Basics of Turbulence I: A Look at Homogeneous Systems

P.H. Diamond

UC San Diego and SWIP

1St Chengdu Theory Festival

Aug. 2018

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738 and CMTFO.

Approach

Highly Pedagogic

Homogeneous Problems I

- Cascade
- Spectra
- Wave Interactions

...

Inhomogeneous Problems II

- Mixing length, profiles
- Pipe, wake flow
- 'Turbulence spreading'
- Avalanches

• (

Focus on simplest problems

Outline

- Basic Ideas
- K41 and Beyond
- Turbulence in Flatland 2D Fluid Turbulence
- First Look at MHD Turbulence

Model

Unless otherwise noted:

$$\rho \left(\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v} - \nu \nabla^2 \vec{v} \right) = -\nabla P + \tilde{f}$$

$$\nabla \cdot \vec{v} = 0$$

Random forcing (usually large scale)

- Finite domain, closed, periodic
- $Re = v \cdot \nabla v / \nu \nabla^2 v \sim VL/\nu \quad ; \quad Re \gg 1$
- Variants:
 - 2D, QG
 - Compressible flow
 - Pipe flow inhomogeneity

. . . .

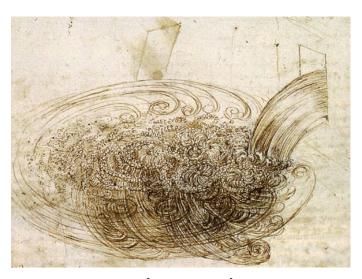
What is turbulence?

- Spatio-temporal "disorder"
- Broad range of space-time scales
- Power transfer / flux thru broad range of scales *
- Energy dissipation and irreversibility as $Re \to \infty$ *

And:

- Decay of large scales
- Irreversible mixing
- Intermittency / burstiness

Ma Yuan



Leonardo

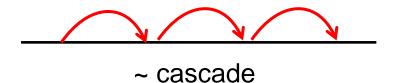
What is difference between turbulence and noise/equilibrium fluctuations?

- Power transfer dominant
- Irreversibility for $\nu \to 0$
- Noisey thermal equilibrium: (ala' Test Particle Model)

Emission <-> absorption balance, <u>locally</u>

Fluctuation-Dissipation Theorem applies

• Turbulence:



Flux ~ emission – absorption

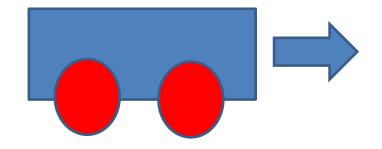
Flux dominant for most scales

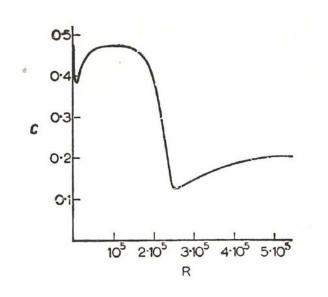
Why broad range scales? What motivates cascade concept?

A) Planes, trains, automobiles...

DRAG

- Recall: $F_d \sim c_D \rho A V^2$
- $C_D = C_D(Re) \rightarrow \text{drag coefficient}$





- The Point:
 - Energy dissipation is finite, and due to viscosity, yet does not depend explicitly on viscosity → ANOMALY
 - 'Irreversibility persists as symmetry breaking factors vanish'

i.e.
$$\frac{dE}{dt} \sim F_d \ V \sim C_D \rho A V^3$$

$$\frac{dE}{dt} \sim \frac{V^3}{l_0} \equiv \epsilon \Rightarrow \text{dissipation rate} \qquad l_0 \Rightarrow \text{macro length scale}$$

Where does the energy go?

