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ABSTRACT OF THE DISSERTATION

Intrinsic plasma flows in straight magnetic fields: generation, frictionless saturation, and
interaction

by

Jiacong Li

Doctor of Philosophy in Physics

University of California San Diego, 2018

Professor Patrick H. Diamond, Chair

We develop a simple model for the generation and amplification of intrinsic axial flow

in a linear device, Controlled Shear Decorrelation Experiment (CSDX). This model develops a

novel dynamical symmetry breaking mechanism in drift wave turbulence, which does not require

complex magnetic field structure, such as shear. Thus, the model is applicable to both tokamaks

and linear devices. This mechanism is, essentially, a form of negative viscosity phenomenon.

Negative compressibility ITG turbulence can also induce a negative viscosity increment.

However, we show that no intrinsic axial flow can be generated by pure ITG turbulence in a

straight magnetic field. When the flow gradient is steepened by any drive mechanism, the flow

xv



profile saturates at a level close to the value above which parallel shear flow instability (PSFI)

becomes dominant over the ITG instability. This saturated flow gradient exceeds the PSFI linear

threshold, and grows with ∇Ti0 as |∇V∥|/|k∥cs|∼ |∇Ti0|2/3/(k∥Ti0)2/3.

The coupling of azimuthal and axial flows in CSDX–in absence of magnetic shear–is in-

vestigated. In particular, we focus on the apportionment of turbulence energy between azimuthal

and axial flows, and how the azimuthal flow shear affects axial flow generation and saturation

by drift wave turbulence.

Detailed measurements of intrinsic axial flow parallel to the magnetic field are performed

on CSDX, with no axial momentum input. The results present a direct demonstration that the

broken spectral symmetry of drift wave turbulence causes the development of axial mean flows

in cylindrical magnetized plasmas. Measurements suggest the axial flow is parasitic to the drift

wave–zonal flow system.

Besides, we show that consideration of wave–flow resonance resolves the long-standing

problem of how zonal flows (ZFs) saturate in the limit of weak or zero frictional drag and also

determines the ZF scale directly from analysis. We show that resonant vorticity mixing, which

conserves potential enstrophy, enables ZF saturation in the absence of drag, and so is effective

at regulating the Dimits up-shift regime. Vorticity mixing is incorporated as a nonlinear, self-

regulation effect in an extended 0D predator–prey model of drift–ZF turbulence.
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Chapter 1

General Introduction

This dissertation studies intrinsic flows in fusion plasmas with a particular focus on the

generation of intrinsic parallel flows in the absence of magnetic shear. We also investigate how

the parallel and perpendicular flows interact absent magnetic shear. In addition, the saturation

of zonal flows, absent frictional drag, is studied with special focus on the wave–flow resonance

effect. In Section 1.1, we introduce nuclear fusion and some challenges of magnetic confinement.

Next, we introduce intrinsic parallel and perpendicular (zonal) flows in magnetic confinement

devices (Section 1.2) and in a linear device (Section 1.3) with straight magnetic fields, i.e., zero

magnetic shear. We conclude this chapter by describing the questions we address in this thesis

and the organization of the rest chapters (Section 1.4).

1.1 Nuclear fusion and magnetic confinement

Nuclear fusion results from the process of combining two or more atomic nuclei to form

new atomic nuclei, along with subatomic particles (e.g., neutrons or protons). In the cosmos,

fusion is the primary heat source of most stars, e.g., the Sun. In the laboratory, fusion research

uses the deuterium–tritium (D–T) reaction, because it has the largest cross-section compared to

other viable reaction types. Nevertheless, the D–T reaction still requires extremely high tem-

1



Figure 1.1: Schematic of a plasma in tokamak.

perature and high density of the fuel gas to ensure a sufficiently high reaction rate. Under such

conditions, the fuel gas is ionized and thus becomes a plasma.

Confinement time and energy content are the two key factors that determine whether

a fusion reactor can sustain itself. A fusion reactor needs to meet Lawson criterion [Law57]

to reach ignition. Lawson criterion requires that the heating by fusion reactions needs to be

sufficient to maintain plasma temperature without external power input. For the D–T reaction,

ignition requires the triple product of density, temperature, and confinement time to be nT τE ≥

3×1021 keV s/m3.

One way to confine the laboratory fusion plasma is to use magnetic fields, such that the

hot plasmas do not touch the reactor walls. Of various device designs, tokamaks have achieved

the best performance, especially in terms of operation duration [WLG+]. For tokamaks, confine-

ment time is defined as the ratio of energy content (W ) and energy loss rate (PL), i.e., τE =W/PL.

In steady state, the energy loss rate is balanced by the heating power PH . Therefore, confinement

time in tokamaks is calculated using τE =W/PH . Fig. 1.1 shows a sketch of the plasma geome-

try in a tokamak. It can be viewed as a torus with magnetic fields in both the toroidal direction

and the poloidal direction.
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Both the energy content and confinement time are reduced by the transport of particles,

momentum, and thermal energy of plasmas. Turbulence leads to stronger transport than col-

lisions, and thus is the major candidate for redistribution and loss of energy. Turbulence in

tokamaks can be driven by profile gradients (e.g., ∇n and ∇T ). For example, electron drift wave

turbulence is a common type of turbulence in plasmas [HW83]. It is driven by ∇n and requires

non-adiabatic electrons.

1.2 Intrinsic plasma flows

Turbulence-driven flows are ubiquitous in natural and laboratory plasmas. In magnetic

confinement devices, shear flows generated by turbulence are effective in stabilizing the micro-

turbulence and MHD (magnetohydrodynamics) instabilities, and thus are favorable to both mi-

crostability and macrostability [MAC+11a, RHS+06, DLCT94], in that intrinsic flows occur

both parallel and perpendicular to the magnetic field [RHD+11b, HLH+18, XTD+11a]. The

generation of such flows is analogous to the heat engine paradigm [KDG10a]. Initially driven by

profile gradients (such as ∇T and/or ∇n), the turbulence energy is coupled to both parallel and

perpendicular flows.

1.2.1 Intrinsic parallel flow

Toroidal rotation of plasma is beneficial to both macrostability (e.g., the mitigation or

stabilization of resistive wall modes [RHS+06]) and microstability by suppressing turbulence

via toroidal shear flows that contribute to E ×B shear flows. Plasma rotation and the underlying

toroidal angular momentum transport were intensively first studied because neutral beam injec-

tion (NBI) was the heating method of choice for tokamaks. Given that unbalanced NBI drives

toroidal rotation and the experimental observation that the ion momentum and thermal diffu-

sivities were comparable (χφ ∼ χi) [SDF+90], toroidal momentum transport was thought to be
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diffusive and comparable to the ion heat transport. However, the discovery of the non-diffusive

character of toroidal momentum transport in the JFT-2M tokamak [IMM+95] disrupted that

simplistic understanding of the toroidal rotation. The paradigm shift was triggered by the ob-

servation of intrinsic core rotation in the Alcator C-Mod tokamak, for both ohmically heated

and ion cyclotron resonance frequency-driven plasma discharges [RLM+04, LRH+05]. Here,

intrinsic rotation means plasma rotation without NBI drives or external wave momentum torque,

i.e., self-accelerated rotation. Given the benefits of plasma rotations, the intrinsic rotation is

particularly favorable for the International Thermonuclear Experimental Reactor (ITER) where

NBI driven rotation is not feasible.

The discovery of intrinsic rotation has elicited interest in the non-diffusive flux (pinch

and residual stress) of toroidal momentum, which can accelerate the central plasma rotation

[DKG+13a]. The momentum pinch, which redistributes the toroidal momentum, contributes

little to rotation generation [PAB+11, ACC+12]. Hence, the Reynolds stress has the generic

form

⟨ṽrṽφ⟩ ∼=−χφ
∂⟨vφ⟩

∂r
+ΠRes

rφ . (1.1)

The residual stress is driven by the background turbulence, i.e., ΠRes
rφ =ΠRes

rφ (∇n0,∇Ti,e), and can

accelerate the plasma from rest via the intrinsic torque τ =−∂rΠRes
rφ . The process that the profile

gradients drive intrinsic rotations via the residual stress is analogous to a car engine that converts

heat flux into the motion of wheels [KDG10a]. ΠRes
rφ is also a counterpart of the poloidal residual

stress that accelerates poloidal flow [YXD+10a]. The turbulent diffusion of toroidal momentum

is also driven by the ambient background turbulence, i.e. χφ = χφ(∇n0,∇Ti,e). Thus, as a result

of the balance between ΠRes
rφ and χφ, the rotation profile steepens as a secondary effect of the

free energy sources (∇n0, ∇Ti,e).

Usually, toroidal rotation is driven by the parallel residual stress ΠRes
r∥ that emerges from

⟨ṽrṽ∥⟩. ΠRes
r∥ is determined by the spectral correlator ⟨kθk∥⟩ ≡ ∑k kθk∥|φk|2, which requires sym-

metry breaking, i.e. spectral imbalance in k space [GDHS07a, GDH+10a, MDGH09]. Con-
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ventional mechanisms for symmetry breaking are summarized in [DKG+13a]. Most of them are

tied to correlating k∥ and kθ via magnetic shear, i.e. k∥ = kθx/Ls where Ls ≡ ŝ/Rq is the magnetic

shear length and x is the distance between the mode center and the rational surface. Ultimately,

the correlator is determined by the spatial distribution of the intensity, i.e. ⟨kθk∥⟩= k2
θ⟨x⟩/Ls.

Conventional symmetry breaking mechanisms, and thus models of intrinsic rotation, re-

quire finite magnetic shear. However, weak or reversed magnetic shear has long been known to

enhance microstability and confinement. Studies on enhanced reversed shear [SBB+97], nega-

tive central shear [RTB+96], weakly negative shear [YHN+15], etc. reveal this trend. For ex-

ample, de-stiffened states, with enhanced confinement, were observed in the weak shear regime

in JET [MAC+11a]. In addition, residual stress reversal is observed in computer simulations

at weak magnetic shear [LWD+15]. Therefore, intrinsic rotation at weak magnetic shear is of

special interest. In particular, there is an open question of what breaks the spectral symmetry

absent magnetic shear.

Intrinsic rotation is generated by turbulence. Thus, in tokamaks, intrinsic rotation usually

tracks the driving gradient of turbulence [RHD+11a]. This also raises the question of how the

flow gradient (∇Vφ) interacts with and scales with the driving gradient of turbulence (e.g., edge

ion temperature gradient (ITG), in the case of Ref. [RHD+11a]).

1.2.2 Zonal flow

Intrinsic perpendicular flows are often referred to as zonal flows [DIIH05b, GD15, AD16],

because they are analogous to zonal flows driven by quasi-geostrophic turbulence [Cha48].

Zonal flows (ZFs) are very effective at regulating drift wave (DW) turbulence, as they are the

secondary modes of minimal inertia, transport, and damping [DIIH05b, GD15]. Such a mech-

anism can be thought of as an element in a ‘predator–prey’ type ecology [DLCT94, KGD15],

in which the secondary ‘predator’ feeds of (i.e., extracts energy from) the primary ‘prey’. In

such a system, the damping of the predator (here, the ZF) ultimately regulates the full system.
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Frictional drag, due to collisions, is usually invoked to damp ZF. However, this picture is un-

satisfactory for present day and future regimes of low collisionality. Thus, an understanding of

frictionless ZF saturation and its implications for drift wave turbulence is essential. Of course,

ZF saturation significantly impacts transport and turbulence scalings. Note that understanding

scalings in the frictionless regime is critical for developing reduced models. As zonal flow shear

reduces the turbulent mixing scale, the saturated zonal flow is coupled to the scaling of turbulent

diffusivity with ρ∗ ≡ ρs/Ln. This is related to the degree of gyro-Bohm breaking [MPW+01], i.e.

the exponent α in D ∼ DBρα
∗ , where DB ≡ kBT/16eB is Bohm diffusivity and α < 1 indicates

gyro-Bohm breaking.

Zonal flow generation has been well-studied [DIIH05b, GD15, GHD15, GD16], but the

question of how zonal flows saturate, absent frictional drag, remains open. Though sometimes

mentioned in this context, tertiary instability is not effective for most cases of ZF saturation, as

it is strongly suppressed by magnetic shear. In simulation studies, the onset of tertiary insta-

bility requires an artificial increase in the ZF shearing rate [RDK00] in order to overcome the

stabilizing effects of magnetic shear. ITGs can provide an extra source of free energy to drive

the tertiary mode, in addition to flow shear. However, such a contribution to the growth rate

of the tertiary mode is of order O(k2ρ2
i ), and thus does not qualitatively alter tertiary stability

[KD02]. Tertiary instability of ZF may occur in flat-q regimes [MAC+11a] with zero magnetic

shear. Even in this case, the key question of how much turbulent mixing and flow damping result

remains to be addressed.

1.3 Turbulence-driven flows in a linear device

Linear devices with zero magnetic shear are testbeds to study the physics of intrinsic

flows. It has long been known that the combination of weak magnetic shear and intrinsic toroidal

rotation in tokamaks are required for the formation of enhanced confinement states [MAC+11a,
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Heating

Figure 1.2: Schematic of CSDX.

Table 1.1: Correspondence between CSDX and tokamaks.

Tokamaks CSDX
Most have sheared magnetic field Uniform axial magnetic field (shear-

free)
Zonal flow in poloidal direction Zonal flow in azimuthal direction
Intrinsic toroidal rotation Intrinsic axial flow
Rotation boundary condition set by
SOL (scrap-off layer)

Axial flow boundary condition set
by boundary neutral layer

RTB+96]. The Controlled Shear Decorrelation Experiment (CSDX) is a cylindrical linear device

at University of California San Diego (UCSD) (Fig. 1.2). CSDX has straight magnetic fields,

and thus is an important limiting case for understanding turbulence-driven flows at zero shear.

Intrinsic axial flows are observed and measured in CSDX [HLH+18]. In addition, CSDX has a

long record of zonal flow studies [XTD+11a, YXD+10a]. Therefore, CSDX is an ideal venue

to study the generation, saturation, and interaction of intrinsic parallel and perpendicular (zonal)

flows at zero magnetic shear. Table 2.1 compares the characteristics of CSDX and tokamak

devices.

The axial flow in CSDX is intrinsic. Because neutral gas, as the fuel, is injected radially

from the side wall, there is no external source of axial momentum, and so the observed axial flow

is intrinsic. In addition, the mean axial flow profile steepens during a global transition triggered

for a critical axial magnetic field [CAT+16]. Meanwhile, the steepening of ∇⟨vz⟩ tracks that
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Figure 1.3: Paradigm of the heat engine analogy for the generation of axial and azimuthal
flows in CSDX. Pz ≡−⟨ṽrṽz⟩′⟨Vz⟩ and Pθ ≡−⟨ṽrṽθ⟩′⟨Vθ⟩ are the axial and azimuthal Reynolds
powers.

of ∇n0 [HLT+16]. This is consistent with the intrinsic axial momentum transport being driven

by electron drift wave turbulence. Taken together, this raises the question of what generates

the intrinsic axial flow absent magnetic shear. Intrinsic toroidal flows are driven by the residual

axial stress ΠRes
rz , which requires spectral symmetry breaking. However, conventional symmetry

breaking mechanisms don’t apply to CSDX due to the uniform magnetic field there, i.e. zero

magnetic shear.

While the turbulence in CSDX is usually a population of electron drift waves, fluctua-

tions propagating in the ion drift direction are observed [CAT+16]. Such ion features appear

in the central region of the cylindrical plasma, where the density profile is flat. ITG turbulence

controls momentum transport in tokamaks operated in enhanced confinement states, e.g. states

with an internal transport barrier (ITB). Therefore, we are interested in the generation and sat-

uration of intrinsic parallel flows in negative compressibility turbulence (e.g., ITG turbulence)

absent magnetic shear. It has long been known that a finite parallel flow shear ∇V∥ can enhance

ITG turbulence in sheared magnetic fields [MD88]. However, the detailed question of how the

mean flow gradient, ∇V∥, and its perturbation, δV ′
∥, affect flow generation and saturation in ITG

turbulence in a straight field remains unanswered.

The generation of intrinsic flows is analogous to a heat engine (Fig. 1.3). Initially driven

by the free energy source (e.g., ∇n for drift wave turbulence), the turbulence energy is coupled

to both azimuthal (zonal) flow and axial flow. Due to its turbulence-driven origin, the axial flow
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must necessarily be coupled to the azimuthal mean flow. A theoretical framework [HDT] has

been proposed to account for the interaction between these two secondary shear flows. However,

how to precisely predict what the branching ratio between axial and azimuthal flows remains

unknown. Therefore, further studies on how energy is apportioned among the turbulence, az-

imuthal and axial mean flows are of interest. The dominant branch will have a larger turbulent

drive and set the turbulence level through a predator–prey type interaction with turbulent inten-

sity field.

Besides the branching ratio question, the axial and azimuthal flows can interact with

each other directly. For a coupled drift–ion acoustic wave system, a zonal flow can arise from

the parallel flow compression due to the effects of acoustic coupling [WDH12a]. Especially,

when the parallel flow shear is strong enough to trigger parallel shear flow instability (PSFI),

the enhanced fluctuating parallel flow compression can act as a source for zonal flow. This

mechanism of zonal flow generation differs from conventional models (which depend on the

potential vorticity (PV) flux) and has not been tested experimentally. The axial flow shear may

also be affected directly by its azimuthal counterpart. In the presence of a finite magnetic shear,

the Er ×B flow shear breaks parallel symmetry and generates a parallel residual stress ΠRes
rz ,

which accelerates the axial flow Vz. The effects of azimuthal flows on axial flow generation at

zero magnetic shear also remain unclear.

1.4 Organization of chapters

In this thesis, we focus on the mechanism that breaks the spectral symmetry and gen-

erates intrinsic axial flows in CSDX. We propose a novel symmetry breaking mechanism to

generate intrinsic parallel flows in drift wave turbulence without requiring magnetic shears. This

new theoretical finding motivates detailed measurements of symmetry breaking in the micro-

scopic turbulence and how the spectral asymmetry drives macroscopic axial flows in CSDX.
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These measurements confirm the new theory of intrinsic axial flow generation. In addition, we

study the interaction of intrinsic axial and azimuthal flows in CSDX. We also investigate the

saturation of zonal flows in absence of frictional drags.

In Chapter 2, we study the generation of intrinsic axial flows in drift wave turbulence.

The observed intrinsic axial flows in CSDX raises the question of what generates the intrinsic

axial flow. We seek to understand what breaks the k∥ → −k∥ symmetry absent magnetic shear.

In Chapter 3, we study the generation and saturation of intrinsic parallel flows without

magnetic shear in the context of ITG turbulence. In particular, we focus on how negative com-

pressibility turbulence, e.g. ITG turbulence, affects momentum transport at zero magnetic shear.

The question of how axial flow shear saturates in ITG turbulence is addressed. We also discuss

the stiffness of ∇V∥ profile when plotted vs. ∇Ti0.

In Chapter 4, we investigate the interaction of intrinsic azimuthal and axial flows in

CSDX. We compute the production branching ratio, i.e., the fraction of axial Reynolds power

relative to azimuthal Reynolds power. We also show the effects of azimuthal flow shear on the

generation and saturation of intrinsic axial flows.

In Chapter 5, we study the phenomenology of intrinsic axial flow and its interaction with

azimuthal flows in CSDX. Since the azimuthal (zonal) flow and intrinsic axial flow compete for

turbulence energy, the focus is on the interaction of axial and azimuthal flows. Relevant theory

and reduced models are also discussed.

The question of what saturates zonal flows absent frictional drag is discussed in Chap-

ter 6. Special focus is on how wave–flow resonance regulates the zonal flow saturation in the

frictionless regime and in near-marginal turbulence.

We conclude this thesis by summarizing the results and discussing future direction in

Chapter 7.
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Chapter 2

Dynamics of Intrinsic Axial Flows in

Unsheared, Uniform Magnetic Fields

2.1 Introduction

Toroidal rotation of plasma is beneficial to both macrostability, e.g. the mitigation or

stabilization of resistive wall modes [RHS+06], and microstability, by suppressing turbulence

via toroidal shear flows that contribute to E ×B shear flows. Plasma rotation and the underly-

ing toroidal angular momentum transport were intensively first studied because neutral beam

injection (NBI) was the heating method of choice for tokamaks. Given the fact that unbalanced

NBI naturally drives toroidal rotation, and along with the experimental observation that the ion

momentum and thermal diffusivities were comparable (χφ ∼ χi) [SDF+90], toroidal momentum

transport was thought to be diffusive and comparable to the ion heat transport. However, the

discovery of the non-diffusive character of toroidal momentum transport in the JFT-2M tokamak

[IMM+95] disrupted that overly simple understanding of the toroidal rotation. The paradigm

shift was finally triggered by the observation of intrinsic core rotation in the Alcator-C-Mod

tokamak, for both Ohmically heated and ion cyclotron resonance frequency driven plasma dis-
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charges [RLM+04, LRH+05]. Here, intrinsic rotation means plasma rotation without NBI drives

or external wave momentum torque, i.e. self-accelerated rotation. Given the benefits of plasma

rotations, the intrinsic rotation is particularly favorable for the International Thermonuclear Ex-

perimental Reactor (ITER) where NBI driven rotation is not feasible.

The discovery of intrinsic rotation has elicited interest in the nondiffusive flux (pinch

and residual stress) of toroidal momentum which can accelerate the central plasma rotation

[DKG+13a]. The momentum pinch, which redistributes the toroidal momentum, contributes

little to rotation generation [PAB+11, ACC+12]. Hence, the Reynolds stress has the generic

form

⟨ṽrṽφ⟩ ∼=−χφ
∂⟨vφ⟩

∂r
+ΠRes

rφ . (2.1)

The residual stress is driven by the background turbulence, i.e. ΠRes
rφ = ΠRes

rφ (∇n0,∇Ti,e), and

can accelerate the plasma from rest via the intrinsic torque τ = −∂rΠRes
rφ . The process that the

profile gradients drive intrinsic rotations via the residual stress is analogous to a car engine which

converts heat flux into the motion of wheels [KDG10a]. ΠRes
rφ is also a counterpart of the poloidal

residual stress that accelerates poloidal flow [YXD+10a]. The turbulent diffusion of toroidal

momentum is also driven by the ambient background turbulence, i.e. χφ = χφ(∇n0,∇Ti,e). Thus,

as a result of the balance between ΠRes
rφ and χφ, the rotation profile steepens as a secondary effect

of the free energy sources (∇n0, ∇Ti,e). If the rotation profile steepens enough to drive a tertiary

instability, i.e. parallel shear flow instability (PSFI) [MD88, RSK04], then ∇⟨v∥⟩ will act as

an additional drive for the turbulent viscosity, i.e. χφ = χφ,1(∇n0,∇Ti,e)+χPSFI
φ (∇⟨v∥⟩). As a

consequence, the intrinsic rotation profile is relaxed by the additional viscosity driven by ∇⟨v∥⟩

because ⟨vφ⟩′ ∼ ΠRes
rφ /(χφ,1 +χPSFI

φ ). This is somewhat analogous to the zonal flow saturation

by tertiary instability (Fig.2.1) [DIIH05b].

Usually, the toroidal rotation is driven by the parallel residual stress ΠRes
r∥ that emerges

from ⟨ṽrṽ∥⟩. ΠRes
r∥ is determined by the spectral correlator ⟨kθk∥⟩ ≡ ∑k kθk∥|φk|2 which requires

symmetry breaking, i.e. spectral imbalance in k space [GDHS07a, GDH+10a, MDGH09]. Con-
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Figure 2.1: Primary, secondary, and tertiary effects of free energy sources on (a) intrinsic
rotation and (b) zonal flow.

ventional mechanisms for symmetry breaking are summarized in [DKG+13a]. Most of them are

tied to correlating k∥ and kθ via magnetic shear, i.e. k∥ = kθx/Ls where Ls ≡ ŝ/Rq is the magnetic

shear length and x is the distance between the mode center and the rational surface. Ultimately,

the correlator is determined by the spatial distribution of the intensity, i.e. ⟨kθk∥⟩= k2
θ⟨x⟩/Ls.

Conventional symmetry breaking mechanisms, and thus models of intrinsic rotation, re-

quire finite magnetic shear. However, residual stress reversal is observed in computer simula-

tions at weak magnetic shear [LWD+15]. Moreover, experimental results suggest that a control

knob for intrinsic rotation is the magnitude of safety factor q0 rather than the magnetic shear

[RPR+13]. Recently, intrinsic parallel flows were observed in a linear device with uniform

magnetic field (zero magnetic shear), the Controlled Shear Decorrelation Experiment (CSDX)

(Fig.2.2) [TBC+14b]. Some of the correspondence between CSDX and tokamaks is summa-

rized in Table 2.1, more of which can be found in [CAT+16]. Because neutral gas, as the fuel,

is injected radially from the side wall, there is no external source of axial momentum, and so

the observed axial flow is intrinsic. In addition, mean axial flow profile steepens during a global

transition triggered for a critical axial magnetic field [CAT+16]. Meanwhile, the steepening of
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Table 2.1: Correspondence between the linear device, CSDX and tokamaks.

Tokamaks CSDX
Most have sheared magnetic field Uniform axial magnetic field (shear-

free)
Intrinsic toroidal rotation Intrinsic axial flow
Rotation boundary condition set by
SOL

Axial flow boundary condition set
by boundary neutral layer

∇⟨vz⟩ tracks that of ∇n0 [HLT+16]. This is consistent with that the intrinsic axial momentum

transport is driven by electron drift wave turbulence.

