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Outline

• Background:	turbulence	driven	𝑉" and	𝑉∥ observed	in	CSDX
• Questions:	How	do	they	interact?	How	do	they	saturate?
• Increment	study	of	𝑉",	𝑉∥ competition
à Analogous	to	perturbation	experiments

• Zonal	flow	saturation	by	wave-flow	resonance
• Wave-flow	resonance	effects	on	linear	stability

à Flow	shear	enhances	instability	via	resonance
• Collisionless ZF	saturation	by	resonance

à Derivesmesoscopic	ZF	scale,	i.e.	𝐿%& ∼ 𝜌)𝐿*
� 	

à Extended	predator-prey	model,	compared	to	old	model
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Background
• Intrinsic axial	and	azimuthal	flows	observed	in	linear	device	(CSDX)

– Increase	B	à scans	mean	flows-both	𝑉" and	𝑉∥
• Dynamical competition	between	perpendicular	and	parallel	flows
• 𝑉" and	𝑉∥ exchange	energy	with	the	turbulence,	and	each	other.	

à Study	energy	apportionment	between	𝑉" and	𝑉∥	
à Tradeoff	between	V" and	V∥
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Key	Questions

• What’s	the	coupling	between	mean perpendicular	and	
parallel	flows	(𝑉" and	𝑉∥)?
– How	do	they	compete	for	energy	from	turbulence?	

• How/Why	do	flows	saturate,	especially	in	collisionless regime?
• Why?
– Linear	device	(CSDX)	studies	suggest	apportionment	of	turbulence	
energy	between	𝑉" and 𝑉∥

– Relevant	to	L-H	transition
• Both	𝑉". and	𝑉∥. increase,	during	transition.	
• The	coupling	of	the	two	is	relevant	to	transition	threshold	and	dynamics.
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Current	status	of	coupling	model

• Conventional	wisdom	of	𝑉" → 𝑉∥ coupling:
– 𝑉". breaks	the	symmetry	in	𝑘∥,	but	requires	finite	magnetic	shear
– Not	applicable in	linear	device	(straight	magnetic	field)

• 𝑉∥ → 𝑉" coupling	via	parallel	compression:	
– 3D	coupled	drift-ion	acoustic	wave	system [Wang	et	al,	PPCF	2012]
– Coupling	between	fluctuating	PV	and	parallel	compression	 𝑞2𝛻∥𝑣2∥
breaks	PV	conservation
à Sink/source	for	fluctuating	potential	enstrophy density
à Zonal	flow	generation



𝑉" and	𝑉∥ competition
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• Increment	study	of	𝑉" and	𝑉∥ effects	on	Reynolds	powers
– Turbulent	energy	branching between	𝑉∥ and	𝑉"
– Reynolds	power	ratio	𝑃∥6 𝑃"6⁄ decreases	as	𝑉" increases	
à tradeoff	between	𝑉" and	𝑉∥

– 𝑃∥6 𝑃"6⁄ maximum	occurs	when	 𝛻𝑉∥ is	below	the	PSFI	(parallel	
shear	flow	instability)	threshold	
à saturation	of	intrinsic	𝑉∥



Exploration	of	𝑉"-𝑉∥ Coupling

• Collisional	drift	wave
à near	adiabatic	electron:		

𝑛2 = 1 − 𝑖𝛿 𝜙, 𝛿 ≪ 1

• Slab	geometry
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• Goal:	How	do	extrinsic	flows	affect	powers?

à Turbulent	energy	branching	between	intrinsic	V" and	V∥
à How	does	V" affect	intrinsic	V∥ generation?

• Analogous	to	perturbation	experiments,	i.e.	fix	one	flow	and	

increase	the	other	through	external	momentum	source



𝛻𝑛A is	the	Primary	Instability	Drive

• KH	is	not	important	
– 𝑉".. drive	weaker	than	𝛻𝑛A
drive,	i.e.	 𝑘B𝜌)C𝑉".. ≪ 𝜔∗F
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• 𝛻𝑉∥ in	CSDX	is	well	below		
the	PSFI	linear	threshold

à PSFI	stable	in	CSDX

• Other	potential	drives:
– 𝑉".. à Kelvin-Helmholtz	instability	
– 𝛻𝑉∥ à Parallel	shear	flow	instability	

CSDX

Drift	
wave

PSFI	regime



Coupling	of	𝑉" and	𝑉∥ ↔ Ratio	of	Reynolds	Powers

• Ratio	𝑃∥6 𝑃"6⁄ 	decreases	with	𝑉"
à Energy	branching	of	𝑉∥ reduced
à 𝑉" reduces	generation	of	𝑉∥
à Suggest	competition between	𝑉"
and	𝑉∥