Steady state
$$\nu \langle (\nabla \vec{v})^2 \rangle = \langle \vec{f} \cdot \vec{v} \rangle = \epsilon$$

- So $\epsilon = \nu \langle (\nabla v)^2 \rangle$ \leftarrow independent of ν
- $(\nabla v)_{rms} \sim \frac{1}{v^{1/2}}$ \rightarrow suggests \rightarrow singular velocity gradients (small scale)

••

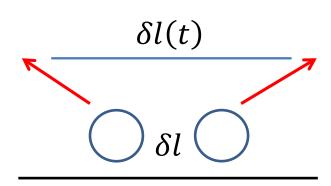
- Flat C_D in $Re \rightarrow$ turbulence must access small scales as $Re \rightarrow \infty$
- Obviously consistent with broad spectrum, via nonlinear coupling

B) ... and balloons

- Study of 'test particles' in turbulence:
- Anecdotal:

Titus Lucretius Caro: 99-55 BC

"De rerum Nature" cf. section V, line 500



• Systematic:

L.F. Richardson: - probed atmospheric turbulence by study of balloon separation

Noted: $\langle \delta l^2 \rangle \sim t^3 \rightarrow \text{super-diffusive}$

- not ~ t, ala' diffusion, noise
- not exponential, ala' smooth chaotic flow

Upshot:

$$\delta V(l) = \left(\left(\vec{v} \left(\vec{r} + \vec{l} \right) - \vec{v} (\vec{r}) \right) \cdot \frac{\vec{l}}{|\vec{l}|} \right) \rightarrow \text{structure function} \rightarrow \text{velocity differential across scale}$$

Then: $\delta V \sim l^{\alpha}$

so, $\frac{dl}{dt} \sim l^{\alpha} \rightarrow \text{growth of separation}$

$$\rightarrow \langle l^2 \rangle \sim t^{\frac{2}{1-\alpha}} \sim t^3$$

$$\Rightarrow \alpha = \frac{1}{3}$$

so
$$\delta V(l) \sim l^{1/3}$$
, $\langle \delta l^2 \rangle \sim t^3$

→ Points:

- large eddys have more energy, so rate of separation increases with scale
- Relative separation is excellent diagnostic of flow dynamics

cf: tetrads: Siggia and Shraiman

Roughness:

N.B. turbulence is spatially "rough", i.e. $\delta V(l) \sim \epsilon^{1/3} l^{1/3}$

$$\lim_{l \to 0} \frac{V(\vec{r} + \vec{l}) - V(\vec{r})}{l} = \lim_{l \to 0} \frac{\delta V(l)}{l} = \epsilon^{1/3} / l^{2/3}$$

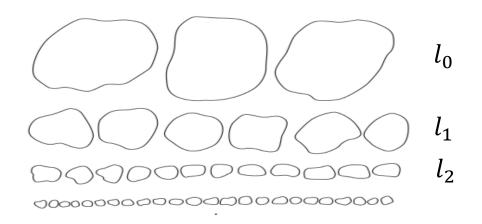
- → strain rate increases on smaller scales
 - turbulence develops progressively <u>rougher</u> structure on smaller scales

- Where are we?
 - turbulence develop singular gradients to maintain C_D indep. Re
 - turbulent flow structure exhibits
 - super-diffusive separation of test particles
 - power law scaling of $\delta V(l)$

Cascade model – K41

K41 Model (Phenomenological)

Cascade → hierarchical fragmentation



- Broad range of scales, no gaps
- Described by structure function $-\langle \delta v(l)^2 \rangle \leftrightarrow \text{energy}$,
- $\langle \delta V(l)^2 \rangle$, $\langle \delta V(l)^n \rangle$, ...

Related to energy distribution

←→ greatest interest

-
$$\langle \delta v(l)^2 \rangle \leftrightarrow$$
 energy,
of great interest

higher moments more challenging

- Input:
- 2/3 law (empirical)