The observed intrinsic axial flows in CSDX raises two questions: 1) what generates the

intrinsic axial flow; 2) what determines the mean axial flow profile? Intrinsic toroidal flows

are driven by the residual axial stress ΠRes
rz , which requires spectral symmetry breaking. How-

ever, conventional symmetry breaking mechanisms don’t apply to CSDX due to the uniform

magnetic field there, i.e. zero magnetic shear. Motivated by these observations, in this paper,

we propose a new dynamical symmetry breaking mechanism which doesn’t require a specific

magnetic field structure. In this model, we consider a drift wave system with weakly nonadi-

abatic electrons (ñe/n0 = (1− iδ)φ̃ with 0 < δ ≪ 1) in presence of finite axial flow shear. By

dynamical symmetry breaking, we mean that a small but finite perturbation to the mean axial

flow profile can break the symmetry and the resulting turbulence spectral imbalance sets a finite

residual stress. The residual stress driven intrinsic flow then adds to the initial flow profile pertur-

bation. Therefore, the flow profile perturbation is self-amplified via a closed feedback loop, as

in a modulational instability. The residual stress gives rise to a momentum flux with a negative

diffusivity, ΠRes
rz ∼ |χRes

φ |⟨vz⟩′, inducing a negative increment (−|χRes
φ |) to the ambient turbulent

viscosity (χφ). Hence, the dynamical symmetry breaking is essentially a negative viscosity phe-

nomenon. The growth of axial flow shear by the dynamical symmetry breaking is analogous to

the modulational growth of zonal flow shear [DIIH05b].

The mean axial flow can be driven by an axial ion pressure drop and is enhanced by

14



Figure 2.2: (a) Sketch of axial plasma flow in CSDX in analogy to (b) turbulent pipe flow.

the negative viscosity. As shown in Fig.2.2, the helicon source on the left end of the cylinder

makes the nearby plasma hotter than the plasma near the endplate, thus giving rise to an axial

ion pressure drop, ∆Pi = Pi
∣∣
Source −Pi

∣∣
Endplate. Hence, in analogy to the turbulent hydrodynamic

pipe flows, the axial plasma flow in a linear device is driven by ∆Pi and dissipated by the total

viscosity, consisting of both the ambient turbulent viscosity and the negative viscosity increment

induced by the residual stress, i.e. ⟨vz⟩′ ∼ ∆Pi/(χφ − |χRes
φ |). Therefore, with external excitation

(e.g. ∆Pi), a total negative viscosity is not needed to generate axial flows, and ⟨vz⟩′ is enhanced

by −|χRes
φ |. In addition, boundary conditions must be considered to determine the mean flow

profile [AGG+13]. In CSDX, the boundary layer is dominated by neutral flows (Fig.2.2). The

outer region of the cylindrical plasma is only partially ionized, and the neutral momentum is

coupled to the plasma momentum via the ionization and recombination processes within the

boundary layer. Thus, the neutral dynamics in the boundary layer plays a role in the boundary

conditions for the plasma flow in the center.

Driven by electron drift wave turbulence with no requirement for magnetic field ge-
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Table 2.2: Compare and contrast the dynamical symmetry breaking with conventional symme-
try breaking mechanisms.

ometry, the dynamical symmetry breaking is applicable to intrinsic rotation in flat q regions

[MAC+11a, dVRG+06] where conventional models fail, as well as to intrinsic rotation in plas-

mas where the electron channel (and thus CTEM) is dominant. Also, a total negative viscosity,

as well as the underlying modulational growth of test flow shear, is not needed to generate intrin-

sic rotation at normal magnetic shears, because the residual stress determined by conventional

symmetry breaking mechanisms can accelerate the plasma. Therefore, the profile gradient of

intrinsic toroidal rotation is enhanced by the negative viscosity induced by the dynamical sym-

metry breaking, i.e. ⟨v∥⟩′ ∼ ΠRes
r∥ /(χφ − |χRes

φ |).

To summarize, the new dynamical symmetry breaking mechanism discussed here is out-

side the domain of conventional models of residual stress. The contrast and comparison are

summarized in Table 2.2. The dynamical symmetry breaking is different in two ways: (1) Intrin-

sic flow is generated by the self-amplification of a test or seed flow shear. This process is driven

fundamentally by ∇n0, i.e. as in a modulational instability of drift waves, similar to the modu-

lational growth of zonal flow shear. (2) Instead of an intrinsic torque that accelerates the flow,
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the dynamical symmetry breaking mechanism yields a residual stress which induces a negative

increment to the ambient turbulent viscosity that enhances the mean flow profile gradient.

The rest of this paper is organized as follows: Sec.5.2 introduces the derivation of the

drift wave system coupled to axial flow fluctuations in the weakly nonadiabatic limit; Sec.2.3

discusses the dynamical symmetry breaking mechanism; Sec.2.4 elaborates the negative viscos-

ity induced by the residual stress; the total axial flow structure is calculated and discussed in

Sec.2.5; Sec.2.6 gives the implications for tokamaks of dynamical symmetry breaking; Sec.6.4

summarizes and discusses the results.

2.2 Physics Model

We consider a system consisting of electron density, electron axial momentum, charge

balance, and plasma axial flow in cylindrical geometry where magnetic field is uniform in the

axial direction:
Dñe

Dt
+vE ·∇n0 +n0

∂ṽe

∂z
= 0, (2.2)

men0
D
Dt

ṽe = en0
∂φ̃
∂z

− ∂p̃e

∂z
−νeimen0ṽe, (2.3)

∇⊥ · j⊥ =−∂ jz
∂z

, (2.4)

D
Dt

ṽz +vE ·∇⟨vz⟩=−∂p̃e

∂z
. (2.5)

Here, D/Dt ≡ ∂t + vE ·∇ is the convective time derivative and vE = ẑ×∇φ̃ is the E ×B drift

velocity. In the following analysis, it is convenient to normalize the quantities as follows: ñ ≡

ñe/n0, φ̃ ≡ eφ̃/Te, length ≡ length/ρs, t ≡ t/ωci, ṽz ≡ ṽz/cs, where cs ≡
√

Te/mi is the ion

acoustic speed, ωci ≡ eB/mi is the ion cyclotron frequency, and ρs ≡ cs/ωci. The perpendicular

current is set by the polarization current j⊥ =−n0
D
Dt ∇⊥φ̃, while the axial current is jz = n0(ṽz−
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ṽe). Thus, the electron flow is cancelled by subtracting Eq.(2.4) from Eq.(6.1)

D
Dt
(
ñ−∇2

⊥φ̃
)
+

1
Ln

1
r

∂φ̃
∂θ

+
∂ṽz

∂z
= 0, (2.6)

where Ln ≡ −(d lnn0/dr)−1 is the density profile gradient length. Ion pressure fluctuation is

neglected in the flow equation, since p̃i ≪ p̃e. In the presence of a finite mean axial flow shear

⟨vz⟩′, the axial flow momentum equation becomes

D
Dt

ṽz −⟨vz⟩′
1
r

∂φ̃
∂θ

=−∂ñ
∂z

, (2.7)

where the thermal fluctuations of electrons are ignored, such that p̃e = Teñ. To close the system,

the electron density fluctuation needs to be evaluated. The electron response is nearly adiabatic,

i.e. ñ = (1− iδ)φ̃ with δ ≪ 1, given by Eq.(6.1)(2.3). The electron axial momentum is damped

by electron-ion collisions. With the electrons in the thermal equilibrium state νei ≫ ω, the

inertia term in Eq.(2.3) can be neglected. As a consequence, the electron current is driven by the

nonadiabatic electrons

ṽe =−
v2

The
νei

∂
∂z
(
ñ− φ̃

)
. (2.8)

In the weakly nonadiabatic limit, 1 < k2
z v2

The/(νeiωk)< ∞. Plugging the electron current into the

electron density equation, the nonadiabatic electron response is then given by

δ ∼=
νei(ω∗ −ωk)

k2
z v2

The
, (2.9)

where ω∗ ≡ kθρscs/Ln is the electron drift frequency. In the weakly nonadiabatic limit, 0< δ≪ 1.

For adiabatic electrons, k2
z v2

The/(νeiωk) → ∞, then δ → 0 and ñ → φ̃. Finally, we arrive at the

drift wave system with weakly nonadiabatic electrons coupled to the axial flow fluctuations

D
Dt

(1− iδ−∇2
⊥)φ̃+

1
Ln

1
r

∂φ̃
∂θ

+
∂ṽz

∂z
= 0, (2.10)
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D
Dt

ṽz −⟨vz⟩′
1
r

∂φ̃
∂θ

=−(1− iδ)∂φ̃
∂z

, (2.11)

with δ given by Eq.(2.9). This system gives two instabilities: electron drift wave instability

and parallel shear flow instability (PSFI). The electron drift wave is unstable in the presence of

nonadiabatic electrons and is driven by ∇n0. Next, we’ll briefly discuss the PSFI in the presence

of nearly adiabatic electrons.

PSFI is driven by ∇⟨vz⟩ and is essentially a negative compressibility phenomenon. The

dispersion relation for the coupled system Eq.(6.2)(2.11) is

1+ k2
⊥ρ2

s − iδ− ω∗
ω

+
kθkzρscs⟨vz⟩′

ω2 − (1− iδ)
k2

z c2
s

ω2 = 0, (2.12)

where 0 < δ ≪ 1 in the weakly nonadiabatic limit. As a quadratic equation of ω, Eq.(4.10) gives

unstable solution when the mean flow shear ⟨vz⟩′ exceeds a critical value

⟨vz⟩′crit =
1

kθkzρscs

[
ω2
∗(1+ k2

⊥ρ2
s )

4[(1+ k2
⊥ρ2

s )
2 +δ2]

+ k2
z c2

s

]
, (2.13)

such that the discriminant is negative. If the drift wave branch is neglected, the dispersion

relation Eq.(4.10) supports a modified ion acoustic wave

ω2 ∼ γeffk2
z c2

s (2.14)

with the effective compressibility of the axial flow as:

γeff =
1

1+ k2
⊥ρ2

s

(
1− kθ⟨vz⟩′

kzωci

)
. (2.15)

When the axial flow shear is large enough such that the compressibility becomes negative, the

modified ion acoustic wave is driven unstable. Therefore, the PSFI is driven by negative com-

pressibility.

19



With the coupled drift wave system in the weakly nonadiabatic limit, next, we’ll show

how this system breaks the spectral symmetry of the drift wave turbulence.

2.3 Dynamical Symmetry Breaking

Consider the axial flows in a linear cylindrical plasma. The dynamics of the mean axial

flow is governed by

∂⟨vz⟩
∂t

+
∂⟨ṽrṽz⟩

∂r
=− 1

ρ0

∂Pi

∂z
−νni(⟨vz⟩−⟨vz,n⟩). (2.16)

The mean ion pressure drops in the axial direction due to the axially inhomogeneous ion temper-

ature (Fig.2.2) and thus can drive a mean flow ⟨vz⟩, even though its fluctuation was neglected in

the fluctuation equation of axial flow. While ∆Pi drives the axial flow in the center region, the

boundary layer is controlled by the collisional coupling between plasma flows (⟨vz⟩) and neutral

flows (⟨vz,n⟩). The generic form of the Reynolds stress is given by

⟨ṽrṽz⟩=−χφ
∂⟨vz⟩

∂r
+ΠRes

rz . (2.17)

The momentum pinch is ignored because (1) there is no toroidal effect in the linear device,

where the magnetic fields lines are straight and uniform, and (2) the pinch effect is responsible

for redistribution of the axial momentum but not for generation.

To calculate the Reynolds stress ⟨ṽrṽz⟩, linearize Eq.(2.11) to get the linear response

for the axial velocity fluctuation ṽz, and ṽr is the fluctuation of the radial E ×B velocity. The

quasilinear Reynolds stress is then determined by the cross phase between ṽr and ṽz,

⟨ṽrṽz⟩=−∑
k

|γk|
ω2

k
k2

θρ2
s |φk|2⟨vz⟩′+∑

k

(
|γk|
ω2

k
+

δ
ωk

)
kθkzρscs|φk|2, (2.18)

20



where γk and ωk arise from the drift wave system. The residual stress (the second term in

Eq.(2.18)) is determined by the correlator, i.e. ΠRes
rz ∼ ⟨kθkz⟩ ≡ ∑k kθkz|φk|2 which requires

spectral imbalance, due to correlated ṽr and ṽz flucturations.

The coupled system described by Eq.(6.2)-(2.11) is controlled by drift wave modes when

⟨vz⟩′ is below the PSFI threshold. This drift wave dominated system is unstable due to nonadia-

batic electrons (which set the cross phase between electron density perturbation and electrostatic

potential perturbation). Specifically, the linear growth rate is set by the weakly nonadiabatic

electron density perturbation as

γk ∼= ω∗δ/(1+ k2
⊥ρ2

s )
2, (2.19)

given by the dispersion relation Eq.(4.10) with the ion-acoustic branch neglected. With δ given

by Eq.(2.9), the linear growth rate of the collisional drift wave is then set by the frequency shift

from the electron drift frequency

γk ∼=
νei

k2
z v2

The

ω∗(ω∗ −ωk)

(1+ k2
⊥ρ2

s )
2 . (2.20)

The frequency of the system is controlled by the electron drift frequency with a shift set by the

mean axial flow shear

ωk ∼=
ω∗

1+ k2
⊥ρ2

s
− kθkzρscs⟨vz⟩′

ω∗
. (2.21)

Consequently, the full expression for the growth rate is

γk ∼=
νei

k2
z v2

The

ω2
∗

(1+ k2
⊥ρ2

s )
2

(
k2
⊥ρ2

s

1+ k2
⊥ρ2

s
+

kθkzρscs⟨vz⟩′

ω2
∗

)
. (2.22)

With ∇n0 as the free energy source, a finite mean axial flow shear can break the symmetry

of the background drift wave turbulence. For a flat mean axial flow profile, i.e. ⟨vz⟩′ = 0, the

growth rate given by Eq.(5.12) is symmetric for kz →−kz. The resulting turbulence spectrum is
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Figure 2.3: Spectral imbalance in kθkz space.

consequently expected to be symmetric in k space, giving ΠRes
rz ∼ ⟨kθkz⟩ = 0. The momentum

diffusion is also zero for the flat mean flow profile. Therefore, the mean axial flow profile is

stationary and stays flat. However, a small but finite perturbation to the mean flow profile, e.g.

δ⟨vz⟩′ > 0, breaks the symmetry of the background turbulence. With larger linear growth rates,

modes with kθkz > 0, whose frequencies shift further away from ω∗, grow faster than the other

modes. The drift wave turbulence intensity is then unbalanced in kθkz space (Fig.2.3). Hence,

kθ and kz are correlated by the spectral imbalance, and so form a finite residual stress, since

ΠRes
rz ∼ ⟨kθkz⟩> 0. This residual stress amplifies the initial test flow shear, closing the feedback

loop for the self-amplification of test flow shear (Table 2.2).

Given the drift wave instability in the background and the spectral imbalance result-

ing from the symmetry breaking, the Reynolds stress can be calculated. The first term in the

Reynolds stress Eq.(2.18) is a diffusive axial momentum flux, with the turbulent viscosity

χφ ∼= ∑
k

νei

k2
z v2

The

k2
⊥ρ2

s

1+ k2
⊥ρ2

s
k2

θρ2
s |φk|2. (2.23)

This turbulent viscosity is driven by the ambient background turbulence. So for the drift wave tur-

bulence dominated case, χφ is driven primarily by ∇n0. Additionally, as will be discussed later,

the PSFI will enter when ⟨vz⟩′ > ⟨vz⟩′crit. Then, the turbulent viscosity is driven by both den-

sity gradient and the mean flow gradient, i.e. χφ = χDW
φ (∇n0)+χPSFI

φ (∇⟨vz⟩)Θ(⟨vz⟩′ − ⟨vz⟩′crit),

where Θ(x) is a Heaviside step function, acting as a switch for the onset of PSFI driven turbu-
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lence.

The off-diagonal flux in Eq.(2.18) is the residual stress

ΠRes
rz

∼= ∑
k

νei

k2
z v2

The
(2+ k2

⊥ρ2
s )

[
k2
⊥ρ2

s

1+ k2
⊥ρ2

s︸ ︷︷ ︸
1

+
kθkzρscs⟨vz⟩′

ω2
∗︸ ︷︷ ︸

2

]
kθkzρscs|φk|2. (2.24)

ΠRes
rz is dominated by term 1 when ⟨vz⟩′ is below the PSFI threshold. Hence, in the presence of

a finite test axial flow shear, the spectral imbalance in Fig.2.3 gives rise to the residual stress

ΠRes
rz = sgn(δ⟨vz⟩′) ∑

{k+}

νei

k2
z v2

The
(2+ k2

⊥ρ2
s )

k2
⊥ρ2

s

1+ k2
⊥ρ2

s
|kθkz|ρscs∆Ik(δ⟨vz⟩′), (2.25)

where ∆Ik(δ⟨vz⟩′) = |φk|2|{k+}− |φk|2|{k−} accounts for the spectral imbalance. On account of

the symmetry breaking term in the growth rate Eq.(5.12), the residual stress has the same sign as

δ⟨vz⟩′. Moreover, ΠRes
rz depends explicitly on the mean axial flow shear via term 2 in Eq.(4.18)

as well as via the spectral imbalance. Term 2 ∼ ∑k k2
θ/ω2

∗|φk|2δ⟨vz⟩′ = L2
n ∑k |φk|2δ⟨vz⟩′ doesn’t

require symmetry breaking and enters in the form of a negative diffusion. Therefore, a negative

viscosity increment is induced by the residual stress.

It should be noted that the dependence of residual stress upon δ⟨vz⟩′ cannot be absorbed

by the diffusive component of the Reynolds stress for 3 reasons: (1) the magnitude of residual

stress is dominated by term 1 of Eq.(4.18) which is independent of δ⟨vz⟩′; (2) the spectral

imbalance is induced via both linear growth and nonlinear saturation of modes, so ∆Ik(δ⟨vz⟩′)

and thus ΠRes
rz are essentially nonlinear in δ⟨vz⟩′; (3) even the term linear in δ⟨vz⟩′ results in

a negative diffusive flux rather than a positive, downgradient diffusion. The induced negative

viscosity can give rise to the modulational growth of the test flow shear, as will be shown in the

next section.
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Figure 2.4: Modulational growth of the test flow shear. (a) Perturbation to the axial flow profile
is self-amplified by the modulational instability driven by residual stress induced negative vis-
cosity −|χRes

φ (∇n0)|. (b) The test flow shear is amplified into a macroscopic profile. (c) When
the axial flow shear hits the PSFI threshold, the additional χPSFI

φ (∇⟨vz⟩) relaxes the flow profile,
keeping ⟨vz⟩′ at or below ⟨vz⟩′crit.

2.4 Negative Viscosity

The dynamical symmetry breaking mechanism is essentially the self-amplification of

test flow shear, driven by drift wave turbulence, which is similar to the modulational growth of

zonal flow shear. In this section, the growth and saturation of the test flow shear are considered.

The modulational growth of the test flow shear is illustrated by the cartoon in Fig.2.4. The

dynamics of the test flow shear is a diffusion process with the turbulent viscosity as the effective

diffusivity. We will show that the residual stress induces a negative increment to the ambient

turbulent viscosity. Thus, the total viscosity is χtot
φ = χφ − |χRes

φ |. When |χRes
φ | is strong enough

such that the total viscosity becomes negative, the test flow shear will grow until the flow shear

hits the PSFI threshold given by Eq.(4.13). Then, the additional turbulent viscosity induced by

PSFI turbulence makes the total viscosity positive and stops the growth of the test flow shear.

⟨vz⟩′crit thus sets an effective upper limit for the profile gradient of axial flow.

The dynamics of the test flow shear can be derived from Eq.(2.16)

∂δ⟨vz⟩′

∂t
+

∂2

∂r2

(
−χφδ⟨vz⟩′+δΠRes

rz
)
= 0. (2.26)
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Without the perturbed residual stress, the dynamics of the test flow shear is a diffusion process

with the flow shear flux Γδ⟨vz⟩′ = −χφ∂rδ⟨vz⟩′. Next, we’ll show that the residual stress due to

the perturbed axial flow shear induces a momentum flux with a negative diffusivity. The test

flow shear flux is then modified by the negative increment of momentum diffusivity.

To do this, we begin by calculating the perturbed residual stress. Given by Eq.(2.18), the

residual stress explicitly depends on the flow shear through the growth rate and the frequency.

Moreover, the turbulence intensity depends on the flow shear because of the spectral imbalance

induced by ⟨vz⟩′. Therefore, it is convenient to write the turbulence intensity in terms of the wave

action density, which is, by definition, Nk ≡ εk/ωk. Here, the wave energy of the electron drift

wave is εk =
1
2(1+ k2

⊥ρ2
s )

2|φk|2 [WDH12b]. Consequently, the perturbed residual stress due to

the test flow shear can be written as δΠRes
rz = δΠRes

rz (δγk,δωk,δNk) . The perturbed growth rate

and perturbed frequency are calculated directly from Eq.(2.21)-(5.12), while the perturbed wave

action density due to the axial flow profile perturbation is calculated as follows.

The wave action density Nk ≡ εk/ωk is essentially the population of waves with wave

number k. Its dynamics is governed by the wave kinetic equation

∂Nk

∂t
+ vgr

∂Nk

∂r
− ∂

∂r
(ωk +k ·V)

∂Nk

∂kr
= γkNk −∆ωk

N2
k

N0
. (2.27)

We separate the perturbation, due to test flow shear, from the slowly varying mean wave action

density, i.e. Nk = δNk + ⟨Nk⟩. The linearized equation for δNk is then

∂δNk

∂t
+δvgr

∂⟨Nk⟩
∂r

− ∂
∂r

δ(ωk +k ·V)
∂⟨Nk⟩

∂kr
= γkδNk +δγk⟨Nk⟩−2∆ωkδNk. (2.28)

The convection by the wave packet motion vanishes because

δvgr

δ⟨vz⟩′
=

δ(∂ωk/∂kr)

δ⟨vz⟩′
= 0,
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where only the linear frequency shift is considered. Ignoring the zonal flow effects, since there

is no coupling between kθ and kz by geometry, the refraction term becomes

∂
∂r

δ(ωk +k ·V)
∂Nk

∂kr
=

(
∂δωk

∂r
+ kzδ⟨vz⟩′

)
∂⟨Nk⟩

∂kr
. (2.29)

The shearing of the frequency perturbation is calculated from Eq.(2.21)

∂δωk

∂r
= kzδ⟨vz⟩′

(
L2

n
n0

∂2n0

∂r2 −1
)
. (2.30)

Thus, the perturbation to the refraction term is driven by the density profile curvature

δ
{

∂
∂r

(ωk +k ·V)
∂Nk

∂kr

}
= kzδ⟨vz⟩′

L2
n

n0

∂2n0

∂r2
∂⟨Nk⟩

∂kr
. (2.31)

Here, we consider the drift wave turbulence with finite ∇n0, so the effect of ∂n0/∂r is dominant

over that of ∂2n0/∂r2, and thus the above curvature driven term (Eq.2.31) can be neglected.

Therefore, δNk is driven by the linear growth and nonlinear self-interaction of drift waves

∂δNk

∂t
= γkδNk +δγk⟨Nk⟩−2∆ωkδNk. (2.32)

The steady state perturbation is then given by

δNk =
δγk

2∆ωk − γk
⟨Nk⟩, (2.33)

where the decorrelation rate ∆ωk ∼= γk is determined by the steady state equilibrium, ⟨Nk⟩. Finally,

with the perturbed growth rate calculated from Eq.(5.12), the perturbed wave action density due

to the test flow shear is

δNk =
1+ k2

⊥ρ2
s

k2
⊥ρ2

s

kθkzρscsδ⟨vz⟩′

ω2
∗

⟨Nk⟩. (2.34)
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Thus, the perturbed residual stress due to the test flow shear takes the form of a negative

diffusive flux of axial momentum

δΠRes
rz ≡−χRes

φ δ⟨vz⟩′, (2.35)

with the negative viscosity

χRes
φ =−νeiL2

n
v2

The
∑
k
(1+ k2

⊥ρ2
s )(4+ k2

⊥ρ2
s )|φk|2 (2.36)

related to ΠRes
rz by dynamical symmetry breaking. Therefore, the test flow shear dynamics is a

diffusion process
∂δ⟨vz⟩′

∂t
− ∂2

∂r2 χtot
φ δ⟨vz⟩′ = 0, (2.37)

where the total viscosity

χtot
φ = χφ − |χRes

φ | (2.38)

consists of both the ambient turbulent viscosity and the negative viscosity induced by the residual

stress. Thus, an axial flow shear modulation is either damped or growing without oscillation,

with growth rate given by

γq =−q2
r χtot

φ (2.39)

where qr is the radial wave number of the modulation. When the negative viscosity is large

enough that the total viscosity becomes negative, the axial flow shear modulation is unstable,

which means a small perturbation to the mean flow profile can be amplified. This is analogous

to the modulational growth of zonal flow shears [DIIH05b].

However, the test flow shear cannot grow forever. The mean axial flow profile gradient is

limited by the PSFI threshold Eq.(4.13). When the flow shear hits ⟨vz⟩′crit, an additional turbulent

viscosity χPSFI
φ driven by ∇⟨vz⟩ is induced. Moreover, being nonlinear in the flow shear, χPSFI

φ is
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large enough to make the total viscosity positive, since

χtot
φ = χDW

φ +χPSFI
φ Θ

(
⟨vz⟩′ −⟨vz⟩′crit

)
− |χRes

φ |, (2.40)

so that the modulational growth of the test flow shear stops. In this way, the PSFI threshold given

by Eq.(4.13) sets an upper limit for the mean flow shear driven by the modulational growth, and

the total viscosity is kept positive.

To summarize, a test, or seed, sheared axial flow is amplified by the negative viscosity

induced by the residual stress. In particular, when the induced negative viscosity is larger than

the ambient turbulent viscosity such that the total viscosity becomes negative, the test shear is

then amplified to form a macroscopic profile by the modulational instability. The axial flow

profile gradient is limited by the PSFI threshold. Also, the total viscosity stays positive due to

the PSFI induced turbulent viscosity. Moreover, the total viscosity given by Eq.(2.40) is driven

by both ∇n0 (which drives χDW
φ and −|χRes

φ |) and ∇⟨vz⟩ (which drives χPSFI
φ when PSFI switches

on). This makes χtot
φ different from familiar eddy viscosities. In particular, χtot

φ can give rise to

the self-amplification of a test flow shear and also limit this modulational growth.