• Increase	𝑉∥ à 𝑃∥6 𝑃"6⁄ turnover	
before 𝛻𝑉∥ hits	PSFI	threshold
àMax	energy	branching	of	𝑉∥ below	
PSFI	threshold
à Suggest	𝑉∥ saturates	below PSFI	
threshold



Partial	Summary 1
• CSDX	experiments	suggest	energy	apportionment between	mean	
𝑉" and	𝑉∥

• Increment	study	on	Reynolds	power	ratio	𝑃∥6 𝑃"6⁄
– Analogous	to	perturbation	study
– 𝑃∥6 𝑃"6⁄ 	decreases	with	𝑉" à tradeoff	between	𝑉" and	𝑉∥
– 𝑃∥6 𝑃"6⁄ maximum	occurs	before 𝛻𝑉∥ hits	PSFI	threshold
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Collisionless zonal	flow	saturation
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• Wave-flow	resonance	prominent	in	linear	device	(CSDX)	
– Enters	turbulence	regulation,	both	linearly	and	nonlinearly
– Flow	shear	is	not	the	exclusive	control	parameter

• Resonance	suppresses	linear	instability	by	wave	absorption
– Are	shear	suppression	“rules”	correct?
– 𝑉". weakens	resonance	à flow	shear	enhances	instability	via	
resonance



Collisionless zonal	flow	saturation (cont’d)
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• Collisionless Zonal	flow	saturation	by	resonant	PV	mixing
– Model	of	resonant	PV	mixing
– Resonant	diffusion	of	vorticity	saturates	zonal	flow	in	collisionless
regime

– Incorporated	in	an	extended	predator-prey	model
– Drift	wave	mixes	PV	at	zonal	flow	shear	below	that	for	KH/tertiary	
excitation



Wave-flow	resonance	effect	on	linear	stability

• Hasegawa-Wakatani drift	wave	model,	with	extrinsic	𝑉"

• KH	drive	negligible,	i.e.	 𝑘B𝜌)C 𝑣B
.. ≪ 𝜔∗F à Drift	wave	instability	dominant

• Near	adiabatic	electron:	𝑛2 = 1 − 𝑖𝛿 𝜙,	𝛿 ≪ 1
• 𝛿 = 𝜔∗F − 𝜔O + 𝑘B𝑉" 𝑘∥C𝐷∥CR = 𝜈FT 𝜔∗F − 𝜔O + 𝑘B𝑉" 𝑘∥C𝑣UVFCR

• Resonance	reduces	the	eigenmode scale	à Suppresses	instability
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• Resonance:	𝜔O − 𝑘B𝑉" − 𝑘∥𝑉∥
𝑘∥ 𝑘BR ≪ 1à Resonance	set	by	𝜔O − 𝑘B𝑉"

(Width	of	eigenmode)



Perpendicular	flow	shear	destabilizes turbulence
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• Mean	perpendicular	flow	shear	
increases	mode	scale	𝐿W 𝜌)⁄ 	
àWeakens	resonance
à Enhances	instability

• KH	drive	negligible compared	to	𝛻𝑛A



Zonal	Flow	Saturation:	Motivation

• Why?
– Crucial	to	understand	Dimits state	physics
à Collisionless zonal	flow	saturation,	i.e.	collisional	
damping	→ 0
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• Tertiary	instability	does	not	work
– Severely	damped	by	magnetic	shear
– Observed	mean	flow	shear	is	always	below	the	
threshold	for	tertiary	instability	excitation



Nonlinear	Model:	Resonant PV	Mixing
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• Vorticity:

• PE:

• Density:

PE	=	Potential	Enstrophy,	i.e.	Ω ≡ 𝜌2C

- 𝐷[,	𝜇[,	𝜒[:	collisional	particle	diffusivity,	flow	damping,	
vorticity	diffusivity	à vanishing	in	collisionless regime

- 𝜇^_ = 𝜇^_ ⟨𝑣B⟩ :	nonlinear	damping	rate	
driven	by	tertiary	mode

Irrelevant to	most	
cases	we	have	
encountered

ß



Resonant PV	diffusion
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• Resonant	PV	diffusivity:	
𝐷bcF) =d 𝑣2e C𝜋𝛿 𝜔O − 𝑘B𝑉"

�

O

∼ d𝜏[,O𝑘BC𝜌)C𝑐eC 𝜙O C
�

O

𝜏[,O ∼ 𝑣i,B − 𝑣jV,B Δ𝑘B + 𝑣i,eΔ𝑘e
lm

• PV	flux	à turbulent	PV	diffusion:	

à

𝐷b,nocp = Resonant	+	Non-resonant

Resonant	diffusivity	exceeds	non-resonant	part:
𝐷b*q* 𝐷b*q*lcF)⁄ ∼ 𝜏[,O𝑘∥C𝑣UVFC 𝜈FT	⁄ ≫ 1

