

Competition of Mean Perpendicular and Parallel Flows in a Linear Device

J.C. Li, P.H. Diamond, R. Hong, G. Tynan University of California San Diego, USA

Festival de Théorie 2017, Aix-en-Provence, France

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Numbers DE-FG02-04ER54738.

Background

- Intrinsic axial and azimuthal flows observed in linear device (CSDX)
- Increase B \rightarrow scan mean flows- V_{\perp} and V_{\parallel}
- **Dynamical** competition between mean perpendicular and parallel flows
- [See George Tynan's talk earlier]
- **Dynamical:** V_{\perp} and V_{\parallel} exchange energy with the background turbulence, and each other.
 - \rightarrow Energy balance between V_{\perp} and V_{\parallel}
 - \rightarrow *Tradeoff* between V_{\perp} and V_{\parallel}

Key Questions and Why

- What's the coupling between *mean* perpendicular and parallel flows (V_{\perp} and V_{\parallel})?
 - How do they interact?

 \rightarrow How do they compete for energy from turbulence?

- Can we have a reduced model of the coupling between V_{\perp} and V_{\parallel} ?
- Why should we care?
 - Linear device (CSDX) studies suggest apportionment of turbulence energy between V_{\perp} and V_{\parallel}
 - Relevant to L-H transition
 - Both V'_{\perp} and V_{\parallel} increase, during transition.
 - The coupling of the two is relevant to transition threshold and dynamics.

Outline of the Rest

- Current status of model
- Exploration of V_{\perp} and V_{\parallel} competition
 - *Turbulent energy branching* between V_{\parallel} and V_{\perp}
 - Reynolds power ratio $P_{\parallel}^R / P_{\perp}^R$ decreases as V_{\perp} increases \rightarrow tradeoff between V_{\perp} and V_{\parallel}
 - $P_{\parallel}^{R}/P_{\perp}^{R}$ maximum occurs when $|\nabla V_{\parallel}|$ is below the PSFI (parallel shear flow instability) threshold \rightarrow saturation of intrinsic V_{\parallel}
- Wave-flow resonance effects
 - Are shear suppression "rules" always correct?
 - $-V'_{\perp}$ weakens resonance
 - \rightarrow flow shear enhances instability
 - Implication for zonal flow dynamics

Current status of model

- Conventional wisdom of $V_{\perp} \rightarrow V_{\parallel}$ coupling:
 - $-V'_{\perp}$ breaks the symmetry in k_{\parallel} , but requires finite magnetic shear
 - *Not applicable* in linear device (straight magnetic field)
- $V_{\parallel} \rightarrow V_{\perp}$ coupling via parallel compression:
 - 3D coupled drift-ion acoustic wave system [Wang et al, PPCF 2012]
 - Coupling between fluctuating PV and parallel compression $\langle \tilde{q} \nabla_{\parallel} \tilde{v}_{\parallel} \rangle$ breaks PV conservation
 - → Sink/source for fluctuating potential enstrophy density
 - ightarrow Zonal flow generation

Section II: Exploration of V_{\perp} - V_{\parallel} Coupling

- Goal: study *how extrinsic flows affect Reynolds powers*
 - \rightarrow generation of intrinsic flows
 - \rightarrow turbulent energy branching between intrinsic V₁ and V₁
- Analogous to increment study
- Hasegawa-Wakatani drift wave \rightarrow near adiabatic electron: $\tilde{n} = (1 - i\delta)\phi, \delta \ll 1$
- Slab geometry

$$\frac{D}{Dt}\tilde{n} + \tilde{v}_r \frac{\nabla n_0}{n_0} + \nabla_{\parallel} \tilde{v}_{\parallel} = D_{\parallel} \nabla_{\parallel}^2 (\tilde{n} - \tilde{\phi}),$$

$$\frac{D}{Dt}\nabla_{\perp}^{2}\tilde{\phi} + \tilde{v}_{r}V_{\perp}'' = D_{\parallel}\nabla_{\parallel}^{2}(\tilde{n} - \tilde{\phi}),$$

$$\frac{D}{Dt}\tilde{v}_{\parallel} + \tilde{v}_r V_{\parallel}' = \nabla_{\parallel}\tilde{n},$$

Bottom Line: ∇n_0 is the Primary Instability Drive

- Other potential drives:
 - − $V_{\perp}^{\prime\prime}$ → Kelvin-Helmholtz instability
 - $∇V_{\parallel}$ → Parallel shear flow instability
- KH is not important
 - $V_{\perp}^{\prime\prime}$ drive weaker than ∇n_0 drive, i.e. $|k_y \rho_s^2 V_{\perp}^{\prime\prime}| \ll \omega_{*e}$