2.5 Mean Flow Structure

The turbulent plasma flow in a cylindrical chamber is similar to a turbulent pipe flow

(Fig.2.2), with a point-by-point comparison listed on Table 2.3. The turbulent hydrodynamic

pipe flow is driven by axial pressure drop due to pumping power, and dissipated by the turbulent

viscosity driven by the background hydrodynamic turbulence. By balancing the local momentum

input (∆P) and momentum diffusion (⟨ṽrṽz⟩ ∼−νT ⟨vz⟩′), the flow gradient is obtained as ⟨vz⟩′ ∼

−∆P/νT . The flow vanishes at the boundary due to the frictional force by the wall, which sets

the boundary condition as no-slip. In a linear plasma device like CSDX, axial plasma flow

can always be driven by the axial pressure drop ∆Pi. Therefore, the axial flow does not need
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Table 2.3: Comparison and contrast between hydrodynamic pipe flow and plasma flow in a
cylinder.

Pipe flow Plasma flow

Drive Pressure drop ∆P Ion pressure drop ∆Pi

Boundary
condition

No slip wall Set by neutral flows within boundary layer, located near the
wall

Viscosity νT χDW
φ (∇n0)+χPSFI

φ (∇⟨vz⟩)Θ(⟨vz⟩′ − ⟨vz⟩′crit)− |χRes
φ (∇n0)|

a negative viscosity for generation. However, by the dynamical symmetry breaking, the axial

flow gradient can be enhanced by the negative viscosity increment induced by the residual stress.

Hence, an intrinsic axial flow is generated, enhancing the axial flow driven by ∆Pi. Also, for

plasma flow, the total viscosity depends on both ∇n0 and ∇⟨vz⟩.

The boundary condition of the plasma flow is controlled by the neutral layer at the edge

where the gas is partially ionized, which thus heavily involves the neutral flow dynamics. Mean-

while, the neutral momentum is coupled to the plasma momentum through ionization and recom-

bination processes, so the boundary condition for the plasma flow is ultimately set by the neutral

flows in the boundary layer. In this section, boundary conditions and their effects on the flow

profile are discussed.

The axial flow profile is given by the ion momentum balance for the turbulent plasma

axial flow, as shown in Fig.2.2. The ion pressure drop in the axial direction due to heating at the

source end is balanced by the momentum out flux through the side wall, as determined by the

Reynolds stress

πR2∆Pi = ρ0⟨ṽzṽr⟩2πRL.

Here, R and L are the radius and the length of the cylindrical plasma tube, respectively, and ρ0

is the mean plasma density. The Reynolds stress consists of both the diffusive axial momentum

flux driven by the ambient turbulent viscosity and the residual component that induces a negative
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viscosity increment by the dynamical symmetry breaking

⟨ṽzṽr⟩ ∼=−
[
χDW

φ +χPSFI
φ Θ(⟨vz⟩′ − ⟨vz⟩′crit)− |χRes

φ |
]
⟨vz⟩′.

As a consequence, the mean axial flow profile is

⟨vz⟩′ ∼=− R∆Pi

2ρ0L
[
χDW

φ +χPSFI
φ Θ(⟨vz⟩′ −⟨vz⟩′crit)− |χRes

φ |
] . (2.41)

The total viscosity that balances the pressure drop sets an upper limit for the flow shear through

its dependence upon the mean flow profile, via the PSFI effect. When the axial flow profile

steepens such that the axial flow shear exceeds ⟨vz⟩′crit (given by Eq.4.13) and the PSFI switches

on, the resulting turbulent viscosity χPSFI
φ adds to the existing viscosity as a positive increment.

The enhanced dissipation level then relaxes the flow profile, so that the mean axial flow profile

gradient stays below or at the PSFI threshold.

Boundary conditions are important to determine the axial flow profile. By integrating

Eq.(2.16), the net axial flow evolution is

∂
∂t

∫ R

0
dr⟨vz⟩=

∫ R

0
dr

∆Pi

ρ0L
−⟨ṽrṽz⟩

∣∣∣∣
R
. (2.42)

The momentum flux at the center r = 0 is neglected because both components of the Reynolds

stress are driven by the profile gradients, which vanish at the center. Momentum transfer between

ions and neutrals cancels and makes no contribution to the net flow. Eq.(2.42) shows the radial

flux of axial momentum at the boundary is a sink of the net axial flow, and the axial pressure drop

in the center region is a source. If there is no momentum source/sink, the flow profile should

be reversed because the net momentum is conserved (Fig.2.5). However, it is not clear if flow

reversal occurs in CSDX [TBC+14b], and the net axial flow is always positive [CAT+16]. This

is due to the small momentum flux (because of the no-slip wall condition) at the boundary and
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Figure 2.5: Mean flow profile for different boundary conditions. (a) No external source/sink.
(b) No slip at wall, i.e. momentum flux is zero at the boundary; axial flow is driven by ion
pressure drop in the axial direction. (c) With some momentum flux at the wall while axial ion
pressure drop dominated, flow profile is reversed with positive net flow.

the existence of axial ion pressure drop. Axial flow is small at the boundary due to the frictional

force by the wall, so ṽz
∣∣
R
∼= 0 and thus ⟨ṽrṽz⟩

∣∣
R
∼= 0. As a consequence, ∆Pi driven axial flow in

the central region (outer region is dominated by neutral flows) raises the net flow magnitude. To

calculate the axial flow profile, integrate Eq.(2.41) to get

⟨vz(r)⟩= ⟨vz(R)⟩+
∫ R

r
dr

R∆Pi

2ρ0Lχtot
φ
. (2.43)

The plasma momentum is coupled to the neutral momentum within the boundary layer. There

is no momentum loss during ionization and recombination processes, since the plasma source

mostly heats electrons. Therefore, within the boundary layer near the wall (rb < r < R),

⟨vz⟩ ∼= ⟨vn,z⟩. (2.44)

For the neutral flows within the boundary layer, the outer boundary is set by the frictional wall

condition, as in a no-slip boundary condition. Assuming the width of the boundary layer is small
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compare to Ln, the plasma flow is approximately no-slip at the boundary, i.e.

⟨vz(R)⟩ ∼= 0. (2.45)

With the no-slip boundary condition, the axial flow profile is

⟨vz(r)⟩=
∫ R

r
dr

R∆Pi

2ρ0Lχtot
φ
, (2.46)

which gives rise to a positive net flow driven by the ion pressure drop in axial direction. However,

if the boundary condition is not strictly no-slip–i.e. with positive momentum out-flux at the

boundary (e.g. momentum loss due to ion-neutral coupling within the boundary layer)–then the

flow profile can reverse near the wall region. Therefore, to obtain a physical boundary condition

for the plasma flow, the details of the coupled ion and neutral dynamics need to be considered

within the boundary layer. This is left to future work.

2.6 Implication for Tokamaks

The dynamical symmetry breaking mechanism does not require a particular magnetic

field structure, so it may help understand intrinsic rotations with flat q profile or weak magnetic

shear. Recent computational studies discover an intrinsic torque reversal at weak magnetic shear

[LWD+15]. Moreover, experimental results suggest that the control knob for intrinsic rotation

is the magnitude of q0, rather than magnetic shear [RPR+13]. Both of them can be addressed

using the dynamical symmetry breaking scheme which is independent from magnetic shear.

We propose a synergy of the conventional residual stress (linked to magnetic shear) and

the residual stress induced negative viscosity by dynamical symmetry breaking. For tokamaks

with normal magnetic shears, the total viscosity doesn’t need to become negative to generate

intrinsic flow, because the intrinsic rotation can be generated by residual stress determined by
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conventional models. However, the flow dissipation consists of both the ambient turbulent vis-

cosity and the negative viscosity induced by the dynamical symmetry breaking. Then, the mean

rotation profile is given by
d⟨v∥⟩

dr
=

ΠRes
r∥

χTurb
φ − |χRes

φ |
. (2.47)

Thus, the negative viscosity increment enhances the rotation profile independent of the magnetic

field structure. Also, the rotation profile gradient is limited by the PSFI threshold. When ⟨v∥⟩′

hits the PSFI threshold, the additional turbulent viscosity driven by PSFI can raise the total

viscosity and thus relaxes the rotation profile, since

d⟨v∥⟩
dr

=
ΠRes

r∥

χTurb
φ +χPSFI

φ Θ(⟨v∥⟩′ − ⟨v∥⟩′PSFI)− |χRes
φ |

. (2.48)

As a result, the rotation profile gradient can be expected to stay at or below the PSFI threshold.

Therefore, the dynamical symmetry breaking mechanism is applicable to the intrinsic rotation at

weak magnetic shear. In addition, as the dynamical symmetry breaking uses a simple model of

electron drift wave turbulence, this mechanism can be used to understand the intrinsic rotation

in burning plasmas where the turbulence is the CTEM turbulence [GBH+01, GSG+02], and to

address the effect of ECRH on toroidal rotation[SKK+13, MAD+11].

2.7 Conclusion and Discussion

In this paper, we propose a new dynamical symmetry breaking mechanism for the gen-

eration of intrinsic axial flows in linear devices with uniform magnetic field. Specifically, in a

simple drift wave system in the presence of finite axial flow shears, a test, or seed, flow shear

can be self-amplifying. The linear growth rate of the drift wave instability is set by the fre-

quency shift from the electron drift frequency. A test axial flow shear breaks the symmetry by

shifting the frequencies of some classes of modes further away from ω∗ than others. As a con-
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sequence, the unbalanced turbulence spectrum couples kθ and kz, giving rise to a finite residual

stress ΠRes
rz ∼ ⟨kθkz⟩. This residual stress amplifies the initial test flow shear by inducing a neg-

ative increment to the ambient turbulent viscosity. Thus, this mechanism is essentially one of

negative viscosity. When the negative viscosity induced by residual stress is large enough such

that the total viscosity becomes negative, the flow shear modulation is unstable and is amplified

by modulational instability. When the axial flow shear exceeds ⟨vz⟩′crit and triggers PSFI, the

additional turbulent viscosity by PSFI nonlinearly saturates the ⟨vz⟩′ growth. The flow profile

will then be relaxed by χPSFI
φ . Hence, the axial flow shear will stay at or below ⟨vz⟩′crit. Also,

the total viscosity given by this model is driven by not only ∇n0 but also ∇⟨vz⟩ due to the PSFI

contribution, distinguishing from the standard models of eddy viscosity.

The growth of the test flow shear is analogous to the modulational growth of zonal flow

shear. Additionally, the nonlinear saturation by PSFI–a tertiary instability–is similar to the zonal

flow saturation by tertiary instability. However, despite these similarities, parallel flow cannot

trivially couple to zonal flow via geometry in the linear device, due to the absence of magnetic

shear. The simple coupled drift wave system studied here can convert parallel compression ∇∥ṽ∥

into zonal flow [WDH12b], indicating coupling between parallel flow and zonal flow by drift

wave turbulence. Thus, zonal flow may play a role in the intrinsic axial flow and the intrinsic

toroidal rotation via the parallel flow-zonal flow coupling. This is left to future work.

The self-amplification of test flow shear is energy conserving. Though there is a pressure

drop in the axial direction, its direct effect is weak and is amplified by dynamical symmetry

breaking. Thus, the axial flow is mainly driven by the background drift wave turbulence. The

process of energy transferring between fluctuation and mean axial flow can be illustrated by

multiplying the flow fluctuation, mean flow, density fluctuation, mean density, and vorticity

equations by ṽz, ⟨vz⟩, ñe, ⟨n⟩, φ, respectively and integrating them over the space:

∂
∂t

∫ ṽ2
z

2
dV =−

∫
⟨ṽrṽz⟩

∂⟨vz⟩
∂r

dV −
∫

ṽz
∂p̃e

∂z
dV, (2.49)
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∂
∂t

∫ ⟨vz⟩2

2
dV =

∫
⟨ṽrṽz⟩

∂⟨vz⟩
∂r

dV, (2.50)

∂
∂t

∫ ñ2
e

2
dV =−

∫
⟨ñeṽr⟩

∂⟨n⟩
∂r

dV −
∫

ñe
∂ṽe,z

∂z
dV, (2.51)

∂
∂t

∫ ⟨n⟩2

2
dV =

∫
⟨ñeṽr⟩

∂⟨n⟩
∂r

dV, (2.52)

∂
∂t

∫
(∇⊥φ)2

2
dV =−

∫
φ

∂(ṽz − ṽe,z)

∂z
dV, (2.53)

where the flow drive by ion pressure drop is neglected since it is weak. By adding them up, we

can obtain the energy conservation in the weakly non-adiabatic limit (i.e. ñe ∼ φ)

∂
∂t

∫ ñ2
e +(∇⊥φ)2 + ṽ2

z + ⟨vz⟩2 + ⟨n⟩2

2
= 0, (2.54)

where p̃e ∼= Teñe has been used. By keeping track of the couplings between fluctuations and

mean profiles in the above system, we can see that energy is coupled in the following progression:

⟨n⟩ → ñe → ∇⊥φ (which is ṽE×B) → ṽz → ⟨vz⟩. Specifically, energy is coupled from ṽz to ⟨vz⟩

via the axial Reynolds power PRes
z ≡ ⟨ṽrṽz⟩∂r⟨vz⟩. Thus, it is clear that Reynolds work coupling

conserves energy.

In linear device, the axial flow is driven by ion pressure drop in the axial direction and

is damped by the total viscosity χtot
φ = χDW

φ +χPSFI
φ Θ(⟨vz⟩′ − ⟨vz⟩′crit)− |χRes

φ |. The flow profile

gradient stays below the PSFI threshold due to the nonlinear saturation by χPSFI
φ . The net axial

flow has a source driven by the axial ion pressure drop in the central region and a sink set by

the momentum out flux at the wall. Boundary conditions for the plasma flows are determined

by neutral flow dynamics within the boundary layer via ion-neutral coupling. In this paper,

flow profiles (a) with no drive by ion pressure drop or momentum flux at the wall, (b) with

ion pressure drop and no-slip wall boundary condition, and (c) with both ion pressure drop and

momentum loss at the boundary are calculated and discussed respectively. Flow profiles strongly

depend on the boundary condition. Future work on the neutral dynamics within the boundary
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layer will provide a physical boundary condition for the plasma flow, and will thus lead to a

better understanding on the global momentum budget and axial flow structure in linear devices.

For tokamaks, a synergy of conventional models for residual stress and the negative vis-

cosity by dynamical symmetry breaking is proposed. The dynamical symmetry breaking doesn’t

require complex magnetic field structure, so it is also applicable to intrinsic rotations in tokamaks.

The negative viscosity reduces the total flow damping and thus enhances the intrinsic rotation

profile gradient. In particular, the dynamical symmetry breaking works in flat q regimes, so is

significant for controlling transport through the q profile. Also, using only a simple model of

electron drift waves, this new model for residual stress can be applied to intrinsic rotation in

burning plasmas with CTEM turbulence. Moreover, the dynamical symmetry breaking mecha-

nism is also relevant to intrinsic rotation of ECH heated plasmas [SKK+13]. This mechanism

can enhance the effect of flow drive induced by ECH. For example, the ECH injection can induce

a residual stress, ΠRes via conventional symmetry breaking mechanisms and the flow gradient is

thus enhanced by the negative viscosity increment resulting from dynamical symmetry breaking,

i.e. ⟨v∥⟩′ ∼ ΠRes/(χφ − |χRes
φ |).

The dynamical symmetry breaking mechanism can be relevant to other types of turbu-

lence, like ITG. However, as only drift wave turbulence has been considered so far, the details

of the ITG case are unknown at this stage. Its study is planned for a future publication. We con-

jecture that a qualitatively similar feedback mechanism may still work in ITG turbulence. This

is because in ITG turbulence, the test flow shear enters the growth rate even without a frequency

shift, and ⟨v∥⟩′ enters via kθk∥ asymmetry. Further, for a kinetic theory of ITG instability, the ba-

sic non-adiabatic ion response is δ f ∼ {iL(ω−ω∗,i)|e|ϕ/Ti} f0, where L is a propagator. Hence,

the frequency shift effect can enter here, as well. However, whether this will give a negative

viscosity increment is unknown at this moment in time. We plan to address this question in a

future publication, the preparation of which is ongoing.

In a similar vein, the mechanism proposed in this paper can be relevant to flow reversals
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during LOC-SOC transition [RCD+11]. Intrinsic flow direction during the LOC-SOC transition

can be set by geometrical symmetry breakers, e.g. ⟨vE⟩′ and I′(x). However, our mechanism

enhances the flow profile gradient, via ⟨v∥⟩′ ∼ ΠRes/(χφ − |χRes
φ |). In LOC state, ⟨v∥⟩′ is en-

hanced by −|χRes
φ | as a result of dynamical symmetry breaking. In SOC state, however, it is

unclear about the effects on ⟨v∥⟩′ by other types of turbulence, and this will be left for a future

publication, as commented above.

The dynamical symmetry breaking is fundamentally different from the usual eddy tilting.

In the dynamical symmetry breaking model, flow shear directly affects the linear growth rate by

selecting some modes which grow faster, resulting in a spectral imbalance. Eddy tilting by ⟨vθ⟩′

in (r,θ) plane enters the correlator ⟨ṽrṽθ⟩ ∼ ⟨kθkr⟩ ∼ −⟨k2
θ⟩⟨vθ⟩′τc, resulting in an unambiguous

Reynolds work, and does not enter directly via stability. But in (r,z) plane, eddy tilting does not

work, because ∂tkz =−∂z(ω+ kz⟨vz⟩) = 0. In our case, the ⟨kθkr⟩ correlator couples differently

to the growth rate, for different ⟨kθkr⟩. Thus, our mechanism is fundamentally different from

eddy tilting.

Chapter 2 is a reprint of the material as it appears in J. C. Li, P. H. Diamond, X. Q. Xu,

and G. R. Tynan, “Dynamics of intrinsic axial flows in unsheared, uniform magnetic fields”,

Physics of Plasmas 23, 052311 (2016), American Institute of Physics. The dissertation author

was the primary investigator and author of this article.
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Chapter 3

Negative Viscosity from Negative

Compressibility and Axial Flow Shear

Stiffness in a Straight Magnetic Field

3.1 Introduction

Strong toroidal rotation and weak magnetic shear are desirable for enhanced confinement

in tokamaks. External drives for rotation, e.g. neutral beams, will be insufficient to assure MHD

stability [?] in future fusion devices, such as ITER. Thus, intrinsic rotation is of interest. Weak

or reversed magnetic shear has long been known to enhance microstability and confinement.

Studies on enhanced reversed shear [SBB+97], negative central shear [RTB+96], weakly neg-

ative shear [YHN+15], etc. reveal this trend. For example, de-stiffened states, with enhanced

confinement, were observed in the weak shear regime in JET [MAC+11a]. Therefore, intrinsic

rotation at weak magnetic shear is of particular interest. Intrinsic rotation can be generated by

background turbulence. Thus, in tokamaks, intrinsic rotation usually tracks the driving gradient

of turbulence [RHD+11a]. This also poses the question of how the flow gradient (∇Vφ) interacts
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with, and scales with, the driving gradient of turbulence (i.e. edge ion temperature gradient in

the case of Ref.[RHD+11a]).

The controlled shear de-correlation experiment (CSDX) is a cylindrical linear device

with uniform axial magnetic fields and turbulence driven intrinsic parallel flows. It offers a well-

diagnosed venue for the study of intrinsic flows in the shear-free regime [TBC+14b]. Since

most mechanisms for intrinsic parallel flow generation rely on magnetic shear [DKG+13a], a

new dynamical symmetry breaking mechanism was proposed to account for axial flow genera-

tion in CSDX. This mechanism does not require a specific magnetic field configuration, so it

can work in regimes with and without shear. Symmetry breaking is usually required to set a

preferred direction for the flow, i.e. a finite ⟨k∥⟩. The residual stress is determined by the correla-

tor ⟨kθk∥⟩ ≡ ∑k kθk∥|φk|2. Hence, asymmetry-specifically, handedness-in the turbulent spectrum

(|φk|2) is required to obtain a nonzero residual stress. In CSDX, where the turbulence is usually

a population of electron drift waves (EDWs), the growth/drive rate is determined by the drift

mode frequency shift relative to the electron drift frequency, i.e. γk ∼ ω∗e −ωk [LDXT16a].

A test flow shear (δV ′
∥) changes the frequency shift, setting modes with k∥kθδV ′

∥ > 0 to grow

faster than those with k∥kθδV ′
∥ < 0. Therefore, a spectral imbalance in k∥kθ space develops,

which sets a finite residual stress δΠRes
r∥ . The resulting residual stress drives an intrinsic flow,

and so reinforces the test flow shear. This self-amplification of δV ′
∥ is a negative viscosity phe-

nomenon. The residual stress induces a negative viscosity increment, i.e. δΠRes
r∥ ∼ |χRes

φ |δV ′
∥.

The basic scenario resembles that familiar from the theory of zonal flow generation [DIIH05b].

The flow shear modulation (δV ′
∥) becomes unstable when the total viscosity χTot

φ = χφ − |χRes
φ |

turns negative. Therefore, δV ′
∥ can be self-reinforced via modulational instability. When the

flow profile gradient steepens enough, so that the parallel shear flow instability (PSFI) is turned

on, the mean flow gradient (∇V∥) saturates at the PSFI linear threshold and the total viscosity

stays positive, due to the contribution induced by PSFI, i.e. χTot
φ = χDW

φ + χPSFI
φ − |χRes

φ |. In

CSDX, the PSFI linear threshold grows as |V ′
∥|crit/|k∥cs|∼ (k∥Ln)−2 [LDXT16a, KII15], where
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Ln ≡−(∂r lnn0)−1. Therefore, the flow gradient tracks the turbulence driving gradient (i.e. ∇n0)

as ∇V∥/|k∥cs| ∼ |V ′
∥|crit/|k∥cs| ∼ (k∥Ln)−2. This scaling motivates us to wonder if there is a

generalized form of the Rice-type scaling [RICd+07a, RHD+11a].

CSDX has straight magnetic fields, and thus is an important limiting case for understand-

ing flow generation at zero shear. While existing models of axial flow generation in CSDX

are based on EDW turbulence, fluctuations propagating in the ion drift direction are observed

[CAT+16]. Such ion features appear in the central region of the cylindrical plasma in CSDX,

where the density profile is flat. In addition, turbulence driven by the ion temperature gradient

(ITG) controls momentum transport in tokamaks operated in enhanced confinement states, e.g.

states with an internal transport barrier (ITB). Also, intrinsic rotation tracks the edge temperature

gradient [RHD+11a]. These trends beg the questions:

1. How does negative compressibility turbulence, e.g. ITG turbulence, affect momentum

transport at zero magnetic shear? Particularly, what happens in flat density limit?

2. How does ∇V∥ saturate in ITG turbulence?

3. With tokamaks in mind, how does this new mechanism interact with conventional mecha-

nisms which exploit magnetic shear? What is the interplay of ∇V∥ and ∇Ti0?

It has long been known that a finite parallel shear flow (PSF) ∇V∥ can enhance ITG turbulence in

sheared magnetic fields [MD88]. However, the detailed question of how the mean flow gradient,

∇V∥, and its perturbation, δV ′
∥, affect flow generation and saturation in ITG turbulence in a

straight field remains unanswered.

In this paper, we study the effects of ITG turbulence on momentum transport in a straight

magnetic field. In the regime well above the ITG stability boundary, a perturbation to the flow

profile, δV ′
∥, can reduce the turbulent viscosity. δV ′

∥ breaks the symmetry by allowing modes with

kθk∥δV ′
∥ > 0 to grow faster than modes with kθk∥δV ′

∥ < 0. This results in a spectral imbalance in

kθk∥ space. The residual stress set by this spectral imbalance drives an up-gradient momentum
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Table 3.1: Compare δV ′
∥ induced symmetry breaking in ITG turbulence and electron drift wave

turbulence.

ITG Turbulence Electron Drift Wave
Direction of correlator ⟨kθk∥⟩δV ′

∥ > 0 ⟨kθk∥⟩δV ′
∥ > 0

Viscosity increment by δΠRes
r∥ χRes

φ < 0 χRes
φ < 0

Total viscosity χTot
φ > 0 χTot

φ can be negative
Modulational instability Not exist Can exist

flux which induces a negative viscosity increment, i.e. δΠRes
r∥ ∼ |χRes

φ |δV ′
∥ with χRes

φ < 0. Thus,

the total viscosity is reduced, since χTot
φ = χφ − |χRes

φ |. The mean flow gradient driven by ITG

turbulence is consequently steepened, since ∇V∥ ∼ ΠRes
r∥ /χTot

φ .

However, unlike the case of dynamical symmetry breaking in EDW turbulence, we show

that symmetry breaking induced by δV ′
∥ in ITG turbulence alone cannot amplify the seed flow

shear (δV ′
∥). Therefore, ITG turbulence cannot drive intrinsic flows in straight magnetic fields.

In ITG turbulence, the total momentum diffusivity χTot
φ remains positive, because |χRes

φ | = 1
3χφ.

The growth rate of a flow shear modulation is γq =−χTot
φ q2

r , where qr is the radial mode number

of the modulation. A positive definite χTot
φ does not induce modulational instability. This differs

from the case of EDW turbulence. Table 3.3 shows the comparison between symmetry breaking

in ITG and EDW turbulence.

The axial flow in CSDX can be driven by various external sources. The axial ion pressure

drop, induced by the location of the heating source on one end of the cylindrical plasma, can

drive an axial flow. Biasing the end plate can also accelerate axial ion flows by axial electric

fields.

