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• Basics of Density Limit à Mostly L-mode

– General Trends

– Some Indications of Transport as Fundamental

– Modelling – The Conventional Wisdom

• Recent Studies à HL-2A (L-mode)

– Edge Shear Layer Evolution as  	 → 
– Shear Layer ßà Electron Adiabaticity Connection

– Synthesis

– Confronting the Conventional Wisdom



A Theory of Shear Layer Collapse

• Thesis: For hydrodynamic electrons, drift wave turbulence cannot 

regulate itself via self-generated shear flows. Turbulence levels rise.

• A Simple Argument

• Collisional drift wave-zonal flow turbulence for   /									1
• Scaling Comparison

• What of PV Mixing?

• Scenario for edge cooling

><



Implications and Directions

Some Thoughts on Density Limit in H-mode

Conclusion



Basics of Density Limits



Density Limits
• Not a review! Incomplete!

• Greenwald density limit:

 =  ∼ 

• Manifested on other devices (more later)

– See especially RFP

• Global limit

• Simple dependence

• Begs origin of  scaling?!

• Most fueling via edge à edge 

transport critical to  limits

Tokamak Operating Space



• Trends well established

• Often (but not always!) linked to:

– MARFE (radiative condensation instability) ßà Impurity influx

– MHD disruption

– Divertor detachment

– HàL Back-transition



• Argue:

– ‘Disruptive’ scenarios secondary outcome, largely consequence of edge 

cooling, due fueling

–  reflects fundamental limit imposed by particle transport

• Some Evidence

– Density decays non-disruptively after 

pellet injection

–  ∼  asymptote

– Density limit enforced non-disruptively!

(Alcator C)



• More Evidence:

– Post pellet density decay rises with /̅
– Limit at: /̅	 	 ∼ 1
– Pellet in DIII-D beat 
– Peaked profiles ßà enhanced core 

particle confinement ~ ITG turbulence

– Reduced particle transport è impurity 

accumulation



Looking at the Edge
• Edge Fueling çè edge transport crucial to density limit

• C-Mod SOL profiles

• As  ↑, high ⊥ transport region 

extends inward

• Scan of edge/SOL profiles,  → 
• Large fluctuation activity develops in main 

plasma, inward  from SOL, for  → 



Tentative Conclusions

• Turbulence intensities

• ⊥ particle transport increases

• Pellet injection admits  > , with non-disruptive 

relaxation, as edge cooling avoided

Key Question:

à What physics is under-pinning of rise in 

turbulence, transport as  → ?

At edge, as  → 



Conventional Wisdom
Reduced Fluid Simulation (no heat source)

• D+R on n-limit physics:

– DWT à resistive ballooning 

turbulence

– State of high , , cool electrons

– Check:  >  , ∗? 

shear

  = − /
ßà  è ballooning drive = /
 =  
 = 2  /
à Hybrid of drift frequency and 

adiabaticity

 



(Rogers + Drake ‘98)



• In density limit conditions, another linear instability -

resistive ballooning – emerges and dominates

• Transition mechanism/physics not addressed

• Is there more to this than convention?

So, Conventional Wisdom è



Recent Studies on HL-2A
(Ronjie Hong, Tynan, P.D., HL-2A Team/NF2018)

è New twist: Edge Fluctuation Studies! (L-mode)

- Edge Langmuir probe array
- Curiously absent from  limit literature



Basic Results
• OH,  ∼ 150 ,  = 1.3,  = 3.5	 → 4
•  = 0.25	 → 0.9	
• Profiles

• Fluctuation Properties

〈〉
(phase)

〈〉


 = −  〈〉 à energy gained by low-f flow

DROPS as  	 → 



Further Studies of Stress and Flows

• Flow shearing rate drops as 

collisionality increases

cf: Schmid, et. al. 2017

• Reynolds power (to flow) drops 

as collisionality increases



Further Studies

• Joint pdf of  ,  for 3 densities

•  −  = −1
• Note: 

– Tilt lost, symmetry restored as  → 
– Consistent with drop in 

èWeakened production by

Reynolds stress 



Transport

• Γ rises as  → 
• Density fluctuations rise 

dramatically.


