Transport of Energetic Particles in Astrophysical Plasmas: from Rectilinear to Diffusive Propagation

Mikhail Malkov

UCSD Work Supported by NASA

Work Supported by NASA Astrophysics Theory Program under Grant No. NNX14AH36G

16th Annual International Astrophysics Conference Santa Fe, NM 2017

Overview

- Minimalist Model for CR (or SEP) transport:
 Fokker-Planck Equation
- Lacuna in Transport Description
- What we know for sure
 - ballistic propagation, $t \ll t_c(E)$
 - diffusive propagation, $t \gg t_c(E)$
- What is between the two limits and for how long?
 - "Telegraph" equation
 - hyper-diffusive corrections (Chapman-Enskog)
 - lacksquare no specifics as to when to switch from $t \ll t_c$ to $t \gg t_c$
- Exact Solution of Fokker-Planck Equation
- Simplified Propagator for pitch-angle averaged FP solution
- Take Away
 - 2017PhRvD..95b3007M, arXiv:1703.02554

CR Transport Model: Fokker-Planck Equation

 CR transport driven by pitch- angle scattering, gyro-phase averaged

$$\frac{\partial f}{\partial t} + \nu \mu \frac{\partial f}{\partial x} = \frac{\partial}{\partial \mu} (1 - \mu^2) D(E, \mu) \frac{\partial f}{\partial \mu}$$

- **z** -along **B**; μ -cosine of CR pitch angle
- energy E enters as a parameter, but gain/loss terms $a(E) \partial f/\partial E$ can be removed by $E \to E' = \int a^{-1} dE t$
- $D(\mu)$ is derived from a power index of the scattering turbulence, q
- for a power spectrum $P \propto k^{-q}$ (k is the wave number) $D(\mu) \propto |\mu|^{q-1}$
- more complex, anisotropic spectra, such as Goldreich-Shridhar 1995 \rightarrow flat $D(\mu)$ except $\mu \approx 0,\pm 1$
- important case: $q = 1 \rightarrow D = D(E)$

FP: $\partial_t f + \nu \mu \partial_x f = \partial_\mu (1 - \mu^2) D \partial_\mu f$: diffusive approx.

■ need evolution equation for

$$f_0(t,x) \equiv \langle f(t,x,\mu) \rangle \equiv \frac{1}{2} \int_{-1}^1 f(\mu,t,x) d\mu.$$

answer deems well known (e.g., Parker 65, Jokipii 66): average and expand in 1/D:

$$\frac{\partial f_0}{\partial t} = -\frac{v}{2} \frac{\partial}{\partial x} \left\langle \left(1 - \mu^2\right) \frac{\partial f}{\partial \mu} \right\rangle \quad \text{(exact eq.)}, \quad \frac{\partial f}{\partial \mu} \simeq -\frac{v}{2D} \frac{\partial f_0}{\partial x}$$

 \blacksquare equation for f_0

$$\frac{\partial f_0}{\partial t} = \frac{\partial}{\partial x} \kappa \frac{\partial f_0}{\partial x}, \quad \kappa = \frac{v^2}{4} \left\langle \frac{1 - \mu^2}{D} \right\rangle = \frac{1}{6} \frac{v^2}{D(E)}$$

FP: $\partial_t f + \mathbf{v} \mu \partial_{\mathbf{x}} f = \partial_{\mu} (1 - \mu^2) D \partial_{\mu} f$ diff.: limitation

- Critical step: $\partial f/\partial t$ is neglected compared to $v\partial f/\partial x$
- Justification: for $Dt \gtrsim 1$, $\tilde{f}(\mu) = f f_0 \text{ decays} \propto e^{-\lambda_1 Dt}$
- However, strong inhomogeneity → sharp anisotropy (real problem!)
- Cannot handle fundamental (Green's function) solution

Example

CR Transport Modeling

- $\kappa \sim v^2/D(E)$, galactic CR $\kappa \sim 10^{28} cm^2/s$, $\kappa \propto E^{\alpha}$, $\alpha \simeq 0.3 0.6$
- CR mfp $\lambda_{CR} \sim 1$ pc for a few 10 GeV particles
- Near the "knee" at $\simeq 3 \cdot 10^{15} \text{GeV}$, m.f.p. $\sim 100 \text{ pc}$