The flow gradient produced by external or intrinsic drive ultimately must saturate due to

PSFI-induced relaxation. ∇V∥ can be enhanced by external drives, e.g. the axial ion pressure

drop and end plate biasing. When ∇V∥ is stronger than the ion temperature profile gradient (∇Ti0),

PSFI drive controls the turbulence. Here, the relative strength between ∇Ti0 and ∇V∥ is measured

by the relative length scale LT/LV ≡ ∂r lnV∥/∂r lnTi0. In turbulence controlled by PSFI, both the

41



residual stress and turbulent viscosity depend nonlinearly on ∇V∥. As a result, the flow gradient

saturates above the linear threshold of PSFI and the saturated ∇V∥ grows with ∇Ti0. This implies

a ”stiff” ∇V∥ profile. An aim of this paper is to calculate the scaling ∇V∥/k∥cs ∼ (k∥LT )−α of

this stiffness.

The scaling of the ∇V∥ profile stiffness reveals the final state of the nonlinear interaction

between ∇V∥ and ∇Ti0. It should be noted that PSFI co-exists with ITG turbulence. Their relative

strength depends on LT/LV . Because ∇V∥ and ∇Ti0 are coupled nonlinearly, they don’t simply

add up. However, PSFI can be distinguished from ITG instability (at least in simulation) by

comparing their mode phases. The mode phase is defined as

θk ≡

⎧
⎪⎨

⎪⎩

tan−1(γk/ωk), ωk > 0;

π+ tan−1(γk/ωk), ωk < 0.

Here, γk and ωk are the growth rate and real frequency of the mode. PSFI has zero frequency,

which means θPSFI
k = π/2, while the ITG mode phase is usually θIT G

k = 2π/3. The theoretical

concept of mode phase is related to the cross phase between flow fluctuations, ṽ∥ and ṽr, and thus

can be measured in experiments, at least in principle. Also, since mode phase affects Reynolds

stress ⟨ṽ∥ṽr⟩, intrinsic flow profiles are sensitive to the mode phase.

Comparison between symmetry breaking in EDW and ITG turbulence drives us to won-

der if flow reversal is possible in CSDX by a change in turbulence population from EDW to ITG?

More generally, can the idea that mode change leads to flow reversals [RCD+11] be tested by

basic experiments? The flow profile in CSDX is determined by the ratio between the axial ion

pressure drop ∆Pi and the total turbulent viscosity [LDXT16a], i.e. V∥ ∼
∫ a

r dr∆Pi/χTot
φ where

a is the plasma radius in CSDX. In EDW, though χTot
φ can turn negative at least transiently, it

is finally forced positive by PSFI saturation. In ITG turbulence, χTot
φ is positive definite, since

|χRes
φ | = 1

3χφ. Therefore, there would be no argument for flow reversal in the final state, even

though fluctuation or reversal may occur as a transient. Also, one can argue that flow reversal,
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even if it exists in CSDX, does not track the change in turbulence from EDW to ITG.

We neglect the momentum pinch effect in this work. In addition to the diffusive and

residual components, the parallel Reynolds stress can have a momentum pinch term that is pro-

portional to the flow magnitude. Since the momentum pinch is usually due to toroidal effect in

tokamaks [HDGR07, PAB+11, ACC+12], it is neglected in this work, where we study linear

devices that have straight and uniform magnetic fields. In general, the momentum pinch is of

the turbulent equipartition variety, and so |Vpinch|/|χφ| ∼ 1/R0, where R0 is the major radius

of the tokamak. This is explained as a toroidal effect. It is possible to also have Ln scalings,

i.e. |Vpinch|/|χφ| ∼ 1/Ln, in certain parameter regimes. However, since this analysis does not

treat self-consistent evolution of density profiles, we decided to omit a discussion of this rather

sensitive, detailed effect.

The rest of this paper is organized as follows: Sec.5.2 introduces the fluid model of

the PSF–ITG system in a straight magnetic field. Sec.3.3 discusses the three regimes that we

consider in this work. Sec.3.4 summarizes the structure of results. Sec.3.5 presents results on

mode phase, symmetry breaking, and flow profile in each regime. Finally, Sec.6.4 summarizes

and discusses the results.

3.2 Fluid Model for PSF–ITG System

We consider a system where the ion temperature gradient (∇Ti0) is coupled to the flow

gradient (∇V∥), i.e. a coupled PSF–ITG system of potential vorticity, q̃ = (1−∇2
⊥)φ, paral-

lel flow, v∥ = ṽ∥+V∥, and ion pressure, pi = p̃i +P0, with zero magnetic shear in cylindrical

geometry:
d
dt
(1−∇2

⊥)φ+vE · ∇n0

n0
+∇∥ṽ∥ = 0, (3.1)

dṽ∥
dt

+vE ·∇V∥ =−∇∥φ−∇∥ p̃i, (3.2)
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d p̃i

dt
+

1
τ

vE · ∇P0

P0
+

Γ
τ

∇∥ṽ∥+∇∥Q∥ = 0. (3.3)

Here, lengths are normalized by ρs ≡
√

miTe0/(eB0), time is normalized by the ion cyclotron

frequency ω−1
ci , velocities are normalized by the ion sound speed cs ≡

√
Te0/mi, and the elec-

trostatic potential is normalized as φ ≡ eϕ̃/Te0. The convective derivative is defined as d/dt ≡

∂/∂t + vE · ∇, where vE = B0 × ∇φ/B0 is the E × B velocity. The kinetic effect of Landau

damping is retained by including the parallel heat flux, with Hammett-Perkins closure Q∥,k =

−χ∥n0ik∥T̃i,k. Here, the (collisionless) parallel heat conductivity is χ∥ = 2
√

2vT hi/(
√

π|k∥|), and

vT hi is the ion thermal speed. The ratio of specific heats is Γ = 3 in this model. The electron

response is adiabatic, corresponding to Boltzmann electrons, i.e. ñ = φ. Hence, p̃i = T̃i + φ/τ,

with the temperature ratio defined as τ ≡ Te0/Ti0. Since the ion features exist in the center of

CSDX where density profile is flat, we take ∇n0 = 0 throughout. Thus, the mean pressure gradi-

ent consists of only temperature gradient, i.e. ∇P0 = ∇Ti0. The linear dispersion relation for the

PSF–ITG system is

AΩ3 − (C0 −V ′)Ω−D+
i|k∥|χ∥

cs

(
AΩ2 +V ′ − 1+ τ

τ

)
= 0, (3.4)

with Ω≡ω/|k∥cs|, V ′ ≡ kθk∥ρscsV ′
∥/k2

∥c2
s ,A≡ 1+k2

⊥ρ2
s , C0 ≡ 1+(1+k2

⊥ρ2
s )Γ/τ, D≡ωT/τ|k∥cs|.

ωT is defined as ωT ≡−kθρscs∂r lnTi0. In a linear device, such as CSDX, τ > 1, so |k∥|χ∥/cs ∼

1/
√

τ < 1. Thus, terms involving i|k∥|χ∥/cs will be neglected.

∇Ti0 and ∇V∥ are coupled nonlinearly, because either ∇Ti0 or ∇V∥ can drive instability,

by forcing

∆ ≡
(

D
2A

)2
−
(

C0 −V ′

3A

)3
> 0. (3.5)

The growing mode has growth rate and frequency:

γk =

√
3

2
|k∥cs|

(
3

√
D
2A

+
√

∆− 3

√
D
2A

−
√

∆

)
, (3.6)
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ωk =−1
2
|k∥cs|

(
3

√
D
2A

+
√

∆+ 3

√
D
2A

−
√

∆

)
. (3.7)

In the following sections, we will see that in presence of a shear flow V ′
∥, modes with kθk∥V ′

∥ > 0

grow faster than others. Therefore, we take V ′ ≡ kθk∥V ′
∥/k2

∥c2
s > 0.

The underlying instability drive is negative compressibility. Both ITG instability and

PSFI are negative compressibility phenomena. Negative compressibility means an increase in

density (compression in volume) leads to decrease in pressure. For the system studied here, the

relation between the pressure perturbation and density perturbation is

p̃i ∼
(

Γ
τ

k2
∥c2

s

ω2
k
− Γ

τ
kθk∥ρscsV ′

∥

ω2
k

− ωT

τ|ωk|

)
ñ.

Here, we have used the adiabatic electron response ñ ∼ φk. The compressibility becomes neg-

ative when either of ITG instability or PSFI is above threshold. Note, ∇Ti0 and ∇V∥ can act in

synergy to turn the compressibility negative, driving the system unstable.

Though coupled nonlinearly, PSFI and ITG instability can be distinguished by different

mode phases. PSFI is a purely growing mode, so θk = π/2. This is because (for ∇Ti0 → 0), the

dispersion relation becomes

AΩ2 − (C0 −V ′) = 0, (3.8)

which gives a purely growing branch when V ′>V ′
crit ≡C0, with growth rate γk = |k∥cs|

√
(V ′ −C0)/A.

In contrast, ITG instability has a negative real frequency whose magnitude is comparable to the

growth rate. If ∇Ti0 (the term D) dominates the dispersion relation Eq.4.10, then the result-

ing ITG mode has complex frequency ω ∼ exp(i2π/3)[|ωT |k2
∥c2

s/(τA)]1/3, with mode phase

θk ∼= 2π/3.
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Figure 3.1: Regime defined by instability types and flow profile driven by the PSF–ITG turbu-
lence. The regimes are (1) marginal regime; (2) ITG regime; (3) PSFI regime; and (4) stable
regime. Parameters used for this plot are kθρs = 0.4 and the ratio of specific heats Γ = 3.

3.3 Instability Regimes

The nonlinear coupling between ∇V∥ and ∇Ti0 significantly increases the level of com-

plexity of calculating the residual stress and the flow profile. Therefore, we classify the PSF–

ITG system into three regimes (Fig.3.1), determined by length scales L−1
V ≡−∂r lnV∥ and L−1

T ≡

−∂r lnTi0:

1) The marginal regime is defined by ∆ ! 0, where PSFI and ITG instability co-exist, and

both of them are weakly unstable. Thus, ∇V∥ and ∇Ti0 are nonlinearly coupled in this

regime.

2) The ITG regime is where the system is well above the marginal state and ∇Ti0 contributes

more than ∇V∥ to the magnitude of ∆, i.e. (D/2A)2 > (V ′/3A)3 which leads to

L2/3
T

|k∥|1/3LV
<

cs

V∥

3
22/3

A1/3

(kθρs)1/3τ2/3 . (3.9)
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We show in Sec.3.5 that, in this regime, though a test flow shear δV ′
∥ induces a negative

viscosity contribution, the total viscosity is positive definite. Consequently, there is no

intrinsic flow driven by ITG turbulence in a straight field. This is quite different from the

case of EDW turbulence.

3) The PSFI regime is also well above the marginal state, but where ∇V∥ contributes more

than ∇Ti0 to instability drive, i.e.

L2/3
T

|k∥|1/3LV
>

cs

V∥

3
22/3

A1/3

(kθρs)1/3τ2/3 . (3.10)

This gives the regime boundary above which PSFI controls the turbulence:

|V ′
∥|reg =

3
22/3 A1/3

(
|ωT |

τ|k∥cs|

)2/3 |k∥|cs

kθρs
. (3.11)

External flow drives can enhance the flow profile gradient. Hence, ∇V∥ can exceed the

PSFI regime boundary (|V ′
∥|reg). PSFI is nonlinear in ∇V∥. Consequently, the turbulent

viscosity is nonlinear in ∇V∥, and so ∇V∥ saturates at |V ′
∥|reg which is above the linear

threshold of PSFI. Thus, there is a clear distinction between the threshold ∇V∥ profile and

the saturated-or ”stiff”-∇V∥ profile.

3.4 Structure of Results

In this section, we summarize the key aspects of results. We consider a) symmetry

breaking by δV ′
∥, b) mode phase, and c) flow profile in each of the three regimes. A test flow

shear δV ′
∥ can break the symmetry and induce a incremental viscosity via the residual stress, i.e.

δΠRes
r∥ =−χRes

φ δV ′
∥. The sign of χRes

φ is determined by the mode phase. Thus, χRes
φ has different

signs in PSFI and ITG turbulence. Finally, we need to calculate the flow profile, in order to
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Figure 3.2: Diagram of the three roles played by ∇V∥ in the PSF–ITG system.

explore possibilities about flow saturation in the context of negative compressibility turbulence,

i.e. ITG and PSFI turbulence. In the rest of the section, we discuss these three aspects in detail.

3.4.1 Symmetry Breaking by δV ′
∥

A perturbation to the flow profile, δV ′
∥, breaks the k∥ →−k∥ symmetry. ⟨kθk∥⟩ is linked to

δV ′
∥ via the acoustic coupling, ∇∥ṽ∥. In Sec.3.5, we will show that modes with kθk∥δV ′

∥ > 0 grow

faster than those without. This sets a spectral imbalance in kθk∥ space. Further, the finite residual

stress set by this imbalance is found to be a Fickian momentum flux, i.e. δΠRes
r∥ ∼ −χRes

φ ∇V∥.

The viscosity increment induced by residual stress then adds to the total viscosity, so that χTot
φ =

χφ +χRes
φ . Table 3.2 compares symmetry breaking in the three regimes.

3.4.2 Mode Phase

The sign of residual stress is determined by mode phase. Here, mode phase (θk) is defined

as the phase of the complex mode frequency, i.e. ω = ωk + iγk ≡ eiθk

√
ω2

k + γ2
k . Linearizing the

response of ṽ∥,k, we can obtain the quasilinear Reynolds stress [GDHS07a, GDH+10a]

⟨ṽ∥ṽr⟩=−χφV ′
∥+ΠRes

r∥ , (3.12)
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with the turbulent viscosity:

χφ ≈ ℜ∑
k

i
ω

k2
θρ2

s |φk|2, (3.13)

and residual stress:

ΠRes
r∥ ≈ ℜ∑

k

i
ω2

ωT

τ
kθk∥ρscs|φk|2, (3.14)

where ωT ≡ −kθρscs∂rTi0/Ti0. Here, ω ≡ ωk + iγk = |ω|eiθk is the complex mode frequency

with mode number k, and so i/ω ∼ ei(π/2−θk) and i/ω2 ∼ ei(π/2−2θk). Therefore, the sign of the

residual stress is determined by θk, as ΠRes
r∥ ∼ ⟨kθk∥⟩ℜ(i/ω2)∼ ⟨kθk∥⟩cos(π/2−2θk).

Mode phase also determines the sign of χRes
φ , i.e. the viscosity contribution induced by

residual stress. In presence of a test flow shear, δV ′
∥, the residual stress induces a momentum

flux, δΠRes
r,∥ =−χRes

φ δV ′
∥. The sign of χRes

φ is determined by both the mode phase and its change

due to δV ′
∥. The residual stress’ response to the test flow shear is

δΠRes
r,∥ ∼ −2∑

k
cos(

π
2
+δθk −3θk)

|δω|
|ω|3

ωT

τ
kθk∥|φk|2, (3.15)

where δθk is the phase of perturbed complex frequency due to δV ′
∥, i.e. δω ≡ |δω|exp(iδθk).

Since |δω|∼ kθk∥δV ′
∥, the sign of the residual stress-induced viscosity contribution is determined

by

χRes
φ ∼ cos

(π
2
+δθk −3θk

)
. (3.16)

ITG instability and PSFI have different mode phases, leading to different signs of χRes
φ . As a

result, δV ′
∥ has different effects on momentum transport in ITG and PSFI turbulence.

3.4.3 Flow Profile

Though pure ITG turbulence cannot drive intrinsic flows in straight field, ∇Ti0 affects

momentum transport, and thus can regulate the flow gradient. In CSDX, the axial flow can

be driven by the axial ion pressure drop. In order to uncover the ITG effect on the flow, we
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Table 3.2: Characteristics of the three PSF–ITG instability regimes. Mode phase is defined as
the phase of complex mode frequency, i.e. ω ≡ ωk + iγk ≡ |ω|eiθk . δθk is the phase of perturbed
complex frequency, δω, due to δV ′

∥. χRes
φ is the incremental viscosity induced by δV ′

∥. Since
PSFI is driven by ∇V∥ nonlinearly, δV ′

∥ effect is nonlinear, so we do not consider its linear
effects, i.e. δθk and χRes

φ .

Marginal Regime ITG Regime PSFI Regime
Primary Turbulence Drive ∇Ti0 and ∇V∥ ∇Ti0 ∇V∥
δV ′

∥ Induced Spectral Imbalance ⟨kθk∥⟩δV ′
∥ > 0 ⟨kθk∥⟩δV ′

∥ > 0 ⟨kθk∥⟩δV ′
∥ > 0

Mode Phase θk " π 2π/3 ! π/2
Perturbed Mode Phase δθk π/2 π/3 NA
Sign of χRes

φ χRes
φ > 0 χRes

φ < 0 NA

ignore the external sources in the following analysis. Consequently, the flow gradient within the

center region of CSDX can be obtained from ∇ ·Π = 0, where Π is the total momentum flux.

Considering only the parallel Reynolds stress, the flow profile gradient can be calculated from

∂r⟨ṽrṽ∥⟩= ∂r

(
ΠRes

r∥ −χφ∇V∥

)
= 0. (3.17)

The edge is accounted by boundary conditions for the flow. The flow profile depends heavily

on the boundary condition [LDXT16a, AGG+13]. The boundary layer in CSDX is controlled

by coupling between ions and neutral particles. Assuming the radial expansion of the boundary

layer is negligible compared to the plasma radius, we adopt a no-slip boundary condition for V∥.

As a result, the flow profile is V∥(r) =−
∫ a

r dr∇V∥, where a is the radius of plasma.

3.5 Results

In this section, we present results on mode phase, δV ′
∥ induced symmetry breaking, and

flow profile, for each of the three regimes.
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3.5.1 Marginal Regime

When the PSF–ITG system is weakly unstable, i.e. ∆ ! 0, PSFI and ITG turbulence

coexist. In this regime, ∇V∥ and ∇Ti0 are coupled nonlinearly, and a perturbation to the mean

flow profile raises the PSFI level and thus enhances the flow dissipation.

We can obtain the linear thresholds for ITG and PSFI turbulence. The PSF–ITG system

can be viewed as an ITG system in presence of ∇V∥. From the criterion Eq.3.5, ∇Ti0 can drive

instability with a threshold depending on ∇V∥

ω2
T,crit(∇V∥) =

4τ2k2
∥c2

s (C0 −V ′)3

27A
. (3.18)

In the marginal state, i.e. ω2
T ! ω2

T,crit, the growth rate and real frequency are

γk ∼=
√

3
3

|k∥cs|2/3

(2Aτ)1/3

√
ω2

T −ω2
T,crit

|ωT |2/3 , (3.19)

ωk ∼=−
|k∥cs|2/3|ωT |1/3

(2Aτ)1/3 . (3.20)

Meanwhile, the PSF–ITG system can also be viewed as a PSFI system modified by ∇Ti0. From

the criterion Eq.3.5, the PSFI threshold can be obtained, and is

|V ′
∥|crit =

|k∥cs|
kθρs

⎡

⎣C0 −3A1/3

(
|ωT |

2τ|k∥cs|

)2/3
⎤

⎦ . (3.21)

The growth rate, γk ∼
√

|V ′
∥|− |V ′

∥|crit depends nonlinearly on ∇V∥. ∇Ti0 enhances PSFI by

lowering the PSFI threshold. Therefore, in the marginal regime, PSFI and ITG instability coexist,

and one can view this weakly unstable turbulence in two equivalent ways: (1) ITG turbulence

modified by ∇V∥ and (2) PSFI turbulence modified by ∇Ti0.
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The residual stress and turbulent viscosity are

ΠRes
r∥

∼=−2
√

3
3 ∑

k

(2A)2/3

τ1/3|k∥cs|4/3

√
ω2

T −ω2
T,crit

|ωT |2/3 kθk∥ρscs|φk|2, (3.22)

χφ ∼=
√

3
3 ∑

k

(2Aτ)1/3

|k∥cs|2/3

√
ω2

T −ω2
T,crit

|ωT |4/3 k2
θρ2

s |φk|2. (3.23)

∇V∥ and ∇Ti0 are coupled nonlinearly in ΠRes
r∥ , via

√
ω2

T −ω2
T,crit. Therefore, ΠRes

r∥ cannot in

general be decomposed into the sum of a ∇Ti0 driven piece and a ∇V∥ driven piece. Here, it

is the frequency shift
√

ω2
T −ω2

T,crit which determines the instability and thus sets the residual

stress and χφ.

The residual stress requires symmetry breaking. A perturbation to the mean flow gradient,

δV ′
∥, breaks the k∥ →−k∥ symmetry. As shown by Eq.3.18, modes with kθk∥δV ′

∥ > 0 have lower

ω2
T,crit than others. Therefore, these modes grow faster because γk ∼

√
ω2

T −ω2
T,crit. As a result,

a spectral imbalance in kθk∥ space is induced. For example, for V ′
∥ < 0, modes in the kθk∥ < 0

domain have higher intensities. Therefore, the correlator is set to be ⟨kθk∥⟩ < 0. Further, the

residual stress is set by the spectral imbalance as

ΠRes
r∥

∼=
2
√

3
3 ∑

{k|kθk∥<0}

(2A)2/3

τ1/3|k∥cs|4/3

√
ω2

T −ω2
T,crit

|ωT |2/3 |kθk∥|ρscsIk(δV ′
∥), (3.24)

where Ik(δV ′
∥) ≡ |φk|2 − |φ−k|2 accounts for the turbulence intensity difference and so the sum-

mation is only over the domain where kθk∥ < 0.

This symmetry breaking mechanism induces a positive increment to the turbulent viscos-

ity. δV ′
∥ raises the PSFI level, and so enhances the turbulent viscosity. We consider the response

of ΠRes
r∥ in the presence of a test flow shear δV ′

∥. The perturbed complex mode frequency due to
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δV ′
∥ is

δω ∼= eiδθk

√
3

2C0

|k∥cs|2/3

(2Aτ)1/3

ω2
T,crit

|ωT |2/3
√

ω2
T −ω2

T,crit

kθk∥ρscsδV ′
∥

k2
∥c2

s
, (3.25)

with perturbed mode phase δθk = π/2. δθk is the same as PSFI mode phase, indicating that δV ′
∥

enhances PSFI turbulence. The mode phase in this regime can be obtained from the complex

frequency, which is

ω ∼= eiθk
|k∥cs|2/3

(2Aτ)1/3

√
4ω2

T −ω2
T,crit

√
3|ωT |2/3

, (3.26)

with mode phase θk = π−ε where ε ≡ arctan
√
(ω2

T −ω2
T,crit)/3ω2

T ! 0. As a result, the residual

stress in response to δV ′
∥ can be written as a diffusive momentum flux δΠRes

r∥ = −χRes
φ δV ′

∥ with

viscosity χRes
φ ∼ cos(π/2+ δθk − 3θk) = cos(3ε) > 0. This means the residual stress induces

a positive increment to the turbulent viscosity. Following the same calculation procedure as in

Ref.[LDXT16a], we can obtain the residual stress in terms of ∇V∥ and δV ′
∥, which is ΠRes

r∥ (∇V∥+

δV ′
∥) = ΠRes

r∥ (∇V∥)−χRes
φ δV ′

∥, with

χRes
φ

∼=
44/3

35/2 ∑
k

C2
0

A1/3
τ5/3

|ωT |2/3

k2
θρ2

s |k∥cs|2/3
√

ω2
T −ω2

T,crit

|φk|2. (3.27)

Therefore, δV ′
∥ enhances flow dissipation.

One can also consider the rise in flow dissipation in terms of parallel Reynolds power

density. The parallel Reynolds power density is defined as PR
∥ ≡ ⟨ṽrṽ∥⟩V ′

∥. It accounts for the

rate of energy coupled from fluctuations to mean parallel flow. When PR
∥ > 0, mean flow gains

energy from fluctuations, and vice versa. The perturbed Reynolds power due to δV ′
∥ is then

δPR
∥ =

(
−χφδV ′

∥+δΠRes
r∥

)
V ′
∥ = −

(
χφ +χRes

φ

)
V ′
∥δV ′

∥. Assuming δV ′
∥ has the same sign as V ′

∥,

χRes
φ > 0 increases the rate at which energy is coupled from mean flow to fluctuations. Thus,

flow dissipation is enhanced.

Though the marginal pure ITG turbulence cannot drive intrinsic flows in a straight field,
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it can influence the flow profile driven by external sources. The final flow profile set by ITG

turbulence can be obtained from Eq.5.18, which is ∇V∥ = ΠRes
r∥ /χφ. Because ∇V∥ and ∇Ti0 are

nonlinearly coupled via the frequency shift
√

ω2
T −ω2

T,crit, their effects on the residual stress

cannot be separated. However, the nonlinear dependence on ∇V∥ cancels, via the ratio between

ΠRes
r∥ and χφ. In order to see the flow profile’s scaling with ∇Ti0, the factors induced by symmetry

breaking effects are ignored. As a result, the estimated residual stress is

|ΠRes
r∥ |≈ 2

√
3

3 ∑
k

(2A)2/3

τ1/3|k∥cs|4/3

√
ω2

T −ω2
T,crit

|ωT |2/3 |kθk∥|ρscs|φk|2, (3.28)

which is an upper limit for ΠRes
r∥ since |∑k kθk∥|φk|2| ≤ ∑k |kθk∥||φk|2. The fluctuation intensity,

|φk|2, enters both ΠRes
r∥ and χφ, and so drops out of their ratio. Therefore, the parallel flow

gradient emerges as

|V ′
∥|=

|ΠRes
r∥ (∇V∥,∇Ti0)|

χφ(∇V∥,∇Ti0)
∼ 24/3A1/3

(
|ωT |

τ|k∥cs|

)2/3 |k∥|cs

kθρs
. (3.29)

The above scaling of ∇V∥ can be illustrated on a back-of-envelope level. Given by

Eq.3.13 and Eq.3.14, the ITG residual stress and turbulent viscosity scale as ΠRes
r∥ ∼ℜ(iωT/τω2)

and χφ ∼ ℜ(i/τω), where ω ≡ ωk + iγk is the complex mode frequency, and ωT ≡ kθρscs/LT

is the ion drift frequency. For ITG turbulence, γk ∼ |ωk| ∼ (|ωT |/τ)2/3. Therefore, the flow

gradient scales as ∇V∥ ∼ ΠRes
r∥ /χφ ∼ (|ωT |/τ)2/3|k∥cs|1/3.