 /
 /
Corr



The Key Parameter

• Electron adiabaticity emerges as the telling local parameter è ∥ /
• Drops from ~ 3 à 0.5 during  scan

• Reynolds work plummets as ∥ / ≪ 1
•  ↓ as shear layer weakens

• Turbulent particle flux rises as  ↓



The Feedback Loop (per experimentalists)

• ∥ / > 1 to  < 1
– Weakens ZF (how?) 

N.B. beyond damping?

– Enhances turbulence 

• Increased turbulent transport cools 

edge

Unpleasantries



The Key Question

• What is fate of ZF for hydrodynamic electrons 

(∥ / < 1)?  Underlying Physics?

• How reconcile with our understanding of drift wave-

zonal flow physics?



A Theory of Shear Layer Collapse
(R. Hajjar, P.D., Malkov)

Thesis: - For hydrodynamic electrons, ZF production by 

drift wave turbulence drops

- DWT cannot regulate itself by zonal flow shears

- Turbulence, transport rise



N.B.

• Many simulation studies note weakening or outright 

disappearance of ZF in hydro. Regime

– Numata, et. al. ‘07

– Gamargo, et. al. ‘95

– Ghantous & Gurcan, ‘15

…

– However, mechanism left un-addressed, as adiabatic 

electron regime of primary interest



Model:

• Fluctuations

• Mean Fields: = −	  +  = −  + 

Collisional Drift Wave

Hasegawa-Wakatani
à Simplest viable for edge

 = ∥  à coupling parameter

à Adiabaticity parameter



A Simple Argument: Wave Propagation (Quasilinear)
• Fundamental dispersion character charges between  > 1 and  < 1, i.e.

•  > 1 à traditional ‘drift wave’ scaling

 = ∗  +  ∗  ,        > 1
wave + inverse dissipation

•  < 1 à hydrodynamic ‘convective cell’ scaling

•  = ∗  	 / 	(1 + ),             = ∥
Cell



Ubiquity of Zonal Flow?

• ‘Standard argument’: ZF à made of minimal

• My favorite:  (GFD)

“… the central result that a rapidly rotating flow, when stirred in a localized 

region, will converge angular momentum into the region”     (Isaac Held, ‘01)

Inertia
Damping      ()
transport

Momentum Flux

Wave radiation

Zonal 
Shear Layer



Why?
• Direct proportionality of wave group velocity to Reynolds stress ßà

spectral correlation 
i.e. = −	/ 	: (Rossby), = 2	/  

 = − ∑   
So:   > 0	  > 0 çè  > 0 è  < 0

• Outgoing waves generate a flow convergence!  è Shear layer spin-up



But for hydro limit:

•  = ∗  
/

•  = −   	 	 ßà  = − 
à Link between energy, momentum flux link weakened

à Eddy tilting (  ) does not arise as consequence of causality

è ZF generation not ‘natural’ outcome in hydro regime!

?



N.B.   Issue is somewhat non-trivial in that:

• Symmetry breaking ßà 
• Mode coupling

• PV mixing

à All persist in hydrodynamic regime

è Need look in depth



Reduced Model

• Utilize models for real space structure to address shear layer

e.g.       Balmforth, et. al.

Ashourvan, P.D.

See also: J. Li, P.D. ‘2018 (PoP)

• Exploit PV conservation:

–  = ln  	 −  à conserved PV

–  =  − 
So

• Natural description:  ,  ,  = 

è Outgrowth of

staircase studies

 = fluctuation P.E.



Reduced Model, cont’d = −Γ +  = −Π + 	
 + Γ = − Γ − Π  −  −  + 

• Fluxes:Γ à Partial flux Π à Vorticity flux  = −〈〉 (Taylor)

Γ à spreading, 〈̃〉 à triad interactions
Reynolds Force

  	 = 1 +    		 → 	 



The Fluxes – Physics Content

• Proceed by QLT

• Π = −	 + Π
• Γ = −
• Primary focus on scalings with 
• i.e. what changes as  > 1	 →  < 1

Diagonal,
Shear relaxation

Residual ßà , via 
Production à key measure

(K-H ignored)



Basic Results

• Adiabatic ( ≫ ||)

• Reduction:



Results, cont’d

• Hydrodynamic ( ≪ ||)

• Reduction:



Shear Strength!?

• Vorticity gradient emerges as natural measure 

of production vs. turbulent mixing

• Stationary vorticity flux:

• How characterize layer?

i.e. Π vs.    

