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Background
• Intrinsic axial	and	azimuthal	flows	observed	in	linear	device	(CSDX)
• Increase	B	à scan	mean	flows-𝑉" and	𝑉∥
• Dynamical competition	between	mean	perpendicular	and	parallel	flows
• [See	George	Tynan’s	talk	earlier]
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– Dynamical: 𝑉" and	𝑉∥ exchange	energy	
with	the	background	turbulence,	and	
each	other.	
à Energy	balance	between	𝑉" and	𝑉∥	
à Tradeoff	between	V" and	V∥



Key	Questions	and	Why

• What’s	the	coupling	between	mean perpendicular	and	
parallel	flows	(𝑉" and	𝑉∥)?
– How	do	they	interact?	
à How	do	they	compete	for	energy	from	turbulence?	

– Can	we	have	a	reduced	model	of	the	coupling	between	𝑉" and	𝑉∥?
• Why	should	we	care?
– Linear	device	(CSDX)	studies	suggest	apportionment	of	turbulence	
energy	between	𝑉" and 𝑉∥

– Relevant	to	L-H	transition
• Both	𝑉"& and	𝑉∥ increase,	during	transition.	
• The	coupling	of	the	two	is	relevant	to	transition	threshold	and	dynamics.
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Outline	of	the	Rest
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• Current	status	of	model	
• Exploration	of	𝑉" and	𝑉∥ competition
– Turbulent	energy	branching between	𝑉∥ and	𝑉"
– Reynolds	power	ratio	𝑃∥( 𝑃"(⁄ decreases	as	𝑉" increases	
à tradeoff	between	𝑉" and	𝑉∥

– 𝑃∥( 𝑃"(⁄ maximum	occurs	when	 𝛻𝑉∥ is	below	the	PSFI	(parallel	
shear	flow	instability)	threshold	à saturation	of	intrinsic	𝑉∥

• Wave-flow	resonance	effects
– Are	shear	suppression	“rules”	always	correct?
– 𝑉"& weakens	resonance	
à flow	shear	enhances	instability

– Implication	for	zonal	flow	dynamics



Current	status	of	model

• Conventional	wisdom	of	𝑉" → 𝑉∥ coupling:
– 𝑉"& breaks	the	symmetry	in	𝑘∥,	but	requires	finite	magnetic	shear
– Not	applicable in	linear	device	(straight	magnetic	field)

• 𝑉∥ → 𝑉" coupling	via	parallel	compression:	
– 3D	coupled	drift-ion	acoustic	wave	system [Wang	et	al,	PPCF	2012]
– Coupling	between	fluctuating	PV	and	parallel	compression	 𝑞.𝛻∥𝑣.∥
breaks	PV	conservation
à Sink/source	for	fluctuating	potential	enstrophy density
à Zonal	flow	generation



Section	II:	Exploration	of	𝑉"-𝑉∥ Coupling

• Hasegawa-Wakatani drift	wave
à near	adiabatic	electron:		

𝑛. = 1 − 𝑖𝛿 𝜙, 𝛿 ≪ 1

• Slab	geometry
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• Goal:	study	how	extrinsic	flows	affect	Reynolds	powers

à generation	of	intrinsic	flows

à turbulent	energy	branching	between	intrinsic	V" and	V∥

• Analogous	to	increment	study



Bottom	Line:	𝛻𝑛9 is	the	Primary	Instability	Drive

• KH	is	not	important	
– 𝑉"&& drive	weaker	than	𝛻𝑛9
drive,	i.e.	 𝑘:𝜌<=𝑉"&& ≪ 𝜔∗@
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• PSFI	stable	in	CSDX

• Other	potential	drives:
– 𝑉"&& à Kelvin-Helmholtz	instability	
– 𝛻𝑉∥ à Parallel	shear	flow	instability	



Definition:	Reynolds	Power

• Mean	flow	evolution	is	driven	by	Reynolds	power
1
2
𝜕 𝑉∥

=

𝜕𝑡 ∼ −
𝜕
𝜕𝑥 𝑣.F𝑣.∥ 𝑉∥

– Parallel	Reynolds	power	of	a	single	eigenmode

𝑃∥( = G 𝑑𝑥 −
𝜕
𝜕𝑥 𝑣.F,I∗ 𝑣.∥,I 𝑉∥

JK
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– Perpendicular	Reynolds	power	of	a	single	eigenmode

𝑃"( = G 𝑑𝑥 −
𝜕
𝜕𝑥 𝑣.F,I∗ 𝑣.:,I 𝑉"

JK
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• Effects	of	extrinsic	𝑉∥ and	𝑉" on	the	ratio	𝑃∥( 𝑃"(⁄ are	studied
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Coupling	of	𝑉" and	𝑉∥ ↔ Ratio	of	Reynolds	Powers