• **PSFI stable** in CSDX

Definition: Reynolds Power

Mean flow evolution is driven by Reynolds power

$$\frac{1}{2} \frac{\partial \left| V_{\parallel} \right|^{2}}{\partial t} \sim - \frac{\partial}{\partial x} \left\langle \tilde{v}_{x} \tilde{v}_{\parallel} \right\rangle V_{\parallel}$$

- Parallel Reynolds power of a single eigenmode

$$P_{\parallel}^{R} = \int_{0}^{L_{x}} dx \left[-\frac{\partial}{\partial x} \left(\tilde{v}_{x,k}^{*} \tilde{v}_{\parallel,k} \right) \right] V_{\parallel}$$

Perpendicular Reynolds power of a single eigenmode

$$P_{\perp}^{R} = \int_{0}^{L_{x}} dx \left[-\frac{\partial}{\partial x} \left(\tilde{v}_{x,k}^{*} \tilde{v}_{y,k} \right) \right] V_{\perp}$$

• Effects of extrinsic V_{\parallel} and V_{\perp} on the ratio $P_{\parallel}^{R}/P_{\perp}^{R}$ are studied

Coupling of V_{\perp} and $V_{\parallel} \leftrightarrow$ Ratio of Reynolds Powers

- Ratio P^R_{||} / P^R_⊥ decreases with V_⊥
 → Energy branching of V_{||} reduced
 → V_⊥ reduces generation of V_{||}
 - \rightarrow *Competition* between V_{\parallel} and V_{\parallel}

- Increase $V_{\parallel} \rightarrow P_{\parallel}^{R}/P_{\perp}^{R}$ turnover **before** ∇V_{\parallel} hits PSFI threshold \rightarrow Max energy branching of V_{\parallel} below PSFI threshold
 - $\rightarrow V_{\parallel}$ saturates *below* PSFI threshold

Section III: Revisiting Wave-Flow Resonance

[Li & Diamond, manuscript in preparation]

• Are conventional shear suppression "rules" always correct?

- $E \times B$ flow shear suppresses instability \leftarrow Is it correct with resonance?
- Wave-flow resonance effect is often overlooked, though was mentioned in past works.
- Findings:
 - Wave-flow resonance stabilizes drift wave instability
 - Perpendicular flow shear weakens the resonance, and thus *destabilizes* the instability
- Implications for *zonal flow saturation*:
 - Collisionless zonal flow saturation (without involving tertiary instabilities, such as KH) set by resonance, $D_{\rho} \sim (\omega_k k_y V_{\perp})^{-2}$

Wave-flow resonance

- Resonance: $\omega_k k_y V_{\perp} k_{\parallel} V_{\parallel}$ $|k_{\parallel}|/k_y \ll 1 \rightarrow$ Resonance dominated by $\omega_k - k_y V_{\perp}$
- Hasegawa-Wakatani drift wave model, with extrinsic V_{\perp}

$$\begin{split} &\frac{D}{Dt}\tilde{n} + \tilde{v}_r \frac{\nabla n_0}{n_0} = D_{\parallel} \nabla_{\parallel}^2 (\tilde{n} - \tilde{\phi}), \\ &\frac{D}{Dt} \nabla_{\perp}^2 \tilde{\phi} + \tilde{v}_r V_{\perp}'' = D_{\parallel} \nabla_{\parallel}^2 (\tilde{n} - \tilde{\phi}) \end{split}$$

- KH drive negligible → Drift wave instability dominant
 - Near adiabatic electron: $\tilde{n} = (1 i\delta)\phi$, $\delta \ll 1$
 - $\delta = (\omega_{*e} \omega_k + k_y V_\perp) / k_{\parallel}^2 D_{\parallel}^2 = v_{ei} (\omega_{*e} \omega_k + k_y V_\perp) / k_{\parallel}^2 v_{The}^2$
- Resonance reduces the eigenmode scale \rightarrow Suppresses instability

(Width of eigenmode)

Perpendicular flow shear *destabilizes* turbulence

- Mean perpendicular flow shear increases mode scale L_m/ρ_s
 → Weakens resonance
 → Enhances instability
- KH drive **negligible** compared to ∇n_0