$$S_2(l) \sim l^{2/3}$$

4/5 law (Rigorous) - TBD

$$\langle \delta V(l)^3 \rangle = -\frac{4}{5}\epsilon l$$

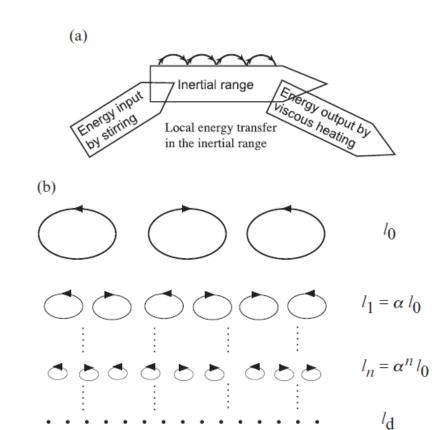


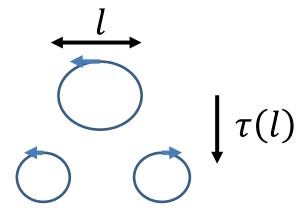
Fig. 2.12. Basic cartoon explanation of the Richardson–Kolmogorov cascade. Energy transfer in Fourier–space (a), and real scale (b)

- Flux of energy in scale space from l_0 (input/integral scale) to l_d (dissipation) scale set by ν
- Energy flux is <u>same</u> at all scales between l_0 , $l_d <->$ self-similarity

<u>And</u>

- Energy dissipation set as $\nu \to 0$ but not at $\nu = 0$
- * Asymmetry of breaking or stirring etc. <u>lost</u> in cascade: symmetry restoration
- N.B. intermittency <-> 'memory' of stirring, etc
- Ingredients / Players
 - Exciton → eddy (not a wave / eigenmode!)
 - l: scale parameter, eddy scale
 - $\delta V(l)$: velocity increment. Hereafter V(l)

- V_o: rms eddy fluctuation (large scale dominated)
- $\tau(l)$: \rightarrow eddy transfer / life-time / turn-over rate
- - characteristic scale of transfer in cascade step



- Self-similarity \rightarrow constant flow-thru rate $\epsilon = V(l)^2/\tau(l)$
- What is $\tau(l)$?? Consider...

The possibilities:

• Dimensionally, $\tau(l)$ is 'lifetime' of structure of scale l, time to distort out of existence

So

- l' > l
- l' < l

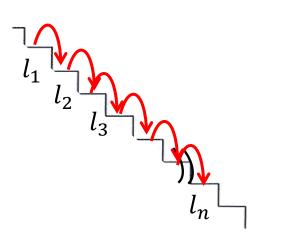
- Larger scales advect eddy but don't distort it
- Physics can't change under Galilean boost

cf: Rapid distortions, shearing

Irrelevant → insufficient energy

• $\tau(l) \sim l/V(l)$, set by $l' \sim l$

→ So



exception:

Rapid Distortion Theory

not

$$\Rightarrow \epsilon \sim V(l)^2 / \tau(l) \sim V(l)^3 / l \Rightarrow V(l) \sim (\epsilon l)^{1/3} ; 1 / \tau(l) \sim (\epsilon l)^{1/3}$$

$$\rightarrow V(l)^2 \sim V_0^2 (l/l_0)^{2/3}$$
 (transfer rate increases as scale decreases)

And

$$\rightarrow E(k) \sim \epsilon^{2/3} k^{-5/3}$$
 $E = \int dk E(k)$

→ Where does it end?

Dissipation scale

- cut-off at $1/\tau(l) \sim \nu/l^2$ i.e. $Re(l) \to 1$
- $l_d \sim v^{3/4} / \epsilon^{1/4}$

Degrees of freedom

$$\#DOFs \sim \left(\frac{l_0}{l_d}\right)^3 \sim Re^{9/4}$$

For $l_o \sim 1km$, $l_d \sim 1mm$ (PBL)

$$\rightarrow N \sim 10^{18}$$

→ Anything missing here?