• Ratio	𝑃∥( 𝑃"(⁄ 	decreases	with	𝑉"
à Energy	branching	of	𝑉∥ reduced
à 𝑉" reduces	generation	of	𝑉∥
à Competition between	𝑉" and	𝑉∥

• Increase	𝑉∥ à 𝑃∥( 𝑃"(⁄ turnover	
before 𝛻𝑉∥ hits	PSFI	threshold
àMax	energy	branching	of	𝑉∥ below	
PSFI	threshold
à 𝑉∥ saturates	below PSFI	threshold



Section	III:	Revisiting	Wave-Flow	Resonance

• Are	conventional	shear	suppression	“rules”	always	correct?
– 𝐸×𝐵 flow	shear	suppresses	instability	ß Is	it	correct	with	resonance?
– Wave-flow	resonance	effect	is	often	overlooked,	though	was	mentioned	in	

past	works.
• Findings:

– Wave-flow	resonance	stabilizes	drift	wave	instability
– Perpendicular	flow	shear	weakens	the	resonance,	and	thus	destabilizes the	

instability
• Implications	for	zonal	flow	saturation:

– Collisionless zonal	flow	saturation	(without	involving	tertiary	instabilities,	such	
as	KH)	set	by	resonance,	𝐷X ∼ 𝜔I − 𝑘:𝑉"

Y=
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[Li	&	Diamond,	manuscript	in	preparation]



Wave-flow	resonance

• Hasegawa-Wakatani drift	wave	model,	with	extrinsic	𝑉"

• KH	drive	negligibleà Drift	wave	instability	dominant
• Near	adiabatic	electron:	𝑛. = 1 − 𝑖𝛿 𝜙,	𝛿 ≪ 1
• 𝛿 = 𝜔∗@ − 𝜔I + 𝑘:𝑉" 𝑘∥=𝐷∥=[ = 𝜈@] 𝜔∗@ − 𝜔I + 𝑘:𝑉" 𝑘∥=𝑣^_@=[

• Resonance	reduces	the	eigenmode scale	à Suppresses	instability
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• Resonance:	𝜔I − 𝑘:𝑉" − 𝑘∥𝑉∥
𝑘∥ 𝑘:[ ≪ 1à Resonance	dominated	by	𝜔I − 𝑘:𝑉"

(Width	of	eigenmode)



Perpendicular	flow	shear	destabilizes turbulence
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• Mean	perpendicular	flow	shear	
increases	mode	scale	𝐿a 𝜌<⁄ 	
àWeakens	resonance
à Enhances	instability

• KH	drive	negligible compared	to	𝛻𝑛9



Implications	for	Zonal	Flow	Saturation
• Connection	to	collisionless saturation	of	ZF
• Zonal	flow	evolution	àMean	enstrophy equation:

• Vorticity	(𝜌 ≡ 𝛻"=𝜙)	flux: 𝑣.c𝜌. = −𝐷X
d X
dc

+ ΓX(@<

𝜕
𝜕𝑡 G𝑑𝑟

𝜌 =

2

�

�
= G𝑑𝑟 𝑣.c𝜌.

𝑑 𝜌
𝑑𝑟

�

�
− 𝜈] G𝑑𝑟 𝜌 =

�

�
+ ⋯

Conserves	enstrophy between	
mean	flow	and	fluctuations

𝜕
𝜕𝑡G𝑑𝑟

𝜌 =

2

�

�
= −G𝑑𝑟𝐷X

𝑑 𝜌
𝑑𝑟

=�

�
+ G𝑑𝑟ΓX(@<

𝑑 𝜌
𝑑𝑟

�

�
− 𝜈] G𝑑𝑟 𝜌 =

�

�
+ ⋯

• 𝜈] → 0à Dimits	shift	regimeà Resonance	saturates	ZF,	w/o	KH
• Collisionless damping	by	turbulent	viscosity:	𝑑 𝜌 𝑑𝑟⁄ ∼ ΓX(@< 𝐷X[
• Resonance	sets	𝐷X à ZF	saturation

ΓX(@< =j𝑘:𝑐<= 𝜙I = 𝛾I𝜔∗@ + 𝛼n 𝜔∗@ − 𝜔I + 𝑘:𝑉"
𝜔I − 𝑘:𝑉" + 𝑖𝛼n

= −
𝛾I 𝜔∗@

𝜔I − 𝑘:𝑉"
=

�

I

, 𝐷X =j𝑘:=𝑐<= 𝜙I = 𝛾I
𝜔I − 𝑘:𝑉"