 = Π /	 n.b.:  =   as FOM 



Shear Strength, cont’d

• Jump in flow shear over scale D 

equivalent to vorticity gradient on 

that scale

• Vorticity gradient characteristic of 

flow shear layer strength

• N.B.  central measure of Rossby

wave elasticity!	~	  / /



Tabulation: 		scaling - answer

• Note: > 1,  ∼  0 < 1,  ∼ 
i.e.        rises Π drops with 
• Fluctuation Intensity rises

• Particle flux rises



Bottom Line

• Shear Layer, via production, collapses as  ↓ < 1

• Transport and fluctuations rise, as  ↓ < 1

• Edge  = ∥ / is key local parameter



What of ‘PV Mixing’ ?
• PV mixing persists in hydro regime

• Key: Unlike GFD/Adiabatic Regime,

PV mixed via several channels

• The Cartoons:

 + 2Ω̂ frozen in =  + 



PV, cont’d
• H-W: = ln  	 − 

= ln   +   + ℎ 	 − 	  
N.B. Boltzmann response does not contribute to net PV mixing

PV mixing

Γ = ℎ 	 −  	 	  
PV flux Particle flux Vorticity flux,

Reynolds force

Branching
ratio?!



PV, cont’d Γ = ℎ 	 −  	 	  
•  > 1

– Fields tightly coupled, ~	
– Γ, Π 	 ∼ 		1/
– Both channels transport PV

– ZF robust

•  < 1
– Fields weakly coupled

– Γ	~	1/	  , Π ∼ 
– PV transported via particle flux

– ZF dies



Edge Cooling Scenario

• Inward turbulent spreading 

can increase resistivity and 

steepen , resulting in MHD

N.B. For CDW,  ∼ Γ



Implications and 
Directions



Implications

• Density limit a ‘back-transition’ phenomenon

i.e. drift-ZF state  à convective cell, strong fluctuation turbulence

è scaling of collapse? (spatio-temporal)

è bifurcation? Trigger?, hysteresis?!

è control parameter ßà 
• Cooling front as secondary

è Extent penetration of turbulence spreading?

è Strength, depth penetration è operating regime



Directions
Experiment

• Test  criticality  à  ∼ /.    Achieve / > 1 with  > 1?

•  vs  trade-off at ?  Sustain  > ?!

• Hysteresis in  manifested? Space-time evolution of turbulence

• Localized edge shear layer response to SMBI, small pellets? Relaxation 

rate, persistence

• Established  vs / connection

• Explore changes in bi-spectra <ZF|DW,DW> vs / (after Schmid, et. al.)

• Core-edge coupling?



Directions, cont’d
Theory / Model

• As usual, more ‘stuff’ in model…

• N.B.  In HL-2A,    ↑  0.1 à 0.3 ↓  3 à 0.5

Onset of RBM dubious

• In particular:

– Neutral penetration – i.e. fueling source

à CX damping of flows

– Impurity à build-up

– , explicit 

LàH model of Miki et.al.

may be useful



Dynamical Modelling

• Feedback loop

• Macroscopics vs  
• Layer scale, expansion

• Heating vs fueling trade-off

• 	/	 	 ↔ 		 ?  



Density Limit in H-mode

• SOL strongly turbulent;  pedestal quiescent

• Shear layer at separatrix

• Turbulence penetration of pedestal (HàL 

BACK Transition) è needed for  limit 

phenomena

• SOL turbulence set by: 

– Q

– Fueling

– Divertor conditions

SOL



sep well

Pedestal

n.b. SOL curvature unfavorable



Treat via Box Model

• , ∥ regulate 
• Sufficient  à ETB penetration

• What are fueling,  , Q to trigger 

turbulence in flux and pedestal 

collapse. Barrier penetration is 

critical?

• Recent: H-mode density limit set 

by SOL ballooning?! (SOL  limit)

(Goldston, Sun)




 
Γ


Blobs

∥

Edge SOL

(ZBG, PD 2018)



Conclusions

• Density limit is consequence of particle transport processes

• L-mode density limit experiments:

– Edge, turbulence-driven shear layer collapse

– Local parameter  = ∥ /
• Theory indicates:

– Zonal flow production drops with ,  < 1
– Edge transport, turbulence ↑

è Self-regulation fails 

• -limit in L-mode as transition from drift-zonal turb. è strong drift turbulence