Implications for Zonal Flow Saturation

- Connection to collisionless saturation of ZF
- Zonal flow evolution \rightarrow Mean enstrophy equation:

$$\frac{\partial}{\partial t} \int dr \frac{\langle \rho \rangle^2}{2} = \int dr \langle \tilde{v}_r \tilde{\rho} \rangle \frac{d \langle \rho \rangle}{dr} - \nu_i \int dr \langle \rho \rangle^2 + \cdots$$

• Vorticity (
$$\rho \equiv \nabla_{\perp}^2 \phi$$
) flux: $\langle \tilde{v}_r \tilde{\rho} \rangle = -D_{\rho} \frac{d \langle \rho \rangle}{dr} + \Gamma_{\rho}^{Res}$

Conserves enstrophy between mean flow and fluctuations

$$\frac{\partial}{\partial t} \int dr \frac{\langle \rho \rangle^2}{2} = -\int dr D_\rho \left(\frac{d\langle \rho \rangle}{dr}\right)^2 + \int dr \Gamma_\rho^{Res} \frac{d\langle \rho \rangle}{dr} - \nu_i \int dr \langle \rho \rangle^2 + \cdots$$

• $v_i \rightarrow 0 \rightarrow$ Dimits shift regime \rightarrow **Resonance saturates ZF, w/o KH**

- Collisionless damping by turbulent viscosity: $d\langle \rho \rangle / dr \sim \Gamma_{\rho}^{Res} / D_{\rho}$
- Resonance sets $D_{\rho} \rightarrow ZF$ saturation

$$\Gamma_{\rho}^{Res} = \sum_{k} k_{y} c_{s}^{2} |\phi_{k}|^{2} \left[\frac{\gamma_{k} \omega_{*e} + \alpha_{n} (\omega_{*e} - \omega_{k} + k_{y} V_{\perp})}{|\omega_{k} - k_{y} V_{\perp} + i\alpha_{n}|^{2}} - \frac{|\gamma_{k}| \omega_{*e}}{|\omega_{k} - k_{y} V_{\perp}|^{2}} \right], D_{\rho} = \sum_{k} k_{y}^{2} c_{s}^{2} |\phi_{k}|^{2} \frac{|\gamma_{k}|}{|\omega_{k} - k_{y} V_{\perp}|^{2}}$$

Summary

- CSDX experiments suggest energy apportionment between mean V_{\perp} and V_{\parallel}
- Reynolds power ratio $P_{\parallel}^R/P_{\perp}^R$ changes in response to external flow increment
 - $P_{\parallel}^{R}/P_{\perp}^{R}$ decreases with $V_{\perp} \rightarrow$ tradeoff between V_{\perp} and V_{\parallel}
 - $P_{\parallel}^{R}/P_{\perp}^{R}$ maximum occurs **before** ∇V_{\parallel} hits PSFI threshold
- Testing misconceptions of shearing effects on stability
 - Wave-flow resonance suppresses instability
 - V'_{\perp} weakens resonance $\rightarrow V'_{\perp}$ enhances instability
 - Resonance produces turbulent viscosity
 - \rightarrow collisionless saturation of ZF, without involving tertiary instabilities

Backup

Details on Acoustic Coupling

- $V_{\parallel} \rightarrow V_{\perp}$ coupling via parallel compression:
 - 3D coupled drift-ion acoustic wave system [Wang et al, PPCF 2012]
 - Coupling between fluctuating PV and parallel compression $\langle \tilde{q} \nabla_{\parallel} \tilde{v}_{\parallel} \rangle$ breaks PV conservation
 - \rightarrow Sink/source for fluctuating potential enstrophy density
 - \rightarrow Zonal flow generation
 - Perpendicular flow dynamics:

$$\begin{array}{c} \frac{\partial}{\partial t} \left[V_{\perp} - L_n \left\langle \frac{\tilde{q}^2}{2} \right\rangle \right] \sim -\nu_i V_{\perp} + L_n \left[\frac{\partial}{\partial r} \left\langle \tilde{v}_x \frac{\tilde{q}^2}{2} \right\rangle + \mu \langle (\nabla \tilde{q})^2 \rangle - \left\langle \tilde{q} \nabla_{\parallel} \tilde{v}_{\parallel} \right\rangle \right] \\ \downarrow \\ \text{collisional} \\ \text{damping} \\ \end{array} \qquad \begin{array}{c} \langle \tilde{q} \nabla_{\parallel} \tilde{v}_{\parallel} \rangle \sim - \sum_k \frac{|\Delta \omega_k|}{\omega_k^2} k_{\parallel}^2 |\phi_k|^2 < 0 \end{array}$$