Lacuna in CR Transport Model

- nearby sources of CRs are likely within this range of a few 100's pc
- cannot be studied within diffusive approach
- circumstantial evidence:
 - Sharp anisotropy in CR arrival directions, $\sim 10^\circ$ (Milagro data, Abdo et al 2008)
 - \blacksquare "nondiffusive transport" explanation: $MM,\ et\ al\ 2010$

$$\partial_t f + v \mu \partial_x f = \partial_\mu \left(1 - \mu^2 \right) D \partial_\mu f$$

■ approach this difficult part of parameter space (E) and CR propagation history from the other end: scatter-free regime: $t \ll 1/D(E)$

Fokker-Planck $\partial_t f + \mathbf{v} \mu \partial_x f = \partial_\mu \left(1 - \mu^2 \right) D \partial_\mu f$

discard collision term

$$\frac{\partial f}{\partial t} + \nu \mu \frac{\partial f}{\partial x} = 0$$

solution

$$f(x, \mu, t) = f(x - \nu \mu t, \mu, 0)$$

• consider a point source with initially isotropic distribution:

$$f(x, \mu, 0) = (1/2) \delta(x) \Theta(1 - \mu^2)$$

 δ and Θ - Dirac's delta and Heaviside unit step functions

• $\langle x^2 \rangle = v^2 t^2/3$: free escape with mean square velocity $v/\sqrt{3}$

$$\langle f(\mu, x, t) \rangle = f_0(x, t) = (2vt)^{-1} \Theta(1 - x^2/v^2t^2)$$

• expanding 'box' of decreasing height, $\propto 1/t$

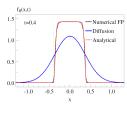
Fokker-Planck $\partial_t f + \nu \mu \partial_x f = \partial_\mu (1 - \mu^2) D \partial_\mu f$

- adopted $D(\mu) = const \ (q = 1)$ as both interesting and important case
- $\blacksquare \to UNITS : D = v = 1, (Dt \to t, \frac{D}{v}x \to x)$

$$\frac{\partial f}{\partial t} + \mu \frac{\partial f}{\partial x} = \frac{\partial}{\partial \mu} \left(1 - \mu^2 \right) \frac{\partial f}{\partial \mu}$$

• contains no parameters: to correctly describe transition from ballistic to diffusive transport at times $t \sim 1 \ (\sim t_{col})$, we need exact solution

$$f = \begin{cases} (2t)^{-1} \Theta \left(1 - x^2 / t^2 \right), & t \ll t_c \\ \sqrt{\frac{3}{2\pi t}} e^{-3x^2 / 2t}, & t \gg t_c \end{cases}$$



FP: past/recent attempts at bridging the gap

$\partial_t f + \nu \mu \partial_x f = \partial_\mu \left(1 - \mu^2 \right) D \partial_\mu f \to \text{Telegraph Equation}$

- In diff. derivation, retain $\partial f/\partial t$ in addition to $\partial f/\partial x$ corrections $\rightarrow \partial^2 f_0/\partial t^2$ and higher derivative terms in p-a averaged equation, Axford 1965, Earl 1973++, Pauls, Burger & Bieber,1993, Schwadron & Gombosi, 1994, Litvinenko & Schlickeiser 2013...., Tautz+ 2016
- end up with and advocate Telegraph equation:

$$\frac{\partial f_0}{\partial t} - \frac{\partial}{\partial x} \kappa \frac{\partial f_0}{\partial x} + \tau \frac{\partial^2 f_0}{\partial t^2} = 0$$

where $\tau \sim 1/D$, $\kappa \sim v^2/D$

- TE is inconsistent with Chapman-Enskog expansion
- does not conserve number of particles without adding singular, $\delta(x Vt)$ components (non-existing).... MM & Sagdeev 2015, MM 2015

Fokker-Planck $\partial_t f + \mathbf{v} \mu \partial_x f = \partial_\mu \left(1 - \mu^2 \right) D \partial_\mu f$

Analytic solution, step by step:

