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m Minimalist Model for CR (or SEP) transport:
Fokker-Planck Equation

Lacuna in Transport Description

m What we know for sure
m ballistic propagation, t < t. (E)
m diffusive propagation, t > t. (E)
m What is between the two limits and for how long?
m “Telegraph” equation
m hyper-diffusive corrections (Chapman-Enskog)
m no specifics as to when to switch from t < t. to t> t.

Exact Solution of Fokker-Planck Equation

Simplified Propagator for pitch-angle averaged FP solution

Take Away
® 2017PhRvD..95b3007M, arXiv:1703.02554
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CR Transport Model: Fokker-Planck Equation

m CR transport driven by pitch- angle scattering, gyro-phase
averaged

of of o , of
a5 T Vo a?(l_“)D(E“)au

z -along B; p -cosine of CR pitch angle

m energy E enters as a parameter, but gain/loss terms

a(E)Of JOE can be removed by E — E' = [a7'dE — t

m D (p) is derived from a power index of the scattering
turbulence, g

m for a power spectrum P o k=9 (k is the wave number)
D (p) o |97

m more complex, anisotropic spectra, such as
Goldreich-Shridhar 1995 — flat D (u) except p ~ 0,£1

m important case: g=1 — D= D (E)



FP: O:f + vpof =0, (1 — ,uz) Do, f : diffusive approx.

m need evolution equation for

[

1
fo (t,x) = (f (t,x, 1)) = 2/f(u, t,x) dp.
21

m answer deems well known (e.g., Parker 65, Jokipii 66):
average and expand in 1/D:

of v 2\ O of v o
E = Ea <(1 1% ) a,u> (eXaCt eq.), 87/11 ~ 5D 8X

m equation for f

o _ 9 ofh 2<1—u2>

ot~ ox ox



FP:0:f + vuosf = 0, (1 — ,uz) Do, f diff.: limitation

m Critical step: 9f /0t is neglected compared to vOf/0x

m Justification: for Dt > 1, f () = f — fo decays o e 1Pt

m However, strong inhomogeneity — sharp anisotropy (real
problem!)

m Cannot handle fundamental (Green’s function) solution

CR Transport Modeling
m K~ v2/D(E), galactic CR k ~ 10%%cm?/s, k ox E®,
a~03-06
m CR mfp Acgr ~ lpc for a few 10 GeV particles
m Near the “knee” at ~ 3-10%GeV, m.f.p. ~ 100 pc



Lacuna in CR Transport Model

m nearby sources of CRs are likely within this range of a few
100’s pc

m cannot be studied within diffusive approach

m circumstantial evidence:

m Sharp anisotropy in CR arrival directions, ~ 10° (Milagro
data, Abdo et al 2008)
m “nondiffusive transport” explanation: MM, et al 2010

O¢f + vuosf = 0, (1 — ;1,2) Do, f

m approach this difficult part of parameter space (E) and CR

propagation history from the other end: scatter-free regime:
t<1/D(E)



Fokker-Planck 0;f + vud,f = 0, (1 — ;1,2) Do, f

m discard collision term

solution

f(Xalua t) = f(X_ V/J,t,/.L,O)

m consider a point source with initially isotropic distribution:

f(x,1,0)=(1/2)6(x)© (1 —uz)

0 and © - Dirac’s delta and Heaviside unit step functions

<X2> = v?t?/3: free escape with mean square velocity v/v/3

(F (s X, 1)) = fo (x, 1) = (2vt) 1 © (1 — x3/V2t?)
expanding box’ of decreasing height, oc 1/t



Fokker-Planck 0;f + vud,f = 0, (1 — ;1,2) Do, f

m adopted D (u) = const (g = 1) as both interesting and
important case
m 5> UNITS: D=v=1, (Dt - t, 2x—x)

OF | OF 0 o OF
ot M@x_(?,u a o

m contains no parameters: to correctly describe transition
from ballistic to diffusive transport at times t ~ 1 (~ teo),
we need exact solution

fo(x.t)
1.5

t=0.4

3 —3x%2/2t
ﬁe x>/ s t >t

{(2t)_1 e (1 - X2/t2) ) t << tc . -1.0 -0.5 0.0 0.5 1.0



FP: past/recent attempts at bridging the gap

Otf + vudxf = 0, (1 — ;.1.2) DO, f — Telegraph Equation

m In diff. derivation, retain 0f /0t in addition to 9f /Ox
corrections — 0?fy/dt?and higher derivative terms in p-a

averaged equation, Axford 1965, Earl 1973+ +, Pauls, Burger &
Bieber,1993, Schwadron & Gombosi, 1994, Litvinenko & Schlickeiser 2013....,
Tautz+ 2016

m end up with and advocate Telegraph equation:

ofp, 0 0f ﬂ

—_— — — K—

ot ax"ox Tor 0

where 7 ~ 1/D, k ~ v?/D

m TE is inconsistent with Chapman-Enskog expansion

m does not conserve number of particles without adding

singular, § (x — Vt) components (non-existing).... MM &
Sagdeev 2015, MM 2015
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Fokker-Planck 0;f + vud,f = 0, (1 — ;1,2) Do, f