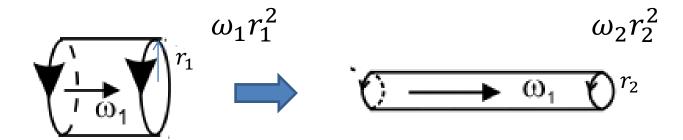
- Dynamics!
- How is the energy transferred?
 - How are small scales generated?
 - Where have the N.S. equations gone?
 - Enter vorticity!
 - $\omega = \nabla \times \vec{v}$; $\partial_t \vec{v} = \nabla \times \vec{v} \times \vec{\omega} + \nu \nabla^2 \vec{v}$
 - $\Gamma = \int \oint \vec{v} \cdot d\vec{l} \sim const.$ to ν (Kelvin's theorem)

<u>So</u>

Vortex tube stretching $\bullet \quad \frac{\partial \overrightarrow{\omega}}{\partial t} + \overrightarrow{v} \cdot \nabla \overrightarrow{\omega} = \overrightarrow{\omega} \cdot \nabla \overrightarrow{v} + \nu \nabla^2 \overrightarrow{\omega}$

Strain tensor

• Stretching:



- Small scales generated $(\nabla \cdot \vec{v} = 0)$
- Energy transferred to small scale
- Enstrophy $\Omega = \langle \omega^2 \rangle$

$$\frac{d\omega^2}{dt} = \vec{\omega} \cdot (\vec{\omega} \cdot \nabla \vec{v}) + \dots \sim \omega^3 + \dots$$

- Enstrophy increases in 3D N-S turbulence
- Growth is strongly nonlinear
- Enstrophy production underpins forward energy cascade

Where are we?

"Big whorls have little whorls that feed on their velocity. And little whorls have lesser whorls. An so on to viscosity." – L.F. Richardson, 1920

After: "So naturalists observe a flea has smaller fleas that on him prey; And these have smaller yet to bite 'em, And so proceed ad infinitum. Thus every poet, in his kind, Is bit by him that comes behind." – Jonathan Swift, "On Poetry, a Rhapsody", 1793

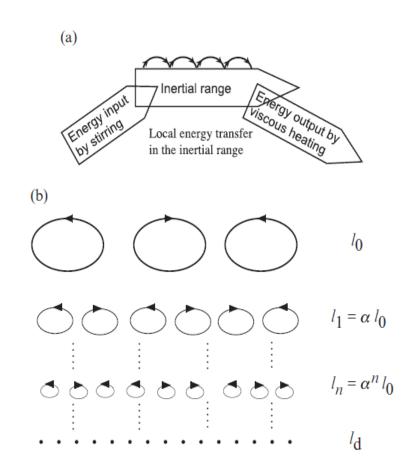


Fig. 2.12. Basic cartoon explanation of the Richardson–Kolmogorov cascade. Energy transfer in Fourier–space (a), and real scale (b)

The Theoretical Problem

- "We don't want to think anything, man. We want to know."
 - Marsellus Wallace, in "Pulp Fiction" (Quentin Tarantino)
- What do we know?
 - 4/5 Law (and not much else...)

$$\langle V(l)^3 \rangle = -\frac{4}{5}\epsilon l \implies$$
 asymptotic for finite $l, \nu \to 0$
$$S_2 = \langle \delta V(l)^2 \rangle$$
$$S_3 = \langle \delta V(l)^3 \rangle$$

from:
$$\frac{\partial S_2}{\partial t} = -\frac{1}{3l^4} \frac{\partial}{\partial l} (l^4 S_3) - \frac{4}{3} \epsilon + \frac{2\nu}{l^4} \frac{\partial}{\partial l} (l^4 \frac{\partial S_2}{\partial l})$$
(Karman-Howarth) flux in scale dissipation

• Stationarity, $\nu \to 0$

4/5 Law

- Asymptotically exact $\nu \rightarrow 0$, l finite
- Unique, rigorous result

- $\bullet \mid S_3(l) = -\frac{4}{5}\epsilon l$
- Energy thru-put balance $\langle \delta V(l)^3 \rangle / l \leftrightarrow \epsilon$
- Notable:
 - Euler: $\partial_t v + v \cdot \nabla v + \nabla P/\rho = 0$; reversible; $t \to -t, v \to -v$
 - N-S: $\partial_t v + v \cdot \nabla v + \nabla P/\rho = \nu \nabla^2 v$; time reversal broken by viscosity
 - $-S_3(l)$: $S_3(l) = -\frac{4}{5}\epsilon l$; reversibility breaking maintained as $\nu \to 0$

Anomaly

Extensions:

MHD: Pouquet, Politano

2D: Celari, et. al. (inverse cascade, only)

What of so called 'entropy cascade' in Vlasov turbulence?