 \blacksquare normalize f to unity

$$\int_{-\infty}^{\infty} dx \int_{-1}^{1} f d\mu/2 = 1$$

$$M_{ij} = \langle \mu^i x^j \rangle = \int_{-\infty}^{\infty} dx \int_{-1}^{1} \mu^i x^j f d\mu/2$$

for any $i, j \geq 0$, multiplying FP eq. by $\mu^i x^j$ and integrating, obtain a matrix equation for the moments M_{ij} :

$$\frac{d}{dt}M_{ij} + i(i+1)M_{ij} = jM_{i+1,j-1} + i(i-1)M_{i-2,j}$$

$$\partial_t M_{ij} + i(i+1) M_{ij} = j M_{i+1,j-1} + i(i-1) M_{i-2,j}$$

- needs closure or truncation?
- surprisingly, it does not require closure or truncation
- equation couples anti-diagonal elements from two closest nonadjacent anti-diagonals
- set of moments $M_{ij}(t)$ can be subsequently resolved to any order n = i + j
- \blacksquare Indeed, as $M_{00}=1,$ and $M_{ik}=M_{ki}=0$ for any $i<0,\;k\geq0$

$$\partial_t M_{ij} + i(i+1) M_{ij} = j M_{i+1,j-1} + i(i-1) M_{i-2,j}$$

$$M = \begin{pmatrix} 1 & \langle \mathbf{x} \rangle & \langle \mathbf{x}^2 \rangle & \langle \mathbf{x}^3 \rangle \\ \langle \mu \rangle & \langle \mu \mathbf{x} \rangle & \langle \mu \mathbf{x}^2 \rangle & \nearrow \\ \langle \mu^2 \rangle & \langle \mu^2 \mathbf{x} \rangle & \nearrow & \ddots \\ \langle \mu^3 \rangle & \nearrow & \ddots & \\ \nearrow & \ddots & & \end{pmatrix}$$

- matrix elements can be subsequently found on each anti-diagonal working as shown by arrows
- first two moments on the uppermost antidiagonal are
- $M_{10}(t) = \langle \mu \rangle = \langle \mu \rangle_0 \exp(-2t)$ and $M_{01} = \langle x \rangle = \langle x \rangle_0 + \langle \mu \rangle_0 \left[1 - \exp(-2t) \right] / 2$
- higher moments can be obtained inductively

General Solution for the moments

$$M_{ij}(t) = M_{ij}(0) e^{-i(i+1)t} + \int_0^t e^{i(i+1)(t'-t)}$$

$$\times \left[jM_{i+1,j-1}(t') + i(i-1) M_{i-2,j}(t') \right] dt'$$

- all higher moments can be obtained in form of series in $t^k e^{-nt}$, where k and n are integral numbers
- set of moments on the third anti-diagonal, M_{20} , M_{11} , M_{02} :

$$M_{20} = \frac{1}{3}, \quad M_{11} = \frac{1}{6} \left(1 - e^{-2t} \right), \quad M_{02} = M_{02} \left(0 \right) + \frac{t}{3} - \frac{1}{6} \left(1 - e^{-2t} \right)$$

- for simplicity, assume initial $f(x, \mu, 0)$ symmetric in x and μ
- this eliminates all odd moments at t = 0
- sufficient for the fundamental solution: $M_{02}(0) = \langle x^2 \rangle_0 = 0$

Higher moments and moment generating function

- however, just a few moments do not yield accurate solution
- critical to sum up infinite series, but they grow (!)

$$M_{08} = \frac{1}{6945750} e^{-20t} - \frac{5t+2}{253125} e^{-12t} + \left(\frac{t^2}{567} + \frac{11t}{11907} - \frac{59}{27783}\right) e^{-6t} - \left(\frac{14}{25}t^3 + \frac{858}{125}t^2 + \frac{151042}{5625}t + \frac{18509371}{506250}\right)$$
$$\times e^{-2t} + \frac{35}{27}t^4 - \frac{224}{27}t^3 + \frac{3554}{135}t^2 - \frac{281183}{6075}t + \frac{123403}{3375}$$

 \blacksquare For any t, leading terms can be identified and summed up, using a general expression for moment generating function

$$f_{\lambda}(t) = \int_{-\infty}^{\infty} f_{0}(x, t) e^{\lambda x} dx = \sum_{n=0}^{\infty} \frac{\lambda^{2n}}{(2n)!} M_{0,2n}(t)$$