3.5.2 ITG Regime

Now we consider ITG turbulence well above threshold (ω2
T ≫ω2

T,crit) with the ∇V∥ effect

as a first order correction. In this regime, a test flow shear δV ′
∥ induces a negative correction

to the viscosity. However, unlike the case of electron drift wave (EDW) turbulence, the total

viscosity in ITG turbulence is positive definite. Therefore, no intrinsic flow can be driven by
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ITG turbulence without symmetry breaking due to the magnetic configuration. The difference in

flow dissipations between EDW and ITG turbulence raises the quesiton: is flow reversal possible

in CSDX? Even though the answer seems to be negative, it suggests that speculations about flow

reversal can be tested in fundamental plasma experiments.

The residual stress can be obtained using the growth rate and frequency, which are

γk ∼=
√

3
2

|ωT |1/3|k∥cs|2/3

(τA)1/3

[
1−
(

ωT,crit

2|ωT |

)2/3
]
, (3.30)

ωk ∼=−1
2
|ωT |1/3|k∥cs|2/3

(τA)1/3

[
1+
(

ωT,crit

2|ωT |

)2/3
]
. (3.31)

The leading order complex mode frequency is

ω ∼= ei2π/3 |ωT |1/3|k∥cs|2/3

(τA)1/3 , (3.32)

with mode phase θk = 2π/3. Therefore, the residual stress and turbulent viscosity in this regime

are

ΠRes
r∥

∼=−
√

3
2 ∑

k

|ωT |1/3A2/3

τ1/3|k∥cs|4/3 kθk∥ρscs|φk|2, (3.33)

χφ ∼=
√

3
2 ∑

k

(τA)1/3

|ωT |1/3|k∥cs|2/3 k2
θρ2

s |φk|2. (3.34)

δV ′
∥ induces a negative viscosity increment. Similar to the case of marginal regime, the

residual stress is set by the spectral imbalance, which, given a flow shear δV ′
∥ < 0, is

ΠRes
r∥

∼=
√

3
2 ∑

{k|kθk∥<0}

|ωT |1/3A2/3

τ1/3|k∥cs|4/3 |kθk∥|ρscsIk(δV ′
∥). (3.35)
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The perturbed complex mode frequency due to a test flow shear δV ′
∥ is

δω = eiπ/3
(

τ
|ωT |

)1/3 kθk∥ρscsδV ′
∥

3A2/3|k∥cs|2/3 , (3.36)

with the perturbed mode phase δθk = π/3. Since ITG instability is well established (i.e. ω2
T ≫

ω2
T,crit), the test flow shear not only perturbs the growth rate, but also affects the real frequency.

Therefore, the perturbed mode phase carries features of both PSFI and ITG mode phases. Since

χRes
φ ∼ cos(3θk − δθk −π/2) = cos(5π/6) < 0, the residual stress induces a negative viscosity

increment, which is

χRes
φ =−

√
3

6 ∑
k

(τA)1/3

|ωT |1/3|k∥cs|2/3 k2
θρ2

s |φk|2. (3.37)

This negative viscosity increment reduces the rate of energy coupling from mean flow profile to

fluctuations, since the Reynolds power density due to δV ′
∥ in this case is δPRes

∥ =−
(

χφ − |χRes
φ |
)

V ′
∥δV ′

∥.

Therefore, δV ′
∥ reduces flow dissipation, and so can enhance the flow gradient, since ∇V∥ ∼

ΠRes
r∥ /χφ.

However, δV ′
∥ cannot self-amplify, though it induces a negative viscosity increment. The

dynamics of δV∥ is determined by ∂tδV ′
∥ = χTot

φ ∂2
r δV ′

∥, with growth rate γq = −q2
r χTot

φ . Here,

the total viscosity, χTot
φ = χφ − |χRes

φ |, is positive definite, because |χRes
φ | = 1

3χφ, which can be

obtained by comparing Eq.3.34 and Eq.3.37. Since χTot
φ > 0, the growth rate γq is negative,

so the flow shear modulation is damped. This is also shown by the Reynolds power density.

Since χTot
φ > 0, the Reynolds power density is negative, and thus energy is coupled from mean

flow profile to fluctuations, though at a reduced rate due to χRes
φ < 0. Table 3.3 summarizes the

comparison between δV ′
∥ induced symmetry breaking in ITG turbulence and electron drift wave

turbulence.

In order to calculate the flow profile, we need to eliminate the residual stress’ nonlinear-

ity in ∇V∥. In the ITG regime, ∇V∥ effects can decouple from ∇Ti0. This is because ∇Ti0 is

well above the stability boundary, and dominates over ∇V∥ in magnitude. Moreover, the resid-
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Table 3.3: Compare δV ′
∥ induced symmetry breaking in ITG turbulence and electron drift wave

turbulence. The total viscosity, χTot
φ = χφ +χRes

φ , determines the modulational growth rate of
δV ′

∥ which is γq =−χTot
φ q2

r with qr being the radial mode number of the shear modulation δV ′
∥.

ITG Turbulence Electron Drift Wave
Direction of correlator ⟨kθk∥⟩δV ′

∥ > 0 ⟨kθk∥⟩δV ′
∥ > 0

Viscosity increment by δΠRes
r∥ χRes

φ < 0 χRes
φ < 0

Total viscosity χTot
φ positive can be negative

Modulations stable can be unstable

ual stress induces an negative viscosity increment χRes
φ . Therefore, the residual stress can be

linearized as

ΠRes
r∥ (∇Ti0,δV ′

∥)≈ ΠRes
r∥ (∇Ti0)+ |χRes

φ (∇Ti0)|δV ′
∥. (3.38)

The up-gradient component results from the symmetry breaking by δV ′
∥.

The negative incremental viscosity χRes
φ induced by the residual stress regulates the trans-

port of mean flow. Therefore, in response to a mean flow gradient, the residual stress can in-

duce an up-gradient momentum flux, i.e. ΠRes
r∥ (∇Ti0,V ′

∥) ≈ ΠRes
r∥ (∇Ti0)+ |χRes

φ |V ′
∥. This leads

to Eq.3.39, which calculates the mean flow gradient. Such ”negative viscosity” phenomena are

well known in geophysical fluid dynamics and magnetized plasmas.

With ΠRes
r∥ (∇Ti0), χφ(∇Ti0) and χRes

φ (∇Ti0) given by Eq. 3.33, 3.34, and 3.37, the flow

gradient is

|V ′
∥|=

|ΠRes
r∥ (∇Ti0)|

χφ(∇Ti0)− |χRes
φ (∇Ti0)|

∼ 3
2

A1/3

(
|ωT |

τ|k∥cs|

)2/3 |k∥|cs

kθρs
. (3.39)

Eq.3.39 is an upper bound for the intrinsic V ′
∥ driven by ITG turbulence. Again, ∇V∥ follows the

general trend revealed by scalings of Eq.3.13 and Eq.3.14, i.e. ∇V∥ ∼ (|ωT |/τ)2/3|k∥cs|1/3.

Can there be flow reversal in CSDX, given the different effects of ITG and EDW turbu-

lence on momentum transport? In tokamaks, reversal refers to the phenomenon where the global

toroidal rotation profile spontaneously changes direction. The rotation direction flips when den-

sity increases and exceeds nsat , the critical density that triggers the transition from the linear
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ohmic confinement (LOC) to saturated ohmic confinement (SOC) regime. Also, hysteresis is

observed as density is ramped down and the rotation direction flips back. The LOC to SOC

transition is thought to be triggered by a change in turbulence population from trapped electron

mode (TEM) to ITG. Thus, it is speculated that the Ohmic reversal is due to a change in the sign

of ΠRes
r∥ triggered when the collisionality ν∗ > ν∗crit , which corresponds to n > nsat , tending to

drive the turbulence to ITG. Recent simulations show that a flip in the sign of ΠRes
r∥ can occur in

the weak shear regime [LWD+15].

One wonders if these speculations about flow reversal can be tested in basic plasma

experiments. The positive definite χTot
φ in ITG turbulence, in both weakly and strongly unstable

regimes, suggests that flow reversal-by a change in the mode type from electron drift wave

(EDW) to ITG-seems unlikely in CSDX. With no-slip boundary condition, the flow profile in

CSDX is calculated in Ref.[LDXT16a], which is

V∥ =
∫ a

r
dr

a∆Pi

2ρ0LχTot
φ

. (3.40)

Here, ∆Pi is the ion pressure drop in the axial direction induced by the plasma heating on one end

of the cylindrical tube. ρ0 is plasma density and L is axial length of the tube. When the major

mode type flips between EDW and ITG, the direction of pressure drop doesn’t change, so the

direction of flow depends on the sign of total viscosity, i.e. V∥ ∼ 1/χTot
φ . It should be noted that

in the realistic ITG regime of CSDX, the ITG residual stress may be weak, compared to external

flow drives. Thus, we view the axial ∆Pi as the main flow drive in the ITG regime here. In EDW,

χTot
φ is kept positive by the PSFI contribution, i.e. χTot

φ = χEDW
φ +χPSFI

φ − |χRes
φ | > 0. Note that

the nonlinear dependence of χTot
φ on ∇V∥ determines the magnitude of saturated flow gradient. In

marginal ITG turbulence, χRes
φ > 0 so χTot

φ is positive. Also, when ITG turbulence is well above

the linear threshold, even though δV ′
∥ drives χRes

φ < 0, the total viscosity, χTot
φ = χφ − |χRes

φ |,

remains positive since |χRes
φ |/χφ = 1/3. Therefore, in ITG turbulence, χTot

φ is positive definite.
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As a result, when the mode type flips from EDW to ITG, the sign of χTot
φ does not change, and

so the flow does not reverse.

3.5.3 PSFI Regime

In CSDX, ∇V∥ can be driven and enhanced by various external sources. When the flow

gradient is above the PSFI regime boundary, PSFI controls the turbulence. Note that the PSFI

regime boundary (|V ′
∥|reg) is above the linear PSFI threshold (|V ′

∥|crit). In the PSFI regime, both

PSFI and ITG instability are above their linear instability thresholds. Due to the PSFI relaxation,

the flow profile gradient saturates at |V ′
∥|reg, i.e. |V ′

∥|crit ≪ |V ′
∥|∼ |V ′

∥|reg ∼ (∇Ti0)2/3.

The turbulent viscosity by PSFI turbulence is nonlinear in ∇V∥, which leads to the satu-

ration of flow gradient. The growth rate and real frequency in the PSFI regime are

γk ∼=
|k∥cs|√

A

√
V ′ −C0, (3.41)

ωk ∼=− |ωT |
2τ(V ′ −C0)

. (3.42)

The growth rate is nonlinear in ∇V∥, while the real frequency is negative as a result of ∇Ti0

effects. Hence, the turbulent viscosity is

χφ = ∑
k

√
A

|k∥cs|
√

V ′ −C0
k2

θρ2
s |φk|2. (3.43)

The nonlinear dependence of χφ on ∇V∥ indicates that the flow gradient can saturate. As a result,

|V ′
∥| saturates at the PSFI regime boundary which is above the linear PSFI threshold (Fig.3.3),

i.e.

|V ′
∥|≈ |V ′

∥|reg =
3

22/3 A1/3

(
|ωT |

τ|k∥cs|

)2/3 |k∥|cs

kθρs
. (3.44)

Therefore, the saturated flow gradient is above the linear PSFI threshold, and grows with ∇Ti0
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Figure 3.3: The additional flow drive can push the flow across the PSFI threshold, triggering
nonlinear PSFI relaxation. The flow gradient is then kept near the PSFI regime boundary as a
result of balancing between PSFI saturation and total flow drive.

as shown by Eq.3.44, i.e. |V ′
∥|crit/|k∥cs|≪ |V ′

∥|/|k∥cs|∼ |∇Ti0|2/3/(k∥Ti0)2/3.

3.6 Discussion

In this paper, we have explored the physics of axial flow generation in ITG turbulence,

and of axial flow stiffness. The main results in this paper are as follows:

• We have shown that pure ITG turbulence cannot drive intrinsic flows in a straight mag-

netic field, but can induce a negative viscosity increment, which reduces the turbulent flow

dissipation.

• PSFI saturates the flow gradient, when ∇V∥ is driven above the PSFI regime boundary.

• The flow gradient saturates at the PSFI regime boundary, which is above the PSFI linear

threshold and tracks the ITG drive, i.e. ∇V∥/|k∥cs|∼ (∇Ti0)2/3/(k∥Ti0)2/3.

Below we discuss these results.
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Negative compressibility leads to a negative viscosity increment in a straight magnetic

field. When the ITG turbulence is well above its stability boundary, a perturbation to the flow

gradient δV ′
∥ results in a negative viscosity increment, χRes

φ < 0. The total viscosity is then

reduced, i.e. χTot
φ = χφ − |χRes

φ |. However, δV ′
∥ cannot reinforce itself because χTot

φ is always

positive (since |χRes
φ | = 1

3χφ). This means that in order to drive an intrinsic flow, ΠRes
r∥ requires

other symmetry breaking mechanisms that likely involve magnetic shear. Therefore, there is

no intrinsic flow driven by pure ITG turbulence in straight fields. In CSDX, axial flows can be

driven various external drives, e.g. end plate biasing and axial ion pressure drop.

In straight magnetic fields, the flow gradient can saturate due to PSFI relaxation. The flow

gradient in CSDX can be enhanced by various external sources. When ∇V∥ steepens enough, so

that PSFI drive dominates over ITG drive, flow gradient saturates by PSFI relaxation. PSFI is

nonlinear in ∇V∥, and so is the viscosity driven by PSFI turbulence. Consequently, ∇V∥ saturates

at the PSFI regime boundary (which is above the linear PSFI threshold) and grows as ∇V∥ ∼

(∇Ti0)2/3. This scaling of flow gradient implies a generalized Rice-type scaling, i.e. ∇V∥ ∼

(∇Ti0)α, with α = 2/3.

We can also solve for the saturated flow gradient from Eq.3.40. The PSFI saturation

effect can be accommodated in Eq.3.40 by introducing the PSFI induced turbulent viscosity

χPSFI
φ (given by Eq.3.43) when the flow shear is above the PSFI stability boundary. As a result,

the total viscosity is

χTot
φ =

⎧
⎪⎪⎨

⎪⎪⎩

χIT G
φ −χRes

φ if |V ′
∥|< |V ′

∥|crit

χIT G
φ +χPSFI

φ −χRes
φ if |V ′

∥|≥ |V ′
∥|crit

(3.45)

Hence, Eq.3.40 becomes a nonlinear equation for ∇V∥, due to the contribution of χPSFI
φ . Since

χPSFI
φ is nonlinear in ∇V∥, it becomes very strong compared to χIT G

φ −χRes
φ when PSFI is suffi-

ciently excited. Therefore, the flow gradient solved from Eq.3.40 saturates at the PSFI regime
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boundary.

This generalized scaling of ∇V∥ with ∇Ti0 indicates that the interaction between flow

profile and the turbulence drive exhibits simple trends. In ITG turbulence, ∇V∥ and ∇Ti0 are

coupled nonlinearly. But due to the ITG residual stress and PSFI saturation, their final states are

constrained by the scaling ∇V∥ ∼ (∇Ti0)2/3.

Even though δV ′
∥ has different effects on electron drift wave (EDW) and ITG turbu-

lence, flow reversal by changing the mode from EDW to ITG seems unlikely. As is known,

the axial flow in CSDX is driven by ion pressure drop in the axial direction (∆Pi), which is

V∥ ∼
∫ a

r ∆Pi/χTot
φ . In EDW, the negative viscosity increment induced by δV ′

∥ can turn the total

viscosity negative in some transient state, i.e. χTot
φ = χφ − |χRes

φ | < 0. Nevertheless, in the final

state, the self-amplification of a test flow shear is saturated by PSFI, so the total viscosity re-

mains positive due to the PSFI contribution, i.e. χTot
φ = χEDW

φ +χPSFI
φ − |χRes

φ | > 0. When ITG

turbulence is excited, χTot
φ driven by ITG is positive definite. Thus, for the same flow boundary

condition, the sign of χTot
φ does not change, despite change in mode. Therefore, flow reversal in

CSDX will not track changes in turbulence.

The following works are proposed for the future. They address remaining issues about

flow generation and saturation in CSDX. First, ion-neutral coupling mostly occurs in the bound-

ary layer in CSDX, where plasmas are partially ionized. However, it sets the boundary condition

for parallel flows, and thus affects the global flow structure. Since flow profile is very sensitive

to the boundary condition, ion-neutral coupling is of great interest. Second, coupling between

perpendicular flow and parallel flow. In tokamaks, poloidal flow and toroidal flow are coupled

by sheared magnetic fields. Even though CSDX has straight field lines, the parallel flow gradient

(∇V∥) can be coupled to perpendicular flow gradient (∇V⊥) via the turbulence [WDH12b]. Par-

ticularly, a sheared perpendicular flow can saturate the parallel flow gradient in CSDX. Because

both ∇V⊥ and ∇V∥ are driven by the background turbulence, their magnitudes are limited by

Reynolds power density, which measures the rate at which fluctuations transfer energy to mean

62



flows. The coupling between perpendicular and parallel flows can also be viewed as an extended

predator-prey model [ADG16, AD16] in which ∇V⊥ and ∇V∥ are two predators (perhaps hierar-

chical) and the turbulence is the prey. Third, reversal dynamics remains an open question. As

is known, flow reversal is unlikely in CSDX by changing the mode from electron drift wave

(EDW) to ITG, because PSFI saturation of ∇V∥ in EDW turbulence keeps the total viscosity

positive. However, ∇V⊥ saturation complicates the problem of flow reversal. The bottom line is

that such predictions for flow reversal can be tested in basic plasma experiments.

Chapter 3 is a reprint of the material as it appears in J. C. Li and P. H. Diamond, “Negative

viscosity from negative compressibility and axial flow shear stiffness in a straight magnetic field”,

Physics of Plasmas 24, 032117 (2017), American Institute of Physics. The dissertation author

was the primary investigator and author of this article.
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Chapter 4

Interaction of Turbulence-Generated

Azimuthal and Axial Flows in CSDX

4.1 Introduction

Intrinsic flows of plasmas are beneficial to magnetic confinement and MHD control[RHS+06,

MAC+11a]. Intrinsic flows occur both parallel to the magnetic field (e.g., toroidal rotations in

tokamaks[RHD+11b] and axial flows in linear devices[HLH+18]) and perpendicular to the mag-

netic field (e.g., zonal flows[DIIH05b, GD15, AD16]). The generation of such flows may be

understood using the heat engine paradigm[KDG10a]. Initially driven by profile gradients (such

as ∇T and/or ∇n), the turbulence energy is coupled to both parallel and perpendicular flows.

Thus, the key questions are:

(1) What is the branching ratio, i.e., the fraction of fluctuation energy coupled to parallel flows,

relative to that coupled to perpendicular flows?

(2) What are the feedback and coupling mechanisms linking intrinsic parallel and perpendic-

ular flows?
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As the intrinsic flows are driven by the Reynolds forces, the branching ratio is defined as the ratio

of parallel to perpendicular Reynolds powers. The Reynolds power is the product of Reynolds

force and flow velocity, i.e., PR
∥ ≡ −⟨ṽrṽ∥⟩′⟨v∥⟩ and PR

θ ≡ −⟨ṽrṽθ⟩′⟨vθ⟩. As given by the Taylor

identity[Tay15, DK91], the perpendicular Reynolds force is equivalent to vorticity flux, yielding

that PR
θ = ⟨ṽr∇2φ̃⟩⟨vθ⟩. Then, the branching ratio is PR

∥ /PR
θ .

The goal is to understand the evolution of fluctuation–flow (i.e., ⟨vθ⟩ and ⟨v∥⟩) ecology

incorporating both parallel and perpendicular flows. This has not been addressed by experi-

ments, or even simulation. However, some existing measurements and models can illuminate

the characterization of such an ecology. In a linear device, CSDX (controlled shear decorre-

lation experiment), the coupling of intrinsic axial (parallel) and and azimuthal (perpendicular)

flows is observed to be weak[HLH+18]. In CSDX, the azimuthal flow regulates drift wave tur-

bulence and the axial flow is parasitic. Indeed, in the regime of intrinsic parallel flows, the effect

of perpendicular flow is expected to be stronger than that of parallel flow, because |k∥|/kθ ≪ 1.

The question of what couples the parallel and perpendicular flows, absent magnetic shear,

is open. Magnetic shear allows perpendicular flows to break the symmetry in the parallel di-

rection, which results in the generation of intrinsic parallel flows[GDHS07a]. However, this

geometrical coupling is not valid at low or zero magnetic shear, such as the flat-q regime in

tokamaks and linear devices with uniform magnetic fields. It has long been known that the cou-

pling of potential vorticity and parallel compression (i.e., ⟨q̃∇∥ṽ∥⟩) can convert parallel flows

into zonal flows[WDH12b]. But this coupling is weak in the regime of intrinsic parallel flows,

due to small k∥Ln in CSDX.

In this work, we address the following questions:

(1) What is the branching ratio of turbulence energy between axial and azimuthal flows in

CSDX? In particular, we study the effect of incremental changes of perpendicular and

parallel flow shears on the branching ratio PR
∥ /PR

θ .

(2) How does azimuthal flow shear affect the generation and saturation of intrinsic axial flows,
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absent magnetic shear? The axial flow is generated by the modulational instability of test

flow shear[LDXT16a]. In presence of a test flow shear, the residual axial Reynolds stress

induces a negative viscosity increment χRes
z . When |χRes

z | exceeds the turbulent viscosity

driven by drift waves, such that the total viscosity is negative, the test flow shear amplifies

itself via the modulational instability. The axial flow shear saturates when the turbulent

diffusion becomes strong enough to overcome the residual stress. The saturated flow shear

is determined by the balance between residual stress and turbulent viscosity driven by drift

waves, i.e., ⟨vz⟩′ =ΠRes
rz /χDW

z . In this paper, we study how the azimuthal flow shear affects

the modulational instability of test flow shear and the saturated axial flow shear.

This work addresses the regime where drift wave is the dominant instability population

and wave–flow resonance is weak. This means the axial flow shear discussed here is well below

the linear threshold for parallel shear flow instability (PSFI)[LDXT16a, MD88]. Also, perpen-

dicular Kelvin–Helmholtz (KH) instability is negligible because KH drive is much weaker than

the ∇n0 drive, i.e., |kθρ2
s ⟨vθ⟩′′|≪ ω∗e. Here, ω∗e ≡ kyρscs/Ln is the electron drift frequency and

Ln ≡ n0/|dn0/dx| is the density gradient scale. As a result, we are interested in the regime where

|⟨vθ⟩|/cs ≪ L2
Vθ
/ρsLn, and LVθ is the scale length of azimuthal flow shear. Though the wave–flow

resonance can be prominent in linear devices, here we ignore the resonance effect for simplicity.

In CSDX, where |kz|/kθ ≪ 1, the main resonance is between drift wave and azimuthal flow, i.e.,

ωk − kθ⟨vθ⟩− kz⟨vz⟩ ∼= ωk − kθ⟨vθ⟩ ∼= ωk − kθ⟨vθ⟩′∆x. ∆x is the distance relative to the reference

position. The Doppler shifted drift wave frequency is approximately ωk ∼ω∗e/(1+k2
⊥ρ2

s ). Thus,

when the value of |kθ⟨vθ⟩′∆x| is close to ω∗e, the resonance is strong. In this work, we consider

the regime where |kθ⟨vθ⟩′∆x|≫ ω∗e, i.e., |⟨vθ⟩|/cs ≫ ρsLVθ/∆xLn, and thus resonance is weak.

Taken together, we focus on the regime where ρsLVθ/∆xLn ≪ |⟨vθ⟩|/cs ≪ L2
Vθ
/ρsLn.
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4.2 Turbulence energy apportionment

We study the apportionment of turbulence energy between azimuthal and axial flows

through a modulational study. We incrementally change the azimuthal or axial flow shear, while

fixing the other, and study how the branching ratio PR
∥ /PR

θ changes respectively. Note we ig-

nore the feedback of turbulence-driven flows on the flow profiles. Thus, the flow profiles are

determined by fixed external input. In this section, we present the results of this study.

We study the Hasegawa–Wakatani drift wave system coupled with parallel flow fluctua-

tions in slab geometry in the presence of a mean perpendicular (azimuthal) flow ⟨vy⟩ and a mean

parallel (axial) flow ⟨vz⟩, both of which vary in the x̂ (radial) direction:

d
dt

ñ+ ṽx
∇n0

n0
= D∥∂2

z (ñ− φ̃)+Dc∇2ñ, (4.1)

d
dt

ρ̃+ ṽx⟨ρ⟩′ = D∥∂2
z (ñ− φ̃)+χc∇2ρ̃, (4.2)

d
dt

ṽz + ṽx⟨vz⟩′ =−∂zñ. (4.3)

where we define D∥ ≡ v2
T he/νei and d/dt ≡ ∂t + ⟨vy⟩∂y + ⟨vz⟩∂z. νei is electron–ion collision

frequency and vT he is electron thermal speed. We have normalized electric potential fluctuation

as φ̃ ≡ eδφ/Te and density fluctuation as ñ ≡ δn/n0, where n0 is the equilibrium density. The

magnetic field is uniform and lies in ẑ direction. Both n0 and ⟨vy⟩ vary only in x̂ direction.

ρ̃ ≡ ρ2
s ∇2

⊥φ̃ is the vorticity fluctuation, where ρs is the ion Larmor radius at electron temperature,

⟨ρ⟩ ≡ ⟨vy⟩′ρs/cs is the zonal vorticity where cs is the ion sound speed. ṽE ≡ csẑ×∇φ̃ is the E×B

velocity fluctuation. Dc and χc are the collisional particle diffusivity and vorticity diffusivity (i.e.,

viscosity).