• Non-resonant	PV	diffusivity:	



• Zonal	flow	evolution	ßMean	enstrophy equation:
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• 𝜈T → 0à Dimits	shift	regimeà Resonant	diffusion	saturates	ZF
• Collisionless damping	by	turbulent	viscosity:	𝑑 𝜌 𝑑𝑟⁄ ∼ Γ{6F) 𝐷bcF)R
• Resonant	vorticity	diffusivity	𝐷bcF) à ZF	saturation

Conserves	enstrophy between	mean	
flow	and	fluctuations

Vorticity	(𝜌 ≡ 𝛻"C𝜙)	flux:

𝑣2c𝜌2 = −𝐷bcF)
𝑑 𝜌
𝑑𝑟 + Γ{6F)

Collisionless	saturation	by	resonant	diffusion	of	vorticity



Mesoscopic stationary	zonal	flow
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• Balance	vorticity	flux:	 𝑣2e𝜌2 = −𝐷bcF)
� {
�e

+ Γ{6F) = 0

à 𝑣B
.. = 𝑑 𝜌 𝑑𝑥⁄ ∼ Γ{6F) 𝐷bcF)R

• Vorticity	flux	driven	by	𝛻𝑛:		Γ{6F) =
• Resonant	PV	diffusivity:	

𝐷bcF) = ∑ 𝜏[,O𝑘BC𝜌)C𝑐eC 𝜙O C�
O with	𝜏[,O ∼ 𝑣i,B − 𝑣jV,B Δ𝑘B + 𝑣i,eΔ𝑘e

lm

• Stationary	flow:	

à Zonal	flow	scale:	𝐿%& ∼ 𝜌)𝐿*	
� à 𝜌) ≪ 𝐿%& ≪ 𝐿*

𝐿W:	radial	mode	scale	of	drift	wave	eigenmode,	regulated	by	resonance

This	derives the	standard	ordering,	which	is	just	invoked,	in	ad	hoc	way.



Extended	Predator-Prey	Model
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• Mean	flow	energy:

Production	by	residual	
vorticity	flux

Nonlinear	damping	
by	tertiary	modes

Resonant	diffusion	
of	vorticity

Collisional	Damping

• Turbulence	energy	(PE):

Forward	cascade	of	PE Linear	instability

𝐿%&:	zonal	flow	profile	scale,	𝜌) ≪ 𝐿%& ≪ 𝐿*

new



Turbulence	and	flow	states
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• Collisionless	=	collisional	damping/viscosity	→ 0
• Collisionless saturation	compared	to	usual	collisional	damping:	

– Turbulence	energy	determined	by	linear	stability	and	small	scale	dissipation
à Different	from	usual	models,	where	turbulence	energy	~	flow	damping

– Flow	state	basically	independent	of	stability	drive
à There	can	be	flows	in	nearly	marginal	turbulence

• Compare	by	regime:



Analogy	to	Landau	Damping	Absorption	in	Langmuir	Turbulence
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Langmuir Turbulence	Collapse	 Collisionless ZF	Saturation

Primary	player Plasmon-Langmuir	wave	 Drift	wave	turbulence

Secondary	player Ion- acoustic	wave	(caviton)	 Zonal	flow

Free	energy	source	 Langmuir	turbulence	driver 𝛻𝑛,	𝛻𝑇 drives

Final	State (Nearly)	empty	cavity Saturated zonal	flow and	
residual turbulence

Resonance Landau	damping Resonant	wave	absorption

Other	damping	effects Ion-acoustic	radiation Kelvin-Helmholtz	relaxation	

• Landau	damping:	flattens	PDF	(negative	slope)	in	phase	space
• Resonant	PV	mixing:	homogenizes	mean	PV	in	real	space



Partial	Summary	2
• Resonance	effects	on	linear	stability
– Wave-flow	resonance	suppresses	instability
– 𝑉". weakens	resonance	à 𝑉". enhances instability	via	resonance

• Resonant	diffusion	of	vorticity	saturates	zonal	flow	in	
collisionless regime
– Resonant	PV	mixing	ß resonant	diffusion	of	PV
– Model	shows	that	stationary	zonal	flow	scale	is	mesoscopic,	
i.e.	𝜌) ≪ 𝐿%& ≪ 𝐿*,	since	𝐿%& ∼ 𝜌)𝐿*

�

– Extended	predator-prey	model	
à turbulence	energy	∼ 𝛾_C 𝜀[C⁄ not	∼ 𝛾_

– Flow	independent	of	turbulence	level/drive	
à flow	in	marginal	turbulence
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