- N.B.: A little history; philosophy:
 - 'Anomaly' in turbulence → Kolmogorov, 1941
 - Anomaly in QFT → J. Schwinger, 1951 (regularization for vacuum polarization)
- Speaking of QFT, what of renormalized perturbation theory?
 - Renormalization gives some success to low order moments, identifies relevant scales
 - Useful in complex problems (i.e. plasmas) and problems where au_{int} is not obvious
 - Rather few fundamental insights have emerged from R.P.T
 Caveat Emptor

Turbulence in Flat Land

- 2D systems → 1 dimension constrained
 - i.e. Atmospheric <-> rotation Ω_0

Magnetized plasma $\leftarrow > \overrightarrow{B_0}$, Ω_c

Solar interior <-> stratification, ω_{B-V}

Low Rossby number

• Simple 2D fluid:

$$\frac{d\vec{\omega}}{dt} = \vec{\omega} \cdot \nabla \vec{v} + \nu \nabla^2 \vec{\omega}$$

$$\vec{v} = \nabla \phi \times \hat{z}$$
$$\omega = -\nabla^2 \phi$$

+

$$\partial_t \nabla^2 \phi + \nabla \phi \times \hat{z} \cdot \nabla \nabla^2 \phi = \nu \nabla^2 \nabla^2 \phi + \tilde{s}$$

forcing scale variable

- ω constant along fluid trajectories, to ν
- $-\omega = \nabla^2 \phi$ akin conserved phase space density

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + \frac{q}{m} E \frac{\partial f}{\partial v} = C(f)$$

• The problem:

- Enstrophy now conserved: $\vec{\omega} \cdot \vec{v} \vec{v} = 0$
- Two inviscid invariants:
 - Enstrophy $\Omega = \langle (\nabla^2 \phi)^2 \rangle$
 - Energy $E = \langle (\nabla \phi)^2 \rangle$
- Might ask: Where do these want to go, in scale?
- Enstrophy:

Isovorticity contour

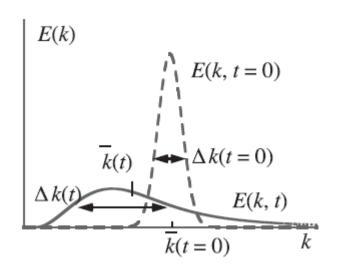
Stretched contour, $\langle (\nabla \omega)^2 \rangle \uparrow$ \rightarrow Enstrophy to small scale

Energy

- Expect $(\Delta k)^2$ increases
- What of centroid \vec{k} ?

$$(\Delta k)^2 = \frac{1}{E} \int dk (k - \bar{k})^2 E(k)$$

$$\bar{k} = \frac{1}{E} \int dk E(k)$$



But

$$(\Delta k)^2 = \frac{1}{E} \int dk \left(k^2 - 2k\bar{k} + \bar{k}^2 \right) E(k) = \frac{1}{\Omega} \left(\Omega - \bar{k}^2 \right)$$

$$\partial_t (\Delta k)^2 > 0 \implies \partial_t \overline{k} < 0$$

 Ω conserved!

→ energy should head toward large scale

Dilemma:

- Energy seeks large scale
- Enstrophy seeks small scale
- How accommodate self-similar transfer i.e. cascade of both?
- → Dual cascade (R.H. Kraichnan)
 - Forward self-similar transfer of enstrophy
 - → toward small scale dissipation
 - Inverse transfer of energy
 - → scale independent dissipation?