Analytic solution, step by step:

normalize f to unity

[e's) 1
/ dx/ fdp/2 =1
—00 -1

organize the moments of f into the following matrix
. . S 1 . .
Mij = (u'x’) :/ dx/ w'x! fdp /2
—o0 -1

for any i,j > 0, multiplying FP eq. by u'x/ and integrating,
obtain a matrix equation for the moments Mj;:

d
M+ i (1) My = jMis1joy 0 (7 = 1) Mi—2,



needs closure or truncation?

surprisingly, it does not require closure or truncation

equation couples anti-diagonal elements from two closest
nonadjacent anti-diagonals

set of moments M;; (t) can be subsequently resolved to any
order n=1i+j

Indeed, as Myy = 1, and My = My; =0 for any i <0, k >0



f)tM,'j 4= I(I -4 1) M,‘j :jM,'JrLjfl =+ I(I — 1) M,;z‘j

1 (x) <x2> <X3>
(W () ()
m=| W) Px) '
W) /7 '
p .

m matrix elements can be subsequently found on each
anti-diagonal working as shown by arrows

m first two moments on the uppermost antidiagonal are
m Mio (t) = (p) = (1)o exp (—2t) and

Mor = (x) = (x)o + (m)o [L — exp (—21)] /2
m higher moments can be obtained inductively



General Solution for the moments

.. t .. ’
Mij (t) _ MU (0) e—/(l+1)t +/0 e/(l+1)(t —t)

X [jM;+1J_1 (t/) + i(i - l) M,'_2’j (t/)] dt’

m all higher moments can be obtained in form of series in
tke~ " where k and n are integral numbers

m set of moments on the third anti-diagonal, Mag, M1, Mos:

1
My =%, Mi=Z-(1-e?), My=Mpy (0)“‘%_6 (1-e7®)

m for simplicity, assume initial f (x, g, 0) symmetric in x and
m this eliminates all odd moments at t =0
= sufficient for the fundamental solution: Mgy (0) = (x*), =0



Higher moments and moment generating function

m however, just a few moments do not yield accurate solution

m critical to sum up infinite series, but they grow (!)

1 5t 42
Mo — —20t _ —12¢

08 = 5045750 253125 °

2 11t 50 \ o, (14, 858, 151042 18509371

— + = et (8 2t t+

567 | 11007 27783 25" 125 5625 506250

.. 35, 224, 3554, 281183 123403
X e —t — —t — t 4+

27 27 135 6075 3375

m For any t, leading terms can be identified and summed up,
using a general expression for moment generating function

f(t) = /oo flxt)eMde =3 (2,27")!/\/1072,, (1)

- n=0



Summing up the moments

m need to sum for arbitrary At (to capture sharp fronts).
First, separately for t < 1

1 t2 2
f(t) = VG sinh (At’)—i—E [2 cosh (\t) + <)\t - At) sinh (/\t)]
where t' =t — t2/3 + ...
m t > 1 - similar result, can be unified with t < 1 case
m after taking inverse Fourier transform
1 ikx
fo(x,t) = e"™f_i (t) dk

o

fo (x,t) ~ 41y [erf <X2y> —erf (X;yﬂ

m t < 1, fronts at, £y, y ~ t, thickness A ~ 2t?/3/5.
m After proceeding through the transdiffusive phase, t ~ 1
m y~ (11t/6)Y* and A ~ (2t/3)"% for t > 1




Universal Propagator fy(x, t) ~ % lerf (X

m the same form for all 0 < t < 00
m the only difference in y (t), and A(t) for t < 1 and t > 1

m suggests determination of y and A from ezact relations:

My :/xzfo(x, t)dx, My :/x4ﬁ3(x, t) dx

1 ¢ t+2 , 1, 26 107
= et % S —
270° 5 ¢ T3t o
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Preliminary qualitative comparison with observations

10 Ay | g ACE/EPAM Elbctrohs

Particles/ (MeV cm?sr s)
O&

E1' 45-62 keV
E2' 62-102 keV
EB' 102-175 keV.
E4' 175-312 keV.
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Haggerty and Roelof, 2002
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Conclusions

m Fokker-Planck equation, commonly used for describing CR and
other transport phenomena, is solved exactly

m The overall CR propagation can be categorized into three
phases: ballistic (t < 1), transdiffusive (¢t ~ 1) and diffusive
(t > 1), (time in units of collision time t.).

m ballistic phase: source expands as a “box” of size Ax ox /(x?) x t
with “walls” at x = +y (t) ~ £t of the width A o t2.

m transdiffusive phase: box’s walls thickened to the box size
A ~ Ax ~ y , slower expansion

m diffusion phase: Ax ~ A x /t, the walls are completely smeared
out, as y o t*/4 so y < A.

m the conventional diffusion approximation can be safely applied
but, only after 5-7 collision times, depending on the accuracy
requirements

m a popular telegraph approach, originally intended to cover also
the earlier propagation phases at t < 1, is inconsistent with the
exact FP solution

B no signatures of (sub) super-diffusive propagation regimes are

present in the exact FP solution
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