Summing up the moments

• need to sum for arbitrary λt (to capture sharp fronts). First, separately for t < 1

$$f_{\lambda}(t) = \frac{1}{\lambda t'} \sinh(\lambda t') + \frac{t^2}{45} \left[2 \cosh(\lambda t) + \left(\lambda t - \frac{2}{\lambda t} \right) \sinh(\lambda t) \right]$$
where $t' = t - t^2/3 + \dots$

- t > 1 similar result, can be unified with t < 1 case
- after taking inverse Fourier transform

$$f_{0}\left(x,t\right)=\frac{1}{2\pi}\int e^{ikx}f_{-ik}\left(t\right)dk$$

$$f_0(x,t) \approx \frac{1}{4y} \left[\operatorname{erf} \left(\frac{x+y}{\Delta} \right) - \operatorname{erf} \left(\frac{x-y}{\Delta} \right) \right]$$

- $t \ll 1$, fronts at, $\pm y$, $y \approx t$, thickness $\Delta \approx 2t^2/3\sqrt{5}$.
- \blacksquare After proceeding through the transdiffusive phase, $t\sim 1$

•
$$y \approx (11t/6)^{1/4}$$
 and $\Delta \approx (2t/3)^{1/2}$ for $t \gg 1$

Universal Propagator $f_0(x, t) \approx \frac{1}{4y} \left[\operatorname{erf} \left(\frac{x+y}{\Delta} \right) - \operatorname{erf} \left(\frac{x-y}{\Delta} \right) \right]$

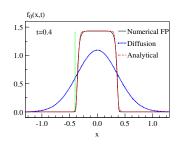
- the same form for all $0 < t < \infty$
- the only difference in y(t), and $\Delta(t)$ for $t \ll 1$ and $t \gg 1$
- suggests determination of y and Δ from exact relations:

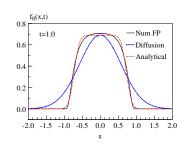
$$M_2 = \int x^2 f_0(x, t) dx, \quad M_4 = \int x^4 f_0(x, t) dx$$

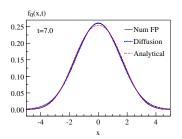
$$y = \left[\frac{45}{2}\left(M_2^2 - \frac{1}{3}M_4\right)\right]^{1/4}, \quad \Delta = \sqrt{2M_2 - \sqrt{10}\sqrt{M_2^2 - \frac{1}{3}M_4}}$$

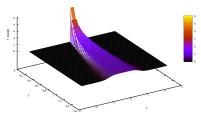
$$M_2 = \frac{t}{3} - \frac{1}{6} \left(1 - e^{-2t} \right), \quad M_4 = \frac{1}{270} e^{-6t} - \frac{t+2}{5} e^{-2t} + \frac{1}{3} t^2 - \frac{26}{45} t + \frac{107}{270}$$

Comparison with ballistic, diffusive, and numerical

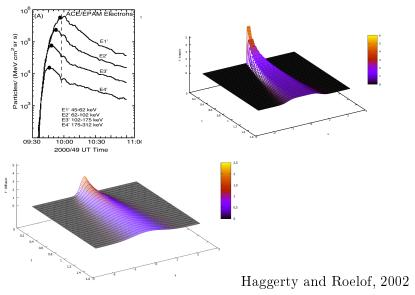








Preliminary qualitative comparison with observations



Conclusions

- Fokker-Planck equation, commonly used for describing CR and other transport phenomena, is solved exactly
- The overall CR propagation can be categorized into three phases: ballistic (t < 1), transdiffusive $(t \sim 1)$ and diffusive $(t \gg 1)$, (time in units of collision time t_c).
- ballistic phase: source expands as a "box" of size $\Delta x \propto \sqrt{\langle x^2 \rangle} \propto t$ with "walls" at $x = \pm y(t) \approx \pm t$ of the width $\Delta \propto t^2$.
- transdiffusive phase: box's walls thickened to the box size $\Delta \sim \Delta x \sim y$, slower expansion
- diffusion phase: $\Delta x \sim \Delta \propto \sqrt{t}$, the walls are completely smeared out, as $y \propto t^{1/4}$, so $y \ll \Delta$.
- the conventional diffusion approximation can be safely applied but, only after 5-7 collision times, depending on the accuracy requirements
- a popular telegraph approach, originally intended to cover also the earlier propagation phases at $t \lesssim 1$, is inconsistent with the exact FP solution
- no signatures of (sub) super-diffusive propagation regimes are present in the exact FP solution