Stationary Zonal Flow Profile

• Turbulent viscosity set by resonance:

$$D_{\rho} = \sum_{k} k_{y}^{2} c_{s}^{2} |\phi_{k}|^{2} \frac{|\gamma_{k}|}{\left|\omega_{k} - k_{y} V_{\perp}\right|^{2}} \sim \sum_{k} \frac{k_{y}^{2} \rho_{s}^{2} c_{s}^{2}}{k_{\parallel}^{2} D_{\parallel}} \frac{k_{y}^{2} \rho_{s}^{2} + L_{m}^{-2} \rho_{s}^{2}}{1 + k_{y}^{2} \rho_{s}^{2} + L_{m}^{-2} \rho_{s}^{2}} |\phi_{k}|^{2}$$

• Residual vorticity flux:

$$\Gamma_{\rho}^{Res} = \sum_{k} k_{y} c_{s}^{2} |\phi_{k}|^{2} \left[\frac{\gamma_{k} \omega_{*e} + \alpha_{n} \left(\omega_{*e} - \omega_{k} + k_{y} V_{\perp} \right)}{\left| \omega_{k} - k_{y} V_{\perp} + i\alpha_{n} \right|^{2}} - \frac{\left| \gamma_{k} \right| \omega_{*e}}{\left| \omega_{k} - k_{y} V_{\perp} \right|^{2}} \right],$$

Reynolds force (i.e. net production) = 0
 → Stationary flow profile:

$$\langle v_y \rangle'' = \langle \rho \rangle' = \frac{\Gamma_{\rho}^{Res}}{D_{\rho}} \sim -\frac{k_y^2 \rho_s^2 c_s^2}{(k_{\parallel}^2 D_{\parallel})^2} \frac{1}{L_n^3} \frac{1}{(1+k_y^2 \rho_s^2 + L_m^{-2} \rho_s^2)^2}.$$

Resonance and Instability Related to Mode Scale

• Eigenmode equation with resonant effect:

$$(\omega_k - k_y V_{\perp} + i\gamma_k) \rho_s^2 \partial_x^2 \phi = \left[(1 + k_y^2 \rho_s^2 - i\delta)(\omega_k - k_y V_{\perp} + i\gamma_k) - \omega_{*e} \right] \phi$$

- Mode scale: $L_m^{-2}\rho_s^2 \equiv \rho_s^2 \int_0^{L_x} dx |\partial_x \phi|^2 / \int_0^{L_x} dx |\phi|^2$
- Results:
 $$\begin{split} |\omega_k - k_y \langle v_y \rangle|_{min} &\cong \frac{\omega_{*e}}{1 + k_y^2 \rho_s^2 + L_m^{-2} \rho_s^2}, \quad \text{Effectively, } k_\perp^2 \rho_s^2 \\ \gamma_k &\cong \frac{\omega_{*e}^2}{k_\parallel^2 D_\parallel} \frac{k_y^2 \rho_s^2 + L_m^{-2} \rho_s^2}{(1 + k_y^2 \rho_s^2 + L_m^{-2} \rho_s^2)^3}. \end{split}$$
- Strong resonance

$$\gamma_k \ll \omega_k - k_y V_\perp \ll \omega_{*e}$$

- Eigenmode peaks $(L_m^{-2}\rho_s^2)$ increases) as resonance becomes stronger
- Resonance suppresses drift wave instability

Analogy to Landau Damping Absorption

	Langmuir Turbulence Collapse	Collisionless ZF Saturation
Players	Plasmon-Langmuir wave and ion- acoustic wave (caviton)	Drift wave and zonal flow
Final State	(Nearly) empty cavity	Dimits state zonal flow dominant
Free energy source	Langmuir turbulence driver	∇n , ∇T drives
Resonance effect	Landau damping as cavity collapses	Absorption by $D_{\rho} \sim \left(\omega_k - k_y V_{\perp}\right)^{-2}$
Other saturation mechanisms	Ion-acoustic radiation from empty cavity	Kelvin-Helmholtz relaxation

Revisit predator-prey model

• Resonance induces collisionless saturation through D_{ρ} , apart from KH:

$$\begin{split} \gamma_k &= \text{linear instability } (\gamma_L) + \text{resonance absorption } \gamma_R \sim \gamma_R \big(\omega_k - k_y V_\perp \big) \\ & \clubsuit \\ & \text{Analogy to ion-acoustic absorption during collapse of Langmuir waves} \end{split}$$

- Revisit predator-prey model with resonance effect
 - \rightarrow Mechanism for collisionless damping, without KH