(Low $k \sin k$)

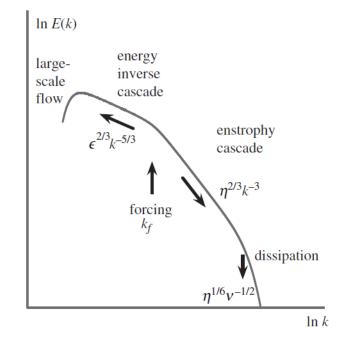


Fig. 2.17. Schematic of energy spectrum for dual cascade.

Spectra

– Enstrophy range:

$$E(l) \to kE(k)$$

$$1/\tau(l) \to k[kE(k)]^{1/2}$$

$$\to E(k) = \eta^{2/3} k^{-3}$$

- Energy range: ala' K41; $E(k) = \epsilon^{2/3} k^{-5/3}$

Pair dispersion:

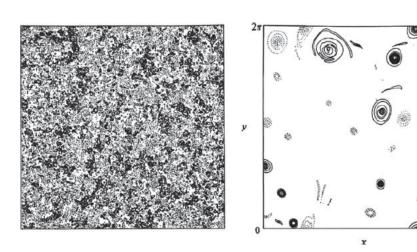
- Energy range: ala' Richardson
- Enstrophy range: exponential divergence
- Scale independent dissipation critical to stationary state

→ Where do we stand now?

"Big whorls meet bigger whorls, And so it tends to go on. By merging they grow bigger yet, And bigger yet, and so on."

- M. McIntyre, after L.F. Richardson

Cautionary tale: coherent structures happen!



Decay experiment

→ Isolated coherent vortices appear in turbulent flow

McWilliams, '84 et. seq. Herring and McWilliams '85

- Depending upon forcing, dynamics be cascade or coherent structure formation, or both:
- Need a non-statistical criterion, i.e. Okubo-Weiss

$$\rho = -\nabla^2 \phi$$
, $S = \frac{\partial^2 \phi}{\partial x \partial y} \rightarrow \text{local flow shear}$

$$\partial_t \nabla \rho = (s^2 - \rho^2)^{1/2}$$
; criterion for "coherence"

→ Gaussian curvature of stream function predicts stability

• MHD turbulence - A First Look

- HUGE subject includes small scale and mean field dynamo problems (c.f. Hughes lectures)
- Here, focus on Alfvenic turbulence i.e. (Kraichnan-Iroshnikov-Goldreich-Sridhar ...) → wave turbulence
 - Strong mean $\overrightarrow{B_0}$

•
$$\delta B < B_0$$
, $\nabla \cdot \vec{v} = 0$

• Shear-Alfven wave turbulence

- Best described by reduced MHD: (Ohm's Law,
$$\nabla \cdot J = 0$$
)

$$\frac{\partial A_{\parallel}}{\partial t} + \nabla_{\perp} \phi \times \hat{z} \cdot \nabla_{\perp} A_{\parallel} = B_{0} \partial_{z} \phi + \eta \nabla^{2} A_{\parallel}$$

$$\frac{\partial}{\partial t} \nabla^{2} \phi + \nabla_{\perp} \phi \times \hat{z} \cdot \nabla_{\perp} \nabla^{2} \phi^{2} = B_{0} \partial_{z} \nabla^{2} A_{\parallel} + \nabla_{\perp} A_{\parallel} \times \hat{z} \cdot \nabla_{\perp} \nabla^{2} A_{\parallel} + \nu \nabla^{2} \nabla^{2} \phi + \tilde{S}$$

- Observations:
 - All nonlinear scattering is perpendicular
 - Contrast N-S, eddys with $\omega = 0$

Now: Alfven waves: $\omega^2 = k_{\parallel}^2 V_A^2$

– If uni-directional wave population:

i.e.
$$A = f(z - V_A t) + g(z + V_A t)$$

then f is exact solution of MHD

- → Need counter-propagating populations to manifest nonlinear interaction
- See also resonance conditions

$$\omega_1 + \omega_2 = \omega_3$$
 $k_{\parallel 1} + k_{\parallel 2} = k_{\parallel 3}$