Drift wave is the dominant instability population. The vorticity gradient can drive the per-

pendicular Kelvin–Helmholtz (KH) instability. But the vorticity gradient drive is quantitatively

weaker than the ∇n0 drive, i.e., |kyρ2
s ⟨vy⟩′′|/ω∗e ≪ 1 where ω∗e ≡ kyρscs/Ln is the electron drift
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frequency and Ln ≡ n0/|dn0/dx| is the density gradient scale. Also, |⟨vz⟩′| is kept well below

the PSFI threshold, such that PSFI is stable.

The azimuthal and axial flows are both externally imposed and fixed. We denote them as

Vy and Vz to distinguish them from the intrinsic flows. As a result, the dispersion relation is an

eigenmode equation for φ:

ρ2
s

d2φ
dx2 =

[
k2

yρ2
s Ωk − kyρsV ′′

y + iαΩk −ω∗e

Ωk + iα
+

kykzV ′
z

Ωk
−

k2
z (ω∗e + iα)

Ωk(Ωk + iα)

]
φ, (4.4)

where α ≡ k2
z v2

T he/νei and Ωk ≡ ωk − kyVy − kzVz + iγk. We can obtain the φ profile by using

an eigenvalue solver. Here, we set the extent of the radial direction to be 0 ≤ x ≤ Lx, where

Lx = 5ρs. We set the parameters in the range relevant to CSDX, which are ρs = 1cm, Ln = 1.5cm,

kyρs = 0.7, Lz = 300cm, kz = −2π/Lz. The adiabatic parameter is k2
z D∥/ω∗e = 3. The flow

profiles are: Vy =Vy,max sin [π(x/Lx −0.5)] and Vz =Vz,max cos(πx/Lx). The boundary condition

is φ(0) = φ(Lx) = 0. Then, we can obtain the drift wave frequency ωk, growth rate γk, and φ

profile.

Using the φ profile, we determine the average Reynolds powers, which are:

PR
y =−L−1

x

∫ Lx

0
dx∂x⟨ṽxṽy⟩Vy

and

PR
z =−L−1

x

∫ Lx

0
dx⟨ṽxṽz⟩′Vz

. By Taylor identity[Tay15, DK91], the azimuthal Reynolds force is identical to the vorticity flux,

i.e., −∂x⟨ṽxṽy⟩= ⟨ṽxρ̃⟩. Hence, the azimuthal Reynolds power becomes PR
y = L−1

x
∫ Lx

0 dx⟨ṽxρ̃⟩Vy.

The vorticity flux contains a diffusive flux and a residual flux, i.e., ⟨ṽxρ̃⟩=−χyV ′′
y +ΓRes

ρ . Here,

we ignore the resonance between drift wave and the azimuthal and axial flows. Thus, the non-
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Figure 4.1: Change of branching ratio PR
z /PR

y in response to incremental changes of azimuthal
flow shear. The axial flow profile is given by Vy = Vy,max sin [π(x/Lx −0.5)]. Thus, the flow
shear changes with the flow magnitude.

resonant turbulent diffusivity of vorticity is

χy =
γk

|Ωk|2
k2

yρ2
s c2

s |φ|2. (4.5)

The residual vorticity flux is

ΓRes
ρ = kyc2

s |φ|2
[

γkω∗e +α(ω∗e −ℜΩk)

|Ωk + iα|2 − γkω∗e

|Ωk|2
+ℜ i

Ω2
k

kzkyV ′
z −ℜ

ik2
z (ω∗e + iα)

Ω2
k(Ωk + iα)

]
. (4.6)

Similar to the vorticity flux, the axial Reynolds stress contains a diffusive momentum flux and

a residual stress, i.e., ⟨ṽxṽz⟩ = −χzV ′
z +ΠRes

xz . The non-resonant turbulent diffusivity of axial

momentum is

χz =
γk

|Ωk|2
k2

yρ2
s c2

s |φ|2. (4.7)

The residual stress is

ΠRes
xz = ℜ

ikykz(ω∗e + iα)
Ωk(Ωk + iα)

ρsc3
s |φ|2. (4.8)

We study the changes of branching ratio of turbulence energy in response to incremen-

tal changes of azimuthal and axial flow shears. The branching ratio is the ratio of axial and
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Figure 4.2: Change of branching ratio PR
z /PR

y in response to incremental changes of axial flow
shear. The axial flow profile is given by Vz = Vz,max cos(πx/Lx). Thus, the flow shear changes
with the flow magnitude.

azimuthal Reynolds powers PR
z /PR

y . It measures the turbulence energy apportionment between

axial and azimuthal flows. Fig. 4.1 shows that azimuthal flow shear impedes the turbulent pro-

duction of axial flow. When increasing the azimuthal flow magnitude and shear, while fixing the

axial flow, the ratio PR
z /PR

y decreases.

Fig. 4.2 shows that the production of axial flow saturates below the PSFI threshold. When

increasing the axial flow magnitude Vz,max, while fixing the azimuthal flow, the ratio PR
z /PR

y first

increases. When Vz,max continues increasing, the ratio saturates and starts to decrease. Note that

the saturation is below the PSFI threshold. Fig. 4.3 shows the growth rate when increasing the

axial flow shear. The onset of PSFI requires Vz,max/cs > 3. The axial flow production saturates

at Vz,max/cs ∼ 0.09 as given by Fig. 4.2, which is far below the PSFI threshold.

4.3 Azimuthal flow effects on intrinsic axial flow

We study the drift wave system described by Eqs. (4.3), (6.1) and (6.2). Electrons are

weakly adiabatic, i.e., ñ = (1 − iδ)φ̃, where the non-adiabatic electron response δ < 1. δ is

determined by the frequency shift, i.e. δ = (ω∗e −ωk − ky⟨vy⟩− kz⟨vz⟩)/k2
z D∥. The eigenmode
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Figure 4.3: Growth rate for various axial flow shears. The axial flow profile is given by Vz =
Vz,max cos(πx/Lx). Thus, the flow shear changes with the flow magnitude.

equation is

ρ2
s

∂2φ
∂x2 =

[(
1+ k2

yρ2
s − iδ

)
−

ω∗e + kyρ2
s ⟨vy⟩′′

Ωk
+

kykz⟨vz⟩′

Ω2
k

− (1− iδ)
k2

z c2
s

Ω2
k

]
φ. (4.9)

Multiplying both sides of Eq. (4.9) with φ∗ and integrating over the radial direction, we obtain

the linear dispersion relation, which is

(
1+ k2

⊥ρ2
s − iδ

)
−

ω∗e + kyρ2
s ⟨vy⟩′′

Ωk
+

kykzρscs⟨vz⟩′

Ω2
k

− (1− iδ)
k2

z c2
s

Ω2
k

= 0. (4.10)

Here, we define the effective radial wavenumber k2
xρ2

s ≡ ρ2
s
∫ Lx

0 dx|∂xφ|2/
∫ Lx

0 dx|φ|2. Hence, the

perpendicular wavenumber is k2
⊥ρ2

s ≡ k2
xρ2

s + k2
yρ2

s .

Azimuthal flow stabilizes drift wave by weakening the ∇n0 drive. As observed in the

second term in Eq. (4.10), ⟨vy⟩′′ weakens the electron drift frequency, when kyρ2
s ⟨vy⟩′′/ω∗e < 0.

In CSDX, the condition kyρ2
s ⟨vy⟩′′/ω∗e < 0 holds true, and thus azimuthal flow shear stabilizes

drift waves in CSDX. In the following analysis, we define the weakened drift frequency of

electrons as ω∗e ≡ω∗e+kyρ2
s ⟨vy⟩′′ and consider the case where kyρ2

s ⟨vθ⟩′′/ω∗e < 0. The Doppler-
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shifted frequency and linear growth rate are calculated using the dispersion relation, which are

ωk ∼=
ω∗e

1+ k2
⊥ρ2

s
−

kykzρscs⟨vz⟩′

ω∗e
, (4.11)

γk ∼=
1

k2
z D∥

ω∗e
2

(1+ k2
⊥ρ2

s )
2

(
k2
⊥ρ2

s

1+ k2
⊥ρ2

s
−

kyρ2
s ⟨vy⟩′′

ω∗e
+

kykzρscs⟨vz⟩′

ω∗e
2

)
. (4.12)

When axial flow shear hits the PSFI threshold

|⟨vz⟩′|crit =
1

|kykzρscs|

[
ω∗e

2(1+ k2
⊥ρ2

s )

4[(1+ k2
⊥ρ2

s )
2 +δ2]

+ k2
z c2

s

]
, (4.13)

the axial flow shear drives the turbulence as a free energy source. Note given kyρ2
s ⟨vy⟩′′/ω∗e < 0,

the azimuthal flow lowers the PSFI threshold. For weak axial flow shear, i.e. |⟨vz⟩′|≪ |⟨vz⟩′|crit,

the system is dominated by drift wave.

4.3.1 Generation of intrinsic axial flow absent magnetic shear

The intrinsic axial flow in CSDX is driven by drift wave turbulence via the dynamical

symmetry breaking mechanism[LDXT16a]. In response to a seed axial flow shear, the residual

Reynolds stress induces a negative viscosity increment. When this negative viscosity increment

beats the turbulent viscosity driven by drift waves, such that the total viscosity is negative, the

seed shear amplifies itself through a modulational instability.

When the axial flow shear steepens, a finite residual stress forms due to the spectral

asymmetry of drift wave turbulence. The stationary profile of axial flow shear is then determined

by the balance of residual stress and turbulent diffusion of axial momentum by drift waves, i.e.

⟨vz⟩′ ∼ ΠRes
xz /χDW

z .
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4.3.2 Azimuthal flow effects on axial residual stress

In this subsection, we show that the azimuthal flow shear stabilizes the modulational

growth of the seed axial flow shear. Moreover, azimuthal flow shear reduces the magnitudes

of both residual stress and turbulent viscosity. Thus, it does not affect the stationary axial flow

shear to leading order.

We calculate the axial Reynolds stress with azimuthal flow effects included, following

the same procedures presented in Ref. [LDXT16a]. The axial Reynolds stress can be written as

a diffusive momentum flux plus a residual stress, which is

⟨ṽxṽz⟩=−χz
∂⟨vz⟩

∂x
+ΠRes

xz . (4.14)

From Eq. (4.3), we obtain that

ṽz ∼
|γk|

(ωk − ky⟨vy⟩′∆x)
2 kzc2

s φ̃ ∼ 1
(V ′ −1)2

|γk|
ω2

k
kzc2

s φ̃.

Here, V ′ ≡ ky⟨vy⟩′∆x/ωk ∼ ⟨vy⟩∆xLn/csρsLVy . Thus, in the non-resonant regime (i.e., |⟨vy⟩|/cs ≫

∆xLn/ρsLVy and so |V ′|≫ 1), we obtain that

ṽz ∼
1

|V ′|2
|γk|
ω2

k
kzc2

s φ̃. (4.15)

As a result, the turbulent viscosity and residual stress are

χDW
z

∼= ∑
k

1
|V ′|2

1
k2

z D∥

[
k2
⊥ρ2

s

1+ k2
⊥ρ2

s
+

|kyρ2
s ⟨vy⟩′′|
ω∗e

]
k2

yρ2
s |φk|2, (4.16)

ΠRes
xz

∼= ∑
k

1
|V ′|2

1
k2

z D∥
(2+ k2

⊥ρ2
s )

[
k2
⊥ρ2

s

1+ k2
⊥ρ2

s
+

|kyρ2
s ⟨vy⟩′′|
ω∗e

+
kykzρscs⟨vz⟩′

ω∗e
2

]
kykzρscs|φk|2.

(4.17)

The residual stress requires symmetry breaking in the ky–kz space. Absent magnetic shear, a seed
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axial flow shear breaks the symmetry and is self-amplified through a modulational instability.

As a result, the broken symmetry in the ky–kz space emerges along with a finite axial flow shear

profile. Hence, with this spectral asymmetry, the residual stress, to leading order, is

ΠRes
xz

∼= ∑
kykz⟨vz⟩′>0

1
|V ′|2

2+ k2
⊥ρ2

s
k2

z D∥

k2
⊥ρ2

s

1+ k2
⊥ρ2

s
kykzρscsIk, (4.18)

where Ik = |φk|2(kykz⟨vz⟩′ > 0)− |φk|2(kykz⟨vz⟩′ < 0) accounts for the spectral imbalance. There-

fore, both the residual stress and turbulent viscosity driven by drift waves are reduced by az-

imuthal flow shear.

Next, we show that the azimuthal flow shear also impedes the self-amplification of seed

flow shear, i.e., ⟨vy⟩′ slows down the modulational growth of seed flow shear. In response to a

seed axial flow shear δ⟨vz⟩′, the residual stress induces a negative diffusion of momentum flux,

i.e.,

δΠRes
xz

∼= |χRes
z |δ⟨vz⟩′, (4.19)

where the negative viscosity increment is

χRes
z

∼=− 1
|V ′|2

1
D∥

k2
yρ2

s c2
s

ω∗e
2 ∑

k
(1+ k2

⊥ρ2
s )(4+ k2

⊥ρ2
s )|φk|2. (4.20)

The growth rate of the flow shear modulation is determined by the difference between |χRes
z | and

χz, i.e.,

γq = q2
r (|χRes

z |−χDW
z )

∼= q2
r ∑

k

|φk|2

|V ′|2
k2

yρ2
s c2

s

k2
z D∥

(
K −

k2
⊥ρ2

s

1+ k2
⊥ρ2

s

)(
1+β

|kyρ2
s ⟨vy⟩′′|
ω∗e

)
, (4.21)

where qr is the radial modenumber of the shear modulation, K ≡ (1+k2
⊥ρ2

s )(4+k2
⊥ρ2

s )k2
z c2

s/ω2
∗e,

and β ≡ (2K − 1)
/(

K − k2
⊥ρ2

s
1+k2

⊥ρ2
s

)
. When the negative viscosity induced by the residual stress
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beats the turbulent viscosity by drift wave, the test flow shear is self-reinforced through a modu-

lational instability. This means K > k2
⊥ρ2

s/(1+ k2
⊥ρ2

s ) is required for modulational growth (i.e.,

γq > 0) of the test shear. For drift waves, we obtain kyρs ∼ 1, and thus K ∼ (2+k2
xρ2

s )(5+k2
xρ2

s )>

10k2
z L2

n and 0.5 < k2
⊥ρ2

s/(1 + k2
⊥ρ2

s ) < 1. Modulational instability requires K > k2
⊥ρ2

s/(1 +

k2
⊥ρ2

s )> 0.5, which is possible for drift waves. As shown by Eq. (4.21), the modulational growth

of the seed flow shear decreases when the azimuthal flow shear increases.

4.3.3 Azimuthal flow effects on stationary flow shear profile

The evolution of mean axial flow is described by

∂⟨vz⟩
∂t

+
∂
∂x

⟨ṽxṽz⟩=−∂P
∂z

−νni (⟨vz⟩−Vn) . (4.22)

The pressure drop in the axial direction is due to the heating on one end of the linear device.

In CSDX, this pressure drop is weaker than the Reynolds force (−∂x⟨ṽxṽz⟩) by an order of

magnitude[HLH+18]. Frictions between plasma and neutral flows damp the axial flow in the

edge region, where neutral particles concentrate. Hence, neutral damping sets the boundary

condition for the axial flow profile. Therefore, in the central region of CSDX, the axial flow is

generated and saturated by the axial Reynolds stress. The stationary state flow is determined by

⟨ṽxṽz⟩= 0. As a result, the stationary axial flow shear, to leading order, is

⟨vz⟩′ =
ΠRes

xz
χDW

z
∼ (2+ k2

⊥ρ2
s )kzcs/kyρs. (4.23)

The azimuthal flow shear reduces both ΠRes
xz and χDW

z by the same factor |V ′|−2. Hence, this re-

duction effect cancels out to leading order in the stationary axial flow shear, which is determined

by the ratio ΠRes
xz /χDW

z . Therefore, the azimuthal flow shear does not affect the saturated axial

flow shear to leading order.
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4.4 Discussion

In this work, we have studied the coupling of azimuthal and axial flows in CSDX, absent

magnetic shear. In particular, we have studied how incremental changes of flow shears affect

the production branching ratio PR
z /PR

y . We have also investigated the effects of azimuthal flow

shear on intrinsic axial flow generation and saturation, absent magnetic shear. The main results

of these studies are:

• Increasing azimuthal flow shear reduces the branching ratio, which is measured by the

ratio of axial and azimuthal Reynolds powers, i.e., PR
z /PR

y .

• When axial flow shear increases, PR
z /PR

y first increases and then decreases. This turnover

occurs below PSFI threshold.

• Azimuthal flow shear stabilizes drift waves by weakening the ∇n0 drive, i.e., reducing the

ω∗e by the amount |kyρ2
s ⟨vy⟩′′|.

• Azimuthal flow shear slows down the modulational growth of seed axial flow shear, and

thus reduces the production of intrinsic axial flow, absent magnetic shear.

• Azimuthal flow shear reduces both axial residual stress (ΠRes
xz ) and turbulent viscosity

driven by drift waves (χDW
z ) by the same factor, i.e., both ΠRes

xz and χDW
z scale with the

azimuthal flow shear as |V ′|−2 ∼ |⟨vy⟩′|−2∆−2
x L−2

n ρ2
s c2

s .

• Azimuthal flow shear does not affect the saturated axial flow shear to leading order, be-

cause ⟨vz⟩′ = ΠRes
xz /χDW

z and the reduction by ⟨vy⟩′ cancels.

Results in this paper offer testable predictions for simulation studies on interaction of

parallel and perpendicular flows. Here, we focus on the regime with straight magnetic fields.

Hence, these results are relevant to linear devices and flat-q regions in tokamaks. In tokamaks,

the combination of weak magnetic shear (i.e., flat q profile) and strong toroidal rotation are

76



required for the formation of enhanced confinement states[MAC+11a]. Thus, the turbulence

energy apportionment between poloidal (i.e., zonal) and toroidal flows absent magnetic shear is

of interest.

In the regime of intrinsic parallel flows, the feedback of parallel flow shear on the

turbulence–flow system is weaker than that of perpendicular flow shear because |k∥V ′
∥/kθV ′

θ|≪ 1.

As a result, the turbulence is regulated primarily by V ′
θ, and parallel flow is parasitic. Non-

parasitic parallel flow regime is achievable with external parallel momentum source. Of course,

when the enhanced parallel flow shear hits the PSFI threshold, the resulting PSFI turbulence can

drive zonal flow via strong acoustic coupling[WDH12b]. Even below the PSFI threshold, exter-

nally driven parallel flow shear can enhance the regulating effect of parallel flow on turbulence.

When |k∥V ′
∥,tot | is comparable to |kθV ′

θ|, the parallel flow shear will have a strong effect on vortic-

ity flux, mode structure, and fluctuation intensity. In both ways, the external parallel momentum

source can enhance the interaction of parallel and perpendicular flows.

Chapter 4 is a reprint of the material as it appears in J. C. Li and P. H. Diamond, “Inter-

action of Turbulence-Generated Azimuthal and Axial Flows in CSDX”, which is being prepared

for publication. The dissertation author was the primary investigator and author of this article.
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Chapter 5

Phenomenology of Parasitic Axial Flows

Generated by Drift Wave Turbulence with

Broken Symmetry

5.1 Introduction

Plasma flows along the magnetic field play a vital role in the stabilization of MHD in-

stabilities and the development of transport barriers.[GSJ+02, RICd+07b, dRB+07, DKG+13b,

IR14, Ric16] In most existing magnetic confinement fusion devices, the parallel flow, or toroidal

plasma rotation, is driven directly by external momentum sources, such as neutral beam injection

(NBI). However, in large scale devices like ITER, the NBI driven rotation will not be efficient,

due to limited neutral beam penetration into high density plasmas. In order to optimize and

improve the confinement regimes in ITER and beyond, it is important to uncover alternative

mechanisms that can drive parallel flows.

A phenomenon called intrinsic flow has been identified in magnetically confined plasmas,

[SBd+07, dRB+07, RHD+11b, DKG+13b, IR14, Ric16] where the plasma rotates without any
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input of toroidal momentum. This intrinsic flow can be of the same order of magnitude as that

driven by some NBI torques. [RICd+07b, SBd+07, IR14, Ric16] Hence, there is strong interest

in knowing whether intrinsic flow in future devices is sufficient to affect confinement and MHD

stability. Empirical results show that intrinsic torque in H-mode plasmas scales with the plasma

stored energy normalized by the plasma current (“Rice scaling”).[RICd+07b] Further measure-

ments from Alcator C-Mod reveal that the intrinsic torque is proportional to the edge temperature

gradient.[RHD+11b] The production of intrinsic flow can be understood as a process similar to

that of a heat engine. [RHD+11b, KDG10b] In this process, temperature gradient, ∇T , excites

turbulence, which not only relaxes ∇T but also drives a non-diffusive, residual stress via asym-

metry in turbulence spectra ⟨kzkθ⟩. [GDHS07b, DKG+13b] This residual stress then drives the

parallel flow, converting the free energy in ∇T into kinetic energy of macroscopic flow.

As proposed in this heat engine model, the parallel residual stress ΠRes
rz is the key element

that connects radial inhomogeneity to the macroscopic intrinsic flow. It is a component of paral-

lel Reynolds stress, and is not proportional to either flow or flow shear. [GDHS07b, DKG+13b]

The parallel Reynolds stress can then be written as [DKG+13b]

⟨ṽrṽz⟩=−χz∂rVz +VpVz +ΠRes
rz .

The diffusive (−χz∂rVz) and pinch (VpVz) terms are strict transport terms which cannot accel-

erate the plasma from rest. The divergence of this residual stress, −∇ ·ΠRes
rz , acts as a local

momentum source that drives the intrinsic flow. The residual stress depends on properties of

underlying turbulence, and may flip sign when there is a change in the driving radial gradients

of the equilibrium profiles.

Evidence for the role of parallel residual stress in driving intrinsic flow has been accu-

mulating. Probe measurements from the plasma boundary region of TJ-II stellarator confirm the

existence of significant turbulent stress which provides a toroidal intrinsic torques.[GHP+06]
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A electrode biasing experiment on J-TEXT achieves a nearly zero toroidal rotation profile, and

its results show that the intrinsic torque can be reasonably explained by the measured resid-

ual stress.[SCZ+16] The residual stress profile has also been measured at edge of TEXTOR

tokamak by canceling the toroidal rotation using counter-current NBI torque.[XHS+13] The

observations demonstrate that there is a minimum value for the Er ×B flow to trigger the resid-

ual stress, and that this stress scales with edge pressure gradient when the Er shear threshold

is exceeded. Parallel flow driven by turbulent Reynolds stress has also been observed in a lin-

ear device, PANTA.[IKK+16, KIK+16] Recently, a gyrokinetic simulation predicts that residual

stress profile exhibits a dipolar structure and provides the intrinsic torque which is consistent

with measured rotation profile in DIII-D.[WGE+17]

A number of theoretical models based on symmetry breaking in k-space have been pro-

posed to explain the development of the residual stress.[DKG+13b] In these models, the residual

stress is determined by the correlator, ⟨kzkθ⟩ = ∑k kzkθ
∣∣̂φk
∣∣2 /∑k

∣∣̂φk
∣∣2, which is effectively set

by the spatial structure of the k-spectra
∣∣̂φk (r)

∣∣2. Theory suggests that the asymmetry in the

kz space can result from the spatial variation of fluctuation intensity profiles, [GDH+10b] or

from the sheared Er ×B flow that shifts modes off the resonant surfaces. [GDHS07b] These

mechanisms indicate that the residual stress is related to Er ×B flow shear and turbulent inten-

sity gradient, i.e., ΠRes
rz ∼V ′

E and ΠRes
rz ∼ I′, respectively. These correlations are consistent with

direct measurements from the edge of TEXTOR.[XHS+13]

Despite these advances, our understanding of the microscopic mechanism is still rather

limited. Until now, there is no direct evidence validating the connection between the requisite

symmetry breaking mechanism and the development of residual stress. Moreover, it is also

unclear whether the residual stress can efficiently convert the free energy stored in the radial

inhomogeneity into kinetic energy of the macroscopic parallel flow.

Due to its turbulence-driven origin, the axial flow must necessarily be coupled to the

azimuthal mean flow. The latter is also known as zonal flow and is generated by drift wave
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turbulence via a modulational instability. [DIIH05a] A theoretical framework[HDT] has been

proposed to account for the interaction between these two secondary shear flows. However, how

to precisely predict what the branching ratio between axial and azimuthal flows remains un-

known. Therefore, further studies on how energy is distributed among the turbulence, azimuthal

and axial mean flows are of interest. The dominant branch will have a larger turbulent drive and

set the turbulence level through a predator-prey type interaction with turbulent intensity field.

Besides the branching ratio question, the axial and azimuthal flows might also interact

with each other directly. For a coupled drift-ion acoustic waves system, a zonal flow can arise

from the parallel flow compression due to the effects of acoustic coupling. [WDH12a] Specially,

when the parallel flow shear is strong enough to trigger parallel shear flow instability (PSFI),

the enhanced fluctuating parallel flow compression can act as a source for zonal flow. This

mechanism of zonal flow generation differs from conventional models which depend on the

potential vorticity (PV) flux, and has not been tested experimentally. On the other hand, the

axial flow shear may also be affected directly by its azimuthal counterpart. In the presence of

a finite magnetic shear, the Er ×B flow shear break parallel symmetry and generate a parallel

residual stress ΠRes
rz , which accelerates the axial flow Vz. The effects of azimuthal flows on axial

flow generation at zero magnetic shear also remains unclear.