= 	
�

I



Summary
• CSDX	experiments	suggest	energy	apportionment between	mean	
𝑉" and	𝑉∥

• Reynolds	power	ratio	𝑃∥( 𝑃"(⁄ changes	in	response	to	external	flow	
increment
– 𝑃∥( 𝑃"(⁄ 	decreases	with	𝑉" à tradeoff	between	𝑉" and	𝑉∥
– 𝑃∥( 𝑃"(⁄ maximum	occurs	before 𝛻𝑉∥ hits	PSFI	threshold

• Testing	misconceptions	of	shearing	effects	on	stability
– Wave-flow	resonance	suppresses	instability
– 𝑉"& weakens	resonance	à 𝑉"& enhances instability
– Resonance	produces	turbulent	viscosity

à collisionless saturation	of	ZF,	without involving	tertiary	instabilities
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Backup
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Details	on	Acoustic	Coupling

• 𝑉∥ → 𝑉" coupling	via	parallel	compression:	
– 3D	coupled	drift-ion	acoustic	wave	system [Wang	et	al,	PPCF	2012]
– Coupling	between	fluctuating	PV	and	parallel	compression	 𝑞.𝛻∥𝑣.∥
breaks	PV	conservation
à Sink/source	for	fluctuating	potential	enstrophy density
à Zonal	flow	generation

– Perpendicular	flow	dynamics:

𝜕
𝜕𝑡 𝑉" − 𝐿n

𝑞.=

2 ∼ −𝜈]𝑉" + 𝐿n
𝜕
𝜕𝑟 𝑣.F

𝑞.=

2 + 𝜇 𝛻𝑞. = − 𝑞.𝛻∥𝑣.∥

𝑞.𝛻∥𝑣.∥ ∼ −j
𝛥𝜔I
𝜔I=

�

I

𝑘∥= 𝜙I = < 0collisional	
damping

PV	diffusion



Stationary	Zonal	Flow	Profile
• Turbulent	viscosity	set	by	resonance:
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ΓX(@< =j𝑘:𝑐<= 𝜙I = 𝛾I𝜔∗@ + 𝛼n 𝜔∗@ − 𝜔I + 𝑘:𝑉"
𝜔I − 𝑘:𝑉" + 𝑖𝛼n

= −
𝛾I 𝜔∗@

𝜔I − 𝑘:𝑉"
=

�

I

,

• Residual	vorticity	flux:

• Reynolds	force	(i.e.	net	production)	=	0	
à Stationary	flow	profile:	

𝐷X =j𝑘:=𝑐<= 𝜙I = 𝛾I
𝜔I − 𝑘:𝑉"

=

�

I

∼



Resonance	and	Instability	Related	to	Mode	Scale

• Eigenmode equation	with	resonant	effect:

Effectively,	𝑘"=𝜌<=
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• Mode	scale:	𝐿aY=𝜌<= ≡ 𝜌<= ∫ 𝑑𝑥 𝜕F𝜙 =JK
9 	 ∫ 𝑑𝑥 𝜙 =JK

9 	[

• Results:

• Strong	resonance	
𝛾I ≪ 𝜔I − 𝑘:𝑉" ≪ 𝜔∗@

• Eigenmode	peaks	(𝐿aY=𝜌<=
increases)	as	resonance	
becomes	stronger	

• Resonance	suppresses	drift	
wave	instability



Analogy	to	Landau	Damping	Absorption
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Langmuir Turbulence	Collapse	 Collisionless ZF	Saturation

Players	 Plasmon-Langmuir	wave	and	ion-
acoustic	wave	(caviton)	

Drift	wave	and	zonal	flow

Final	State (Nearly)	empty	cavity Dimits state	zonal	flow	
dominant

Free	energy	source	 Langmuir	turbulence	driver 𝛻𝑛,	𝛻𝑇 drives

Resonance	effect	 Landau	damping	as	cavity	collapses	 Absorption	by	𝐷X ∼
𝜔I − 𝑘:𝑉"

Y=

Other	saturation	
mechanisms

Ion-acoustic	radiation	from	empty	
cavity	

Kelvin-Helmholtz	relaxation	
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𝛾I = linear	instability	(𝛾J)	+	resonance	absorption	𝛾( ∼ 𝛾( 𝜔I − 𝑘:𝑉"

Analogy	to	ion-acoustic	absorption	during	collapse	of	Langmuir	waves

• Resonance	induces	collisionless saturation	through	𝐷X,	apart	from	KH:

• Revisit	predator-prey	model	with	resonance	effect	
àMechanism	for	collisionless damping,	without	KH

Drift	Wave	
Turbulence

Wave-Flow	
Resonance

𝑉"
ΓX(@<

𝐷X

ZF	drive

ZF	dissipation

Resonance	effects

Revisit	predator-prey	model