For Alfven wave cascade:

$$\epsilon = T(k \to k + \Delta k)E(k) \to E(k)/\tau(k)$$
transition rate

Recall Fermi Golden Rule:

$$T_{i;j} \sim \frac{2\pi}{h} |\langle i|H_{int}|j\rangle|^2 \delta(E_j - E_i - h\omega)$$

$$T \sim \frac{V(l_d)^2}{l^2} \tau_{int} (l_\perp)$$

$$V(l_{\perp})^2 \rightarrow$$
 scatter energy

$$1/l^2 \rightarrow (cc)^2$$

•
$$\tau_{int}(l) = 1/(\Delta k_{\parallel})V_A$$

$$\rightarrow$$
 Alfvenic transit time ($\Delta k_{\parallel} \sim k_{\parallel}$)

Enter the Kubo number

$$\frac{l_{\parallel ac}}{\Delta_{\perp}} \frac{\delta B}{B_0} \sim \left(\frac{V_A \delta B / B}{l_{\perp}}\right) \left| \Delta k_{\parallel} V_A \right|$$

• Basically:
$$B \cdot \nabla \rightarrow B_0 \partial_z + \tilde{B} \cdot \nabla_\perp$$
 Linear $B_0 \partial_z$

$$\rightarrow \text{ relative size}$$
 Nonlinear $\tilde{B} \cdot \nabla_\perp$

i.e. $K < 1 \rightarrow$ weak scattering, diffusion process

K > 1 → strong scattering, ~ de-magnetization ~ percolation

 $K = 1 \rightarrow (critical)$ balance

Why Kubo?

- But... "It ain't over till its over"
 - Eastern (division) philosopher
- As l_{\perp} drops, $V(l_{\perp})/l_{\perp} \rightarrow (\Delta k_{\parallel})V_A$
- \star $\tau_{\perp} \rightarrow \tau_{\parallel}$ $Ku \rightarrow 1$
- Critically balanced cascade, $Ku \sim 1$
 - i.e. $\frac{V(l_\perp)}{l_\perp} \sim V_A \; \frac{\delta B(l_\perp)}{B_0} \sim (\Delta k_\parallel) V_A$, unavoidable at small scale
 - Statement that transfer sets $K \approx 1$

$$k_{\parallel}=k_{\parallel}(l_{\perp})$$

- Attributed to G.-S. '95 but:

defines anisotropy

"the natural state of EM turbulence is K ~ 1"

- Kadomtsev and Pogutse '78

• If now
$$\frac{1}{\tau_{int}(l_{\perp})} \sim \frac{V(l_{\perp})}{l_{\perp}}$$

- Recover K41 scaling in MHDT, $F(k_{\perp}) \sim \epsilon^{\frac{2}{3}} k_{\perp}^{-\frac{5}{3}}$
- "Great Power I aw in the Sky"



$$k_{\parallel}V_A \sim \frac{V(l_{\perp})}{l_{\perp}} \Rightarrow k_{\parallel} \sim k_{\perp}^{\frac{2}{3}} \epsilon^{\frac{1}{3}}/V_A \implies \text{anisotropy increases as } l_{\perp} \downarrow$$

Many variants, extensions, comments, "we did it too's"...

→ Fate of Energy?

- End point is dissipation
- What is <u>dissipative structure</u>?
 - Dimension < 3 → fractal and multi-fractal intermittency models
 - Structure:
 - Vortex sheet
 - Current sheet
 - → Stability → micro-tearing, etc.
 - Energy leak to kinetic scales?
 - Electron vs ion heating
 - Particle acceleration (2nd order Fermi)

Conclusion

- This lecture is not even the "end of the beginning"
- A few major omissions:
 - pipe flow turbulence Prandtl law of the wall
 - spatial structures, mixing, spreading
 - general theory of wave turbulence Qiu, P.D.
 - MHDT + small scale dynamo Hughes
 - kinetic/Vlasov turbulence Sarazin, Qiu, Dif-Pradalier
 - Langmuir collapse ... Kosuga