In this study, we discuss axial and azimuthal flow dynamics in CSDX, with a special

emphasis on the possible flow interactions discussed above. We begin with a summary of our

expectations based upon current theory-based modeling. We then report an experiments in a lin-

ear device, the Controlled Shear Decorrelation eXperiment (CSDX).[BTA+05, TBC+14a] We

show that the turbulent drive for the axial flow is less than that for the azimuthal flow by an

order of magnitude. The turbulence fluctuation level is therefore regulated predominantly by

the azimuthal flow shear. The results also show that the axial mean flow is driven by turbu-

lent Reynolds stress. This stress, and particularly the non-diffusive, residual stress, results from

density gradient drive. In agreement with the recently developed dynamical symmetry break-
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ing mechanism,[LDXT16b] the residual stress emerges from drift wave turbulence with broken

spectral symmetry. Note that this dynamical symmetry breaking model is also relevant to zero

or weak magnetic shear case, e.g., in devices with straight magnetic fields and in flat-q regime

tokamaks. The results presented in this paper validate the theoretical expectations for the link be-

tween the residual stress and symmetry breaking in the turbulence k-spectra, as well as the role

of residual stress in converting thermodynamic free energy into kinetic energy of macroscopic

axial flow.

The rest of the present paper is organized as follows. Section 5.2 recapitulates the theoret-

ical background and predictions for turbulence-driven axial and azimuthal shear flows in CSDX.

Section 5.3 introduces the experimental approach to measurements of mean flows and Reynolds

stresses in CSDX. The experimental results and relevant discussions of theory-experiment com-

parisons are presented in Sections 5.4 to 5.6, respectively. Section 5.7 summaries the results and

findings. In ??, suggestions for future investigations are proposed.

5.2 Theoretical Predictions

In this section, we summarize theoretical predictions concerning the distribution of en-

ergy in the ecology of flows and fluctuations in CSDX. In order to investigate the evolution of

turbulence and mean profiles in CSDX, we formulated a reduced model that describes the dy-

namics of the coupled drift-ion acoustic wave plasma. The model is derived from the Hasegawa-

Wakatani system with axial flow evolution. [HDT] It self-consistently describes the variations in

the mean profiles of density n, axial and azimuthal flows Vz and Vθ, as well as fluctuation energy
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ε = ⟨ñ2 +(∇φ̃)2 + ṽ2
z ⟩. The mean field equations are

∂n
∂t

=−∂r⟨ṽrñ⟩+Dc
∂2n
∂r2 , (5.1)

∂Vz

∂t
=−∂r⟨ṽrṽz⟩+νc,∥

∂2Vz

∂r2 −νinVz, (5.2)

∂Vθ
∂t

=−∂r⟨ṽrṽθ⟩+νc,⊥
∂2Vθ
∂r2 −νinVθ. (5.3)

The quantities are normalized as follows: t ≡ t ′ωci, v ≡ v′/cs, and r ≡ r′/ρs, where ωci is ion

cyclotron frequency, cs is the ion sound speed, and ρs is the ion Larmor radius at sound speed.

The first terms on the RHS of Eqs. (5.1) to (5.3) represent the turbulent fluxes of particles and

momentum, the terms that contain Dc, νc,⊥ and νc,∥ represent ion-ion collisional dissipations. In

Eqs. (5.2) and (5.3), the terms proportional to the ion-neutral collision frequency νin represent

momentum transfer between ions and neutrals, and are significant only in the boundary region.

In this study, the Reynolds powers, P Re
z = −Vz∂r⟨ṽrṽz⟩ and P Re

θ = −Vθ∂r⟨ṽrṽθ⟩, are used to

represent the rate of work done by the fluctuations to the mean flows.

In addition to the mean field equations, the evolution of fluctuation intensity ε = ⟨ñ2 +

(∇φ̃)2 + ṽ2
z ⟩ is obtained as

∂ε
∂t

+∂rΓε =−⟨ñṽr⟩∂rn−⟨ṽrṽz⟩∂rVz −⟨ṽrṽθ⟩∂rVθ −
ε3/2

lmix
+P . (5.4)

The first three terms on the RHS of the previous equation are mean field–fluctuation coupling

terms. They relate variations in ε to the evolution of the mean fields of n, Vθ and Vz. The

energy exchange between fluctuations and mean profiles occurs via the particle flux ⟨ñṽr⟩, and

the Reynolds stresses ⟨ṽrṽθ⟩ and ⟨ṽrṽz⟩. In the energy equation, the ε3/2/lmix term represents

energy dissipation by inverse cascade at a rate
√

ε/lmix. Dissipated energy is ultimately damped

by frictional drag. An energy source term P represents the excitation of drift wave turbulence,

which is linear in ε and proportional to γDW , i.e., P = γDW ε. This is needed to incorporate
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turbulence excitation effects. On the LHS, a diffusive energy flux Γε = −Dε∂rε = −lmix
√

ε∂rε

represents turbulence spreading. The flux Γε can be traced back to the nonlinear convective

terms in the initial Hasegawa-Wakatani system.

Since the density response in CSDX is weakly non-adiabatic, we then calculate turbulent

fluxes using quasilinear theory. In the near adiabatic limit, the expression for the particle flux is

given by[HDAT17]

Γ = ⟨ñṽr⟩=−νei⟨ṽ2
r ⟩

k2
z v2

T he

k2
⊥ρ2

s

1+ k2
⊥ρ2

s

dn
dr

=−D
dn
dr

. (5.5)

Here D is the particle diffusion coefficient, and is equal to:

D =
k2
⊥ρ2

s

1+ k2
⊥ρ2

s

νei⟨ṽ2
r ⟩

k2
z v2

T he
≃ νei

k2
z v2

T he
ε.

νei and vT he are the electron-ion collision frequency and the electron thermal velocity, respec-

tively.

In addition to the particle flux, an expression for the azimuthal momentum flux is needed.

In the near adiabatic limit, and using quasi linear theory, the azimuthal momentum flux is equal

to:

⟨ṽrṽθ⟩=−χθ∂rVθ +ΠRes
rθ . (5.6)

The first term is the diffusive flux, while the second term is the residual component that acceler-

ates the zonal flow from rest. The pinch term that arises from toroidal effects is neglected for the

cylindrical geometry of the experiment. The turbulent viscosity and the residual stress are given

as [HDT]

χθ =
|γ|⟨ṽ2

r ⟩
|ω|2 = τc⟨ṽ2

r ⟩= lmix
√

ε,

ΠRes
rθ =− |γ|ω∗⟨ṽ2

r ⟩
|ω|2 =−⟨ṽ2

r ⟩τccs

ρsLn
=− lmix

√
εωci

Ln
.

(5.7)

In this study, the Er ×B flow shearing rate is less than turbulence frequency, i.e., V ′
E ≪ ω, so
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the term ℑ 1
ω−kV ′

E x+iγ reduces to |γ|
|ω|2 . The azimuthal residual stress and χθ thus decouple from

azimuthal flow shear.

The axial Reynolds stress is given as [HDT]

⟨ṽrṽz⟩=− |γ|⟨ṽ2
r ⟩

|ω|2
∂Vz

∂r
+ ⟨kθkz⟩ρsc3

s

[ |γ|
|ω|2 +

νei(ω∗e −ωr)

|ω|k2
z v2

T he

]
. (5.8)

The non-diffusive component, i.e, the residual stress ΠRes
rz , drives the intrinsic axial flow, and is

proportional to the correlator ⟨kθkz⟩. We thus write the following expressions for the parallel

turbulent diffusivity χz, and ΠRes
rz :

χz =
|γ|⟨ṽ2

r ⟩
|ω|2 = τc⟨ṽ2

r ⟩= lmix
√

ε,

ΠRes
rz = ⟨kθkz⟩ρsc3

s

[
τc +

νeiρ2
s k2

⊥
k2

z v2
T he

]
= ⟨kθkz⟩ρsc3

s

[ lmix√
ε
+

νeiρ2
s k2

⊥
k2

z v2
T he

]
.

(5.9)

Note that in order to obtain ΠRes
rz , we used the expressions for both electron drift frequency ω∗e

and eigenfrequency ωr = ω∗e/(1+ k2
⊥ρ2

s ) in the adiabatic limit. Here, the axial residual stress

and χz also decouple from V ′
E , since Er × B flow shearing rate is much less than drift wave

turbulence frequency in CSDX.

ΠRes
rz contains an expression for ⟨kθkz⟩, which is not easily determined within the scope

of this simple, reduced model. To calculate the correlator, we need a spectral model considering

the evolution of ⟨kθkzε⟩, which can be obtained from wave momentum equations. This is beyond

the scope of this work. Thus, what we offer here is an empirical approach that relates free energy

source, ∇n, to the axial flow shear ∂rVz. The correlator ⟨kθkz⟩ is then expressed in terms of a

coefficient that can be used in numerical studies, which is determined as follows. Proceeding in

analogy with the treatment of turbulence in pipe flow, the evolution of the fluctuation parallel

ion flow is written as
dṽz

dt
=−c2

s ∇z

[
eφ̃
T

+
P̃
P0

]
− ṽr

∂Vz

∂r
,
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where cs denotes the sound speed, ṽr is the eddy radial velocity, P̃ is the pressure fluctuation,

and φ̃ is the potential fluctuation. In a drift wave system with adiabatic electrons like CSDX,

one has eφ̃/T ∼ ñ/n0 and P̃/P0 ∼ ñ/n0 as temperature fluctuations are small in this experiment.

By introducing the radial mixing length lmix by the familiar relation ñ/n0 ∼ lmix|∇n|/n0, the

fluctuating parallel flow then can be written as

ṽz ≈−σvT
c2

s l2
mix

Lzṽr

|∇n|
n0

− lmix
∂Vz

∂r
.

Here Lz is the characteristic parallel dimension. The constant σvT is introduced as a dimension-

less scaling between ṽz and the density gradient ∇n. Multiplying by ṽr and ensemble averaging,

the parallel Reynolds stress then becomes:

⟨ṽrṽz⟩=−χz
∂Vz

∂r
−σvT

c2
s ⟨l2

mix⟩
Lz

|∇n|
n0

While the first term represents a diagonal diffusive turbulent viscosity with χz ∼ ⟨ṽ2
r ⟩τc ∼ lmix

√
ε,

the remaining part is the residual stress ΠRes
rz , proportional to ∇n. The coefficient σvT is written

as

σvT =
⟨kθkz⟩

⟨k2
⊥⟩1/2/L∥

.

This coefficient captures the cross phase relation between ṽr and ṽz, and calibrates the efficiency

of the density gradient in driving the residual stress ΠRes
rz . σvT is also a measure of asymmetry in

the spectral correlator ⟨kθkz⟩= ∑k kzkθ
∣∣̂φk
∣∣2 /∑k

∣∣̂φk
∣∣2, and encodes information concerning the

parallel symmetry breaking that creates the residual parallel stress. An empirical value for σvT ,

which can be used in the numerical solution of this model, can be obtained by a least-square fit

to the experimental results.

Most of the conventional symmetry breaking mechanisms [DKG+13b, GDH+10b] are

not applicable to plasmas with weak or zero magnetic shear, since they are usually associated

86



with finite magnetic shears. To resolve this issue, a dynamical symmetry breaking mechanism

has been proposed to explain the development of intrinsic axial flow in absence of magnetic

shear. [LDXT16b] This mechanism does not require a specific magnetic field configuration,

and thus it is valid for both finite shear and zero shear regimes. This mechanism is effectively

equivalent to the modulational growth of a seed axial flow shear, as in zonal flow generation. In

both cases, the initial breaking of symmetry is due to the seed flow.

The dynamical symmetry breaking model [LDXT16b] was derived from a drift wave

system with evolution of axial flow. The axial mean flow introduces a frequency shift to the

growth rate of drift wave, i.e.,

γk ∼=
νeiω∗e

k2
z v2

The

ω∗e −ωk

(1+ k2
⊥ρ2

s )
2 . (5.10)

The adiabaticity of the electron response is measured by the dimensionless factor α≡ k2
z v2

T he/νeiω∗e,

where ω∗e ≡ kθρscs/Ln is the electron drift frequency. As electrons approach the adiabatic

limit, i.e., α → ∞, drift wave is stabilized yielding γk → 0. In CSDX, electrons are weakly

non-adiabatic with α ∼ 1.

A test axial flow shear δV ′
z , i.e., a perturbation to the mean axial flow profile, can break

the symmetry of drift wave turbulence through the frequency shift. The frequency of drift wave

is affected by the test flow shear, which is

ωk ∼=
ω∗e

1+ k2
⊥ρ2

s
−

kθkzρscsδV ′
z

ω∗e
. (5.11)

The test flow shear modifies the drift wave growth rate, i.e.,

γk ∼=
νei

k2
z v2

The

ω2
∗e

(1+ k2
⊥ρ2

s )
2

(
k2
⊥ρ2

s

1+ k2
⊥ρ2

s
+

kθkzρscsδV ′
z

ω2
∗e

)
. (5.12)

For a given δV ′
z , the drift wave modes with kθkzρscsδV ′

z > 0 have a larger frequency shift than

the other modes. Thus, these modes grow faster. As a result, a spectral imbalance in the kz − kθ
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spectra is induced by the test flow shear. Such asymmetry in turbulence spectra can be detected

by a joint probability density function of the turbulent velocities in both axial and azimuthal

direction. The measurements of spectral imbalance are reported and linked to finite residual

stress in this work.

The residual stress set by this dynamical symmetry breaking mechanism provides a

negative definite contribution to the total turbulent diffusivity of axial momentum flux, i.e.,

ΠRes
r,z = −χRes

z δV ′
z where χRes

z < 0. The negative momentum diffusivity induced by residual

stress is

χRes
z =−νeiL2

n
v2

The
∑
k
(1+ k2

⊥ρ2
s )(4+ k2

⊥ρ2
s )|φk|2. (5.13)

Thus, the total Reynolds stress is

Πr,z =−
(
χz −

∣∣χRes
z
∣∣)V ′

z . (5.14)

This process of self-amplification of test flow shear suggests that intrinsic axial flow is

generated through a modulational instability. When the magnitude of the negative viscosity

exceeds the turbulent viscosity driven by drift wave, the total Reynolds stress induces a negative

diffusion of axial momentum, thus amplifying the perturbation. In this case, the test shear (i.e.,

the modulation of mean flow shear profile) becomes unstable. The growth rate of test flow shear

is γq = q2
r
(∣∣χRes

z
∣∣−χz

)
, where qr is the radial mode number of flow shear modulation.

The onset threshold of axial flow generation is determined by the balance between resid-

ual stress and the turbulent diffusion driven by drift waves. Hence, the ∇n/n0 threshold can be

obtained from
∣∣χRes

z
∣∣= χz. The turbulent viscosity driven by drift wave turbulence is calculated

using

χz ∼
⟨l2

c ⟩
τc

, (5.15)

where lc is the eddy correlation length and τc is the eddy correlation time. The critical density
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gradient is then

∇ncrit ∼ n0α ω2
∗e

⟨kθkz⟩ρscs

Lz

c2
s τc

. (5.16)

Plugging in parameters measured on CSDX, we can obtain ∇ncrit ∼ 1.5×1020 m−4, which agrees

with the experimental measurements presented below. Here, α = k2
z v2

The/ω∗eνei ∼ 1 is the adia-

baticity factor, the perpendicular turbulence scale length is kθρs ∼ 1.5, and the eddy correlation

time is τc ∼ 6×10−5 s.

The density gradient threshold can also be obtained by using the scaling coefficient σvT

of residual stress. The residual stress scales with ∇n as ΠRes
r,z ∼ σvT ⟨l2

c ⟩c2
s/(LnLz). Thus, σvT is

determined by the correlator ⟨kθkz⟩, i.e., σvT = ⟨kθkz⟩/⟨k2
θ⟩. Considering the symmetry breaking

set by a test flow shear, we can calculate the correlator and thus the coefficient, as

σvT =
1
α
⟨kθkz⟩ρscsδV ′

z
ω2
∗e

. (5.17)

Thus, by using the balance between residual stress and turbulent diffusion, i.e., ΠRes
r,z = χzδV ′

z ,

we can also obtain the critical density gradient for onset of axial flow generation, which is the

same as Eq. (5.16).

Though the theory explains how axial flows are generated in the linear stage, the non-

linear evolution of the axial flow is not captured. Further, how axial flows saturate remains an

open-ended question. The axial flow can saturate due to the balance between residual stress and

turbulent diffusion, as χzV ′
z = ΠRes

r,z . The theory presented here focuses on the stage where the

test flow shear is small, such that the leading order of the residual stress is δΠRes
r,z ∼ |χRes

z |δV ′
z .

Thus, the axial flow saturates when χz = |χRes
z |. Ultimately, the flow energy is dissipated by

viscous heating and drag dissipation.

In summary, for regimes of moderate azimuthal shear (i.e., |V ′
θ| ≪ ωk), theory predicts

that:

(1) drift wave fluctuations and azimuthal (i.e., zonal) flows will form a self-regulating system;
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(2) axial flows will evolve parasitically by Reynolds stress, on the existing drift wave–zonal

flow turbulence. Here, the key point is ΠRes
r,θ ≫ ΠRes

r,z , as k⊥ ≫ kz;

(3) symmetry breaking in the kθ–kz space is required for axial flow generation.

(4) Sheared intrinsic axial flows will be generated when the density gradient exceeds a pre-

dicted critical value.

Now, we turn to tests of these predictions.

5.3 Experimental Setup

In this section, we present the experimental methodology for testing the predictions of

model in Section 5.2. The experiments were conducted on the Controlled Shear Decorrelation

eXperiment (CSDX), a linear plasma device with an overall length of 2.8 m and a diameter

of 0.2 m (Fig. 5.1). The working gas was argon at a gas fill pressure of 2 mTorr. The argon

plasma was produced by a 15 cm diameter 13.56 MHz RF helicon wave source via an m = 1

helical antenna that surrounds a glass bell-jar, and was terminated by insulating end-plates at

both ends. The uniform magnetic field is in the axial direction (denoted as the −ẑ direction). In

this study 1800W of power was used, and the magnetic field strength was varied from 500 G to

1000 G. A higher magnetic field results in a steepening of the density profile in CSDX.[BTA+05,

TBC+14a] Typical plasma parameters are as follows: the peak on-axis electron density of ne ∼

1× 1019m−3, the electron temperature of Te ∼ 3− 5 eV, and the ion temperature of Ti ∼ 0.3−

0.8 eV. More details on this device can be found in previous publications.[BTA+05, TBC+14a,

TGM+16]

A horizontal scanning probe was used to record basic plasma information such as ion

saturation currents and floating potentials at port α that is about 1 m downstream from the helicon

source. The probe array is a combination of Mach and Langmuir probes and is capable of
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Heating

Figure 5.1: Schematic of CSDX with probe and fast imaging diagnostics.

measuring the axial and radial plasma velocities simultaneously (Fig. 5.2). The axial velocity,

vz, was measured by a Mach probe which has two tips aligned along the axial direction and

separated by insulators. The axial velocity, according to the fluid model of ion collection by

absorbing objects in combined parallel and perpendicular flows, [Hut08, PH09] can be given by

vz = Mcs = 0.45cs ln
(

Ju
Jd

)
, where cs =

√
Te/mi is the sound speed and Ju,d are the ion saturation

fluxes collected by two Mach probe tips at the up- and down-stream side. We were careful

to use small enough tips to avoid probe shadowing effects that can give spurious axial flow

measurements, and verified that the mean flow profile measured by the Mach probe agreed with

laser-induced flourescence measurements of the same ion flow. The fluctuating E×B velocities

are estimated from the floating potential gradients between two adjacent tips (∇φ̃f), i.e., ṽr =

−∇θφ̃f/B and ṽθ = ∇rφ̃f/B. The distance between two adjacent floating potential tips is about

3 mm. The sampling rate of the probe data is fs = 500 kHz which is well above the frequency

of the observed dominant fluctuations ( f < 30 kHz) in our experiments. [TBC+14a] With this

probe configuration, the axial Reynolds stress ⟨ṽzṽr⟩ and the azimuthal Reynolds stress ⟨ṽθṽr⟩

can be measured simultaneously. Similar probe configurations have also been employed in other

investigations on the structures of parallel ion flows. [IKK+16, KIK+16]
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(a)

(b)

Figure 5.2: (a) Schematic of the 6-tip probe array. Pink tips are negatively biased to measure
the ion saturation currents; blue tips measure the floating potentials. (b) Photo of the 6-tip
probe array.
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5.4 Results: Evolution of Profiles

5.4.1 Enhanced Shear Flows

In this study, we obtained different equilibrium profiles and fluctuation intensities by

changing the magnetic field strength B. As shown in Fig. 5.3(a), when the B field is raised, the

plasma density and its radial gradient increases. During the B scan, the variation in electron

temperature is negligible. The axial velocity reverses at edge, and its radial shear increases with

increasing B field (Fig. 5.3(b)). The axial Reynolds stress, ⟨ṽzṽr⟩ (Fig. 5.3(c)), is estimated using

velocity fluctuations in the frequency range of 2 < f < 30 kHz; previous studies have identified

these as collisional drift wave fluctuations.[BTA+05, TBC+14a] ⟨ṽzṽr⟩ is negligible for r < 3

cm at lower B field, but becomes substantially negative at higher B field (Fig. 5.3(c)). The

Reynolds force, F Re
z =−∂r⟨ṽzṽr⟩ (Fig. 5.3(d)), increases significantly in the core, and becomes

more negative at the edge (3 < r < 6 cm). This negative turbulent force at the edge appears

to be matched with the reversed axial mean flow. The parallel Reynolds force is about 5 times

larger than the force on the ions arising from the parallel electric field. This weak electric field

arises from the Boltzmann equilibrium associated with the electron pressure drop along the axial

direction (Fig. 5.3(e)). Thus, the axial shear flow in CSDX reported here is primarily driven by

the turbulent Reynolds force.

In addition to the evolution of the axial flow, the changes in azimuthal flow has also been

measured simultaneously during the B scan. As can be seen from Fig. 5.4(a), the mean azimuthal

velocity, Vθ, propagates in the electron diamagnetic drift direction (EDD), which is negative in

the figure. The magnitude of Vθ increases by a factor of two when B is raised from 500 G to 800

G. The azimuthal Reynolds stress, ⟨ṽrṽθ⟩, is also estimated using fluctuations in the frequency

range of 2 < f < 30 kHz. ⟨ṽrṽθ⟩ is small and flat at lower B, but its magnitude increases when B

is increased (Fig. 5.4(b)). The change in ⟨ṽrṽθ⟩ gives rise to substantial turbulent Reynolds force,

F Re
θ = −∂r⟨ṽrṽθ⟩ (Fig. 5.4(c)) at higher B. This turbulent force acts to reinforce the azimuthal
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Figure 5.3: Equilibrium profiles of (a) the plasma density, (b) the axial mean flow, (c) the
axial Reynolds stress, (d) the axial Reynolds force, and (d) the axial force arises from electron
pressure drop.
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Figure 5.4: Radial profiles of (a) mean azimuthal velocity, (b) azimuthal Reynolds stress ⟨ṽrṽθ⟩,
and (c) azimuthal Reynolds force F Re

θ =−∂r⟨ṽrṽθ⟩.

flow shear at the edge (r ≈ 4 cm). These observations indicate that the azimuthal mean flow,

similar to the axial mean flow, increases due to its enhanced turbulent drive. The turbulence-

driven azimuthal flow has been reported from previous studies in CSDX.[HYJ+06, YXD+10b,

XTD+11b] These recent observations here are consistent with earlier results.

5.4.2 Axial Force Balance Analysis

To confirm the role of Reynolds force in driving the axial flow, we also examined the

force balance in axial direction. The azimuthal force balance has been performed in previous

studies.[HYJ+06] It confirms that the azimuthal mean flow can be reproduced with azimuthal

Reynolds force and collisional damping effects. Here, we carry out similar analysis on the axial
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flow. The axial ion momentum equation is written as

1
r

∂
∂r

(r⟨ṽzṽr⟩) =− 1
mi⟨n⟩

∂Pe

∂z
−νinVz +

1
r

∂
∂r

(
µiir

∂Vz

∂r

)
, (5.18)

where the ion viscosity µii =
6
5ρ2

i νii ∼ 3 − 5m2/s and ion-neutral collision frequency νin =

ngasvtiσin ∼ 3−6×103 s−1 are estimated from previous studies. [HYJ+06] µii and νin are likely

to have weak spatial variations, i.e., µii ∝ nT−1/2
i and νin ∝ T−1/2

i . Here, we assume the neutral

pressure is radially uniform and the neutral temperature is approximated by the ion temperature

profile, which has been measured using LIF techniques in previous studies. [TGM+16] A no-

slip boundary condition is also imposed, justified by strong ion-neutral damping at edge, i.e.,

Vz → 0 at r = 6 cm. Taking the measured profiles of the Reynolds stress and the axial pressure

gradient shown in Fig. 5.3, we can then solve Eq. (5.18) for Vz using a finite difference method.

The axial pressure force can also be ignored at higher B field, since it is smaller than turbulence

force by a factor of 5. As shown in Fig. 5.5, the calculated results (curves) are in agreement with

the mean axial ion flow profiles measured by the Mach probe (circles). This results confirms that

the turbulent stress is responsible for the increased V ′
z and flow reversal found at higher magnetic

field.

5.5 Results: Density Gradient Scalings

5.5.1 Turbulent Drive Scales with Density Gradient

The magnetic field scan yields a clear rise in ∇n, which is much larger than ∇Te and

has been identified in previous work as the primary free energy source driving the fluctuations.

[BTA+05, TBC+14a] This change presents us an opportunity to determine the link between

∇n, the turbulent drive, and the macroscopic intrinsic flow. In this study, we did a shot-by-

shot B field scan, and used the Reynolds power, P Re
z = −⟨Vz⟩∂r⟨ṽzṽr⟩, to represent the rate
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Figure 5.5: Radial profiles of mean axial velocity predicted by force balance with F Re
z ≫

− ∂zPe
min (solid line) and measured Mach probe (circles) at 500 G (a) and 800 G (b). Shaded area

indicates the uncertainties of predicted Vz profile.
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Figure 5.6: The magnitude of axial flow shearing rate |∂rVz| (a), the volume-averaged axial
Reynolds power P av

z (b), azimuthal flow shear |∂rVθ| (c), and azimuthal Reynolds power P Re
θ

(d) are plotted against the density gradient ∇ne.

of work performed by the turbulent fluctuations on the mean axial flow. The axial shear flow

and the Reynolds power are plotted as a function of ∇n (Fig. 5.6). The magnitude of axial

flow shearing rate, |V ′
z | = |∂rVz|, increases sharply when the density gradient exceeds a critical

value, ∇ne ! 1.6× 1020 m−4 (Fig. 5.6(a)). This critical density gradient is in agreement with

the theoretical prediction shown in Eq. (5.16). Concurrently, the Reynolds power also increases

substantially when this threshold is exceeded (Fig. 5.6(b)). Here, we used volumed-averaged

Reynolds power, P av
z =

∫
−⟨Vz⟩∂r⟨ṽzṽr⟩rdr/

∫
rdr where 1 < r < 5 cm. These observations

show that the axial shear flow and its Reynolds power increase consistently as ∇n increases,

indicating that the turbulence acts as a converter, transferring the free energy to the intrinsic flow.

These results are consistent with the heat engine model. [KDG10b] Here, the free energy due to

∇n is converted into kinetic energy of macroscopic parallel flow.
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The azimuthal flow and its turbulent drive are also driven by the density gradient. Similar

to the analysis of the axial flow case, we use the azimuthal Reynolds power, P Re
θ =−⟨Vθ⟩∂r⟨ṽrṽθ⟩,

to represent the nonlinear kinetic energy transfer into the mean azimuthal flow. We then plot the

axial flow shear and azimuthal Reynolds power as a function of the density gradient. As shown

in Fig. 5.6(c), there is a clear threshold effect in the density gradient, which is the same as the

axial flow case. After the threshold, the azimuthal flow shear,
∣∣V ′

θ
∣∣= |∂rVθ −Vθ/r|, and the az-

imuthal Reynolds power, P Re
θ , increase with the density gradient ∇n (Fig. 5.6(d)). The similar

trends of V ′
θ and P Re

θ suggest that the underlying turbulence also converts the free energy from

the density gradient into kinetic energy of azimuthal mean flow.

The results above show that both the axial and azimuthal mean flows are turbulence-

driven in CSDX. However, the nonlinear kinetic energy transfer to the two secondary shear flows

are not equally distributed. The axial Reynolds power is smaller than the azimuthal one by an or-

der of magnitude, i.e., P Re
z ≪ P Re

θ , since kz ≪ k⊥ for turbulent fluctuations in CSDX. Therefore,

we conclude that the azimuthal shear flow sets the turbulent fluctuation level through predator-

prey type interaction, while the axial flow evolves in this intensity field. The disparate magni-

tudes of nonlinear energy transfer also suggest that there is no significant direct energy exchange

between axial and azimuthal shear flows. The axial flow is then parasitic to the turbulence-zonal

flow system, and is driven by the turbulent Reynolds stress, especially the non-diffusive, residual

stress. The weak axial to azimuthal flow coupling allows us then to simplify the 4-field model

in Section 5.2 to a 2-field predator-prey model.

5.5.2 Residual Stress Driven by Density Gradient

As discussed in Section 5.2, it is the residual stress that converts the thermodynamic free

energy to the kinetic energy of the axial mean flow.[DKG+13b, LDXT16b] The residual stress

can be synthesized from the measured Reynolds stress (Fig. 5.3(c)) and the diffusive stress in-

ferred from experimental measurements,[YXD+10b] i.e., ΠRes
rz = ⟨ṽrṽz⟩+χz∂rVz with the diffu-
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Figure 5.7: Radial profiles of the synthesized residual stress at different magnetic fields.

sivity χz = ⟨ṽ2
r ⟩τc expressed in terms of the measured eddy radial velocity ṽr and eddy correlation

time. Here, the pinch term (VpVz) is ignored, since it arises from toroidal effects and thus is not

significant in a linear device. As shown in Fig. 5.7, the magnitude of the synthesized residual

stress increases as the B field, as well as ∇n, is increased.

The magnitude of the residual stress, ΠRes
rz , is then plotted against the normalized density

gradient in Fig. 5.8. At smaller density gradient, the magnitude of residual stress,
∣∣ΠRes

rz
∣∣, is small,

and is almost independent of the normalized density gradient. At larger ∇n,
∣∣ΠRes

rz
∣∣increases in

proportion to the normalized density gradient, with a slope σvT ≈ 0.10. Here,
∣∣ΠRes

rz
∣∣is volume-

averaged in the range of 1 < r < 5 cm. This finding confirms the hypothesis that the residual

stress is driven by the density gradient. Also, a finite σvT ≈ 0.1 indicates a symmetry breaking

mechanism at higher ∇n.

5.5.3 Effect of Azimuthal Flow Shear on Residual stress

The above observations have demonstrated the coexistence of turbulence-driven shear

flows in both axial and azimuthal directions. It is also shown that the azimuthal Reynolds power

is much larger than its axial counterpart. Therefore, the azimuthal flow primarily determines
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Figure 5.8: Comparison between magnitudes of residual stress and normalized density gradi-
ent. The coefficient, σvT , is estimated to be about 0.10 by a least-square fit using data with
higher ∇n.

the turbulence intensity via a predator-prey type interaction, and axial flows are parasitic on this

system. As shown in Fig. 5.9, the axial flow shear V ′
z and the magnitude of the residual stress

∣∣ΠRes
rz
∣∣are plotted against the azimuthal flow shear. As azimuthal flow shear is entangled with ∇n

during the B scan, V ′
z (Fig. 5.9(a)) and

∣∣ΠRes
rz
∣∣increases (Fig. 5.9(b)) with V ′

θ. Since in present

experiments the azimuthal flow shear is less than the frequency of drift wave turbulence, i.e.,

V ′
E ≪ ω, the axial residual stress does not depend explicitly on the azimuthal shear flow.

5.6 Results: Residual Stress Restuls from Symmetry Break-

ing in Turbulence Spectra

The development of residual stress is also proposed to be correlated with symmetry break-

ing in k-space, [DKG+13b] i.e., ⟨kzkθ⟩ = ∑k kzkθ
∣∣̂φk
∣∣2 /∑k

∣∣̂φk
∣∣2 ̸= 0. The symmetry breaking

can be assessed by investigating the joint probability density function (PDF) of radial and axial

velocity fluctuations, P(ṽr, ṽz). Note that in CSDX we have ṽz ∼ ∇∥P̃ ∼ kzφ̃ and ṽr ∼ kθφ̃, due

to the adiabatic electron response and negligible temperature fluctuations. By normalizing the
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Figure 5.9: Axial flow shear (a) and magnitude of axial residual stress (b) plotted as a function
of azimuthal flow shear.
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Figure 5.10: Joint PDF of radial and axial velocity fluctuations, P(ṽr, ṽz), at different magnetic
fields at r ≈ 3 cm. Normalization is the standard deviations.

velocity fluctuations using their standard deviations, P(ṽr, ṽz) can represent the correlator ⟨kzkθ⟩.

As shown in Fig. 5.10, the anisotropy of P(ṽr, ṽz) grows with increasing B field strength and

∇n. The critical density gradient occurs at B ≈ 650 G, and P(ṽr, ṽz) starts to tilt (Fig. 5.10(b))

at slightly higher B and ∇n. At higher ∇n, P(ṽr, ṽz) is strongly elongated along the diagonal,

suggesting large asymmetry in ⟨kzkθ⟩.

As proposed by the dynamical symmetry breaking model,[LDXT16b] the mean axial

flow shear modifies the drift wave growth rate, by introducing a frequency shift proportional

to kzkθV ′
z . In our experiments, the seed axial flow shear is negative, V ′

z < 0, because Vz(r) is

initially driven by the axial pressure drop and hence decreases from the core to the edge. As a

result, the modes with ⟨kzkθ⟩< 0 grow faster than modes with ⟨kzkθ⟩> 0, and eventually become

dominant. This in turn induces a spectral imbalance, with predominance of the spectral intensity

in quadrants II and IV of the kθ−kz plane, as shown in the right panel of Fig. 5.11. The predicted

spectral imbalance, ⟨kθkz⟩< 0, is consistent with the tilted contour of P(ṽr, ṽz), as shown in left

panel of Fig. 5.11. Since larger residual stress occurs at higher ∇n, we can therefore infer that

this symmetry breaking is related to a finite residual stress.
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Figure 5.11: Measured joint PDF P(ṽr, ṽθ) (left) and prediction of spectral imbalance in kz−kθ
plane by the dynamical symmetry breaking model (right).

5.7 Conclusions

In this work, we study axial and azimuthal flow dynamics in drift wave turbulence in

CSDX. We focus on possible interactions between azimuthal and axial flows. The principal

results of this study are:

• Turbulent azimuthal Reynolds stresses ⟨ṽrṽθ⟩ drive zonal flows which regulate the turbu-

lence.

• Turbulent axial Reynolds stresses ⟨ṽrṽz⟩ drive axial flows–akin to intrinsic rotation. How-

ever, the azimuthal Reynolds power is much larger than the axial Reynolds power, i.e.

P Re
θ ≫ P Re

z , so one may regard the axial flow evolution as parasitic to the drift wave–zonal

flow system. This is consistent with the observation that V ′
θ ≪ ωk (i.e. moderate azimuthal

flow shear) and thus there is no transport barrier.

• Spectral symmetry breaking was observed and measured–i.e., ⟨kθkz⟩ ̸= 0. The observed

broken symmetry is consistent with that required for axial flow generation. The symmetry

breaking is dynamical, and is not produced by magnetic field geometry.

• Azimuthal and axial flows scale with ∇n, consistent with the scenario of the engine model

of the system.

• Experimental results support the predictions of the reduced model discussed in this paper.
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We emphasize that conclusions pertinent to azimuthal–axial flow coupling are limited to

magnetic field in range from 500 G to 1000 G. In this range, V ′
θ ≪ ωk and L−1

Vz
≪
(

LPSFI
Vz

)−1
,

which are fundamental to the system dynamics observed and modeled here.

Chapter 5 has been submitted for publication of the material as it may appear in R. Hong,

J. C. Li, R. Hajjar, S. Chakraborty Thakur, P. H. Diamond, and G. R. Tynan, “Generation of

Parasitic Axial Flow by Drift Wave Turbulence with Broken Symmetry: Theory and Experi-

ment”, Physics of Plasmas (2018), American Institute of Physics. The dissertation author was

the primary investigator and author of this article.
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Chapter 6

Another Look at Zonal Flow Physics:

Resonance, Shear Flows and Frictionless

Saturation

6.1 Introduction

Zonal flows (ZF) are very effective at regulating drift wave (DW) turbulence, as they

are the secondary modes of minimal inertia, transport, and damping[DIIH05b, GD15]. Such a

mechanism naturally can be thought of as an element in a ‘predator–prey’ type ecology[DLCT94,

KGD15], in which the secondary ‘predator’ feeds off (i.e., extracts energy from) of the primary

‘prey’. In such a system, the damping of the predator (here, the ZF) ultimately regulates the full

system. Frictional drag, due to collisions, is usually invoked to damp ZF. However, this picture

is unsatisfactory for present day and future regimes of low collisionality. Thus, it becomes es-

sential to understand frictionless ZF saturation and its implications for drift wave turbulence. Of

course, ZF saturation significantly impacts transport and turbulence scalings. Note that under-

standing scalings in the frictionless regime is essential for developing reduced models thereof.
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As zonal flow shear reduces the turbulent mixing scale, the saturated zonal flow is coupled to

the scaling of turbulent diffusivity with ρ∗ ≡ ρs/Ln. This is related to the degree of gyro-Bohm

breaking[MPW+01], i.e. the exponent α in D ∼ DBρα
∗ , where DB ≡ kBT/16eB is Bohm diffu-

sivity and α < 1 indicates gyro-Bohm breaking.

Related to zonal flow saturation, we note that strong resonance between drift waves and

azimuthal (i.e., zonal) flow is observed in a linear device CSDX (Controlled Shear Decorrelation

eXperiment), i.e. ωk − kθ⟨vθ⟩ ≪ ω∗e, with ω∗e being the electron drift frequency. CSDX is a

well-diagnosed venue to study the interaction between turbulence and turbulence driven flows in

straight magnetic fields[XTD+11a, CAT+16]. Though resonance is manifested most clearly in

the linear device, it has more general implications for confinement devices.

Wave-flow resonance enters turbulence regulation by zonal flows both linearly and non-

linearly. Resonance alters our understanding of the shear suppression mechanisms. To this end,

the effects of E ×B shear flows on turbulence have been intensively studied. However, simpli-

fied shear suppression models are not universally applicable. In some limits, weak flow shear

can even destabilize turbulence due to the coupling of radial eigenmodes[WDR92]. Moreover,

flow shearing alone is not the only parameter that characterizes all effects of flow structure on

turbulence[WJGH92]. For example, wave-flow resonance stabilizes turbulence through wave

absorption[WDR92, CSD+92]. Yet, resonance is often overlooked by many existing shear sup-

pression models.

Resonance also suggests saturation mechanisms for zonal flows. Many works on zonal

flow generation[DIIH05b, GD15, GHD15, GD16] exist, but the question of how zonal flows

saturate, absent frictional drag, remains open. Though sometimes mentioned in this context,

tertiary instability is not effective for most cases of ZF saturation as it is strongly suppressed by

magnetic shear. Indeed, in simulation studies, onset of tertiary instability requires an artificial

increase in the ZF shearing rate[RDK00] so as to overcome the stabilizing effects of magnetic

shear. Ion temperature gradients can provide an extra source of free energy to drive the tertiary

107



mode, in addition to flow shear. However, such a contribution to the growth rate of the tertiary

mode is of order O(k2ρ2
i ), and thus does not qualitatively alter tertiary stability[KD02]. Tertiary

instability of ZF may occur in flat-q regimes[MAC+11a] with zero magnetic shear. Even there,

the key question of just how much turbulent mixing and flow damping result remains to be

addressed.

In this work, we discuss the role of wave–flow resonance in zonal flow dynamics. Specifi-

cally, we investigate whether the conventional shear suppression rules still hold true when wave–

flow resonance is considered. In addition, we study how resonance enters zonal flow regulation.

In particular, we seek to answer the following questions:

(1) How do zonal flows saturate in the frictionless regime? What determines the stationary

flow scale? To what degree is the often-quoted gyro-Bohm scaling broken?

(2) How do we incorporate the resonance effect in a predator–prey model? How is this new

model different from previous ones?

We find that flow shear can destabilize the drift wave turbulence through the resonance.

This contradicts the conventional wisdom that the flow shear always suppresses turbulence. Res-

onance between drift wave and plasma flow suppresses the instability by wave absorption. In-

creasing the flow shear, with fixed flow magnitude, can weaken the resonance. Consequentially,

the flow shear increment actually destabilizes the drift wave turbulence. This suggests that the

flow shear can affect the stability via resonance in a way opposite to what the conventional shear

suppression models predict. Thus, wave-flow resonance is an important factor to be considered

when studying shear flow effects on stability, and on quasilinear fluxes that transport particles,

vorticity, and momentum.

We study drift–ZF turbulence with special focus on the frictionless regime where the flow

drag → 0. Note that the DW drive–which can depend on electron collisionality–is not affected

by the distinction between frictional and frictionless ion regimes, since frictional damping of

108



Figure 6.1: Frictionless zonal flow saturation by (a) tertiary instability and (b) resonant vortic-
ity diffusion.

drift waves is weak. Many works on ZF generation[DIIH05b, GD15] exist, but the question

of how ZF saturates, absent frictional drag, remains open. We show that turbulent mixing of

zonal vorticity by drift waves in the presence of ZF saturates secondary flows for near-marginal

turbulence (with low to zero frictional drag), and thus is effective at regulating the Dimits up-

shift regime. The Dimits regime[DWBC96, DIIH05b] is that of a frictionless DW–ZF system

close to the linear instability threshold, where nearly all the energy of the system is coupled

to ZF, so that the residual transport and turbulence are weak, though finite. This induces an

up-shift in the onset of the turbulent fluxes when plotted vs ∇T . Turbulent vorticity mixing is

fundamentally different from viscous flow damping. Turbulent vorticity mixing conserves total

potential enstrophy (PE) between the mean field–i.e., the zonal component–and fluctuations. In

contrast, the flow viscosity dissipates both the ZF and (DW flow) fluctuations, and so is an energy

sink for all. Fig. 6.1 illustrates the paradigm shift from the hypothetical saturation induced by

tertiary instability to the saturation by vorticity mixing.

The ZF saturation mechanism induced by resonant vorticity mixing is incorporated as a

nonlinear self-regulating effect in an extended predator-prey model[KGD15, DLCT94]. Station-

ary turbulence and flow states are calculated and compared in the frictionless, weakly frictional,

and strongly frictional regimes. In the frictionless regime, the results are different from the

conventionally quoted scalings derived for frictional regimes.

Turbulent vorticity mixing is driven by resonance between drift wave and zonal flow. It is

analogous to Landau damping absorption of plasmons during collapse of Langmuir turbulence[GSSS77,
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Figure 6.2: Comparison of the generation and frictionless dissipation of (a) zonal flow and (b)
caviton.

CGDS17]. In the latter case, plasmon Landau damping arrests collapse, leaving an “empty cav-

ity”, without its “filling” of Langmuir wave pressure. Table 6.1 compares these two processes.

Both zonal flow formation and Langmuir collapse (i.e., the formation of caviton) result from

modulational instability, and they both saturate in the collisionless regime. Moreover, both

Landau damping and vorticity mixing conserve energy (or potential enstrophy, in the case of

vorticity mixing). The key difference between the two is the detail of the resonance. The reso-

nance considered here is between drift wave phase velocity and flow velocity, while conventional

Landau resonance considers the resonance between phase velocity and particle velocity. Landau

resonance defines a series of resonant surfaces in (x,v) phase space. When the islands around ad-

jacent surfaces overlap, the trajectory of a particle becomes chaotic, leading to mixing of phase

space density (Fig. 6.3). As a result, the particle PDF (probability density function) evolves

stochastically, i.e., as by a Fokker–Planck equation in velocity. In contrast, resonant diffusion

mixes vorticity in real space. The diffusive scattering of zonal vorticity profile is resonant. There-

fore, irreversibility results from stochastic vorticity trajectories due to overlapping islands in real

space, i.e., the (x,y) space.

The rest of this paper is organized as follows. Sec. 6.2 presents the wave-flow resonance
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Figure 6.3: Overlapping islands in phase space. The dashed lines represent resonant surfaces.

Table 6.1: Comparison and contrast of Landau damping effects on cavity collapse during Lang-
muir turbulence collapse and resonance effects on frictionless zonal flow (ZF) saturation.

Langmuir turbulence collapse Frictionless ZF saturation
Primary player Plasmon-Langmuir wave Drift wave turbulence

Secondary player Ion-acoustic wave (caviton) Zonal flow
Free energy source Langmuir turbulence driver ∇n, ∇T drive

Final state Nearly empty cavity Saturated zonal flow and resid-
ual turbulence

Resonance Landau damping ωk − ky⟨vy⟩ absorption
Other damping effects Ion-acoustic radiation Wave packet trapping
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effect on stability, specifically how the flow magnitude and flow shear affect the stability via

resonance. Sec. 6.3 discusses how zonal flow saturation in the frictionless regime is regulated

by the resonance. Sec. 6.4 summarizes and discusses the main results of this paper.

6.2 Wave-Flow Resonance Effect on Stability

Shear is not the only flow property that controls the stability of turbulence. We reconsider

the shear suppression models by incorporating the the effects of resonance. Resonance between

drift wave and flow stabilizes the turbulence via wave absorption. The flow shear weakens the

resonance, and thus actually enhances the turbulence. Also, we show that the flow magnitude

enhances the resonance, and thus, stabilizes the drift wave. The flow magnitude (Vmax) is defined

as the maximum flow velocity in the electron drift direction. Increasing Vmax reduces the value

of ωk − kVmax, and thus enhances the resonance.

We study the Hasegawa–Wakatani drift wave system in slab geometry with a mean per-

pendicular flow ⟨vy⟩ varying in the x̂ direction:

(
d
dt

+ ṽE ·∇
)

ñ+ ṽx
∇n0

n0
= D∥∇2

∥(ñ− φ̃)+Dc∇2ñ, (6.1)

(
d
dt

+ ṽE ·∇
)

ρ̃+ ṽx⟨ρ⟩′ = D∥∇2
∥(ñ− φ̃)+χc∇2ρ̃, (6.2)

where we define D∥ ≡ v2
T he/νei and d/dt ≡ ∂t + ⟨vy⟩∂y. νei is the frequency of electron–ion col-

lision and vT he is the electron thermal speed. We have normalized electric potential fluctuation

as φ̃ ≡ eδφ/Te and density fluctuation as ñ ≡ δn/n0, where n0 is the equilibrium density. The

magnetic field is in the ẑ direction, and both n0 and ⟨vy⟩ vary only in x̂ direction. The vorticity

fluctuation is ρ̃ ≡ ρscs∇2
⊥φ̃ where ρs is the ion Larmor radius at electron temperature and cs is

the ion sound speed, and the zonal vorticity is ⟨ρ⟩ ≡ ⟨vy⟩′. ṽE ≡ csẑ×∇φ̃ is the E ×B velocity

fluctuation. Dc and χc are the collisional particle diffusivity and vorticity diffusivity (i.e., vis-
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cosity). Drift wave is the dominant instability population, because the vorticity gradient drive is

quantitatively weaker than the ∇n0 drive, i.e. kyρ2
s ⟨vy⟩′′/ω∗e ≪ 1 where ω∗e ≡ kyρscs/Ln is the

electron drift frequency and Ln ≡ n0/|dn0/dx| is the density gradient scale.

In the following subsections, we show how conventional shear suppression models fail

in the presence of strong wave–flow resonance.

6.2.1 Resonance Effects on Stability

Wave-flow resonance stabilizes drift waves through wave absorption. The instability is

linked to the mode scale Lm (defined by Eq. (6.5)). The key resonance, here, is between the

phase velocity of drift waves and the fluid velocity of plasma, i.e. ωk − ky⟨vy⟩. Due to the

resonance effect, the eigenmode peaks around the position where |ωk − ky⟨vy⟩| is a minimum.

When the resonance becomes stronger, the scale of the eigenmode decreases. The mode scale is

effectively the wavelength in the x̂ direction, i.e. kxρs ∼ L−1
m ρs. Hence, the resonance regulates

the turbulent fluxes by varying the mode scale.

We can write the fluctuating quantities in Eq. (6.1)–(6.2) as Fourier components in the ŷ

and parallel (ẑ) directions, while retaining the amplitude variation in the x̂ direction, i.e.

φ̃(x,y,z, t) = ∑
ky,k∥

φ(x)ei(kyy+k∥z−Ωkt),

ñ(x,y,z, t) = ∑
ky,k∥

n(x)ei(kyy+k∥z−Ωkt).

The complex frequency Ωk consists of a real frequency and a growth rate, i.e. Ωk = ωk + iγk.

Electrons are weakly non-adiabatic, i.e. ñ = (1− iδ)φ̃ with δ ≪ 1. The nonadiabatic electron

response δ is determined by the frequency shift δ = (ω∗e −ωk + ky⟨vy⟩)/(k2
∥D∥)≪ 1, given that
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the adiabatic factor is k2
∥D∥/ω∗e ≫ 1. The eigenmode equation for φ(x) is then

(ωk − ky⟨vy⟩+ iγk)ρ2
s ∂2

xφ =
[(

1+ k2
yρ2

s − iδ
)
(ωk − ky⟨vy⟩+ iγk)−ω∗e − kyρ2

s ⟨vy⟩′′
]

φ, (6.3)

where the collisional viscosity χc has been neglected. Multiplying both sides of Eq.(6.3) by φ∗,

and integrating over the x̂ direction, we obtain

(ωk − ky⟨vy⟩+ iγk)L−2
m ρ2

s +
[(

1+ k2
yρ2

s − iδ
)
(ωk − ky⟨vy⟩+ iγk)−ω∗e

]
= 0 (6.4)

where the mode scale Lm is defined by

L−2
m ρ2

s ≡
ρ2

s
∫ Lx

0 dx|∂xφ|2
∫ Lx

0 dx|φ|2
. (6.5)

Here, we have used the boundary condition φ(0) = φ(Lx) = 0. In addition, the vorticity gradient

term is ignored in Eq.(6.4), because it is quantitatively negligible as compared to ω∗e.

The Doppler shifted frequency and the growth rate are obtained from Eq. (6.4)

ωk ∼=
ω∗e

1+ k2
yρ2

s +L−2
m ρ2

s
, (6.6)

γk ∼=
ω2
∗e

k2
∥D∥

k2
yρ2

s +L−2
m ρ2

s

(1+ k2
yρ2

s +L−2
m ρ2

s )
3
. (6.7)

When resonance becomes stronger, i.e. |ωk − ky⟨vy⟩|min decreases, the eigenmode becomes nar-

rower (mode scale Lm/ρs decreases), and thus the growth rate decreases. Therefore, stronger

resonance stabilizes the drift wave.
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6.2.2 Effect of Flow Magnitude on Stability

Increasing the flow magnitude enhances resonance, thus stabilizes the drift wave. We

consider the regime where 0 < |ωk −ky⟨vy⟩|min ≪ ω∗e. Here, the resonance is stronger, but there

is no singularity in the eigenmode equation. As ⟨vy⟩ increases, resonance is enhanced. Therefore,

increasing the flow magnitude suppresses instability.

In order to illustrate the effect of flow on the resonance, and thus on stability, we nu-

merically solve the eigenmode equation Eq. (6.3) for wave frequency ωk, growth rate γk, and

eigenmode profile φ(x). The chosen parameters are a proxy for realistic CSDX parameters,

which are Lx = 6 cm, ρs = 1.2 cm, Ln = 2 cm, kyρs = π/Lx. Dirichlet boundary conditions are

used, which are φ(0) = φ(Lx) = 0. The adiabatic factor is k2
∥D∥/ω∗e = 3, so electrons are nearly

adiabatic with δ ∼= 1/3. We use the hyperbolic tangent function to describe the flow profile,

which is

⟨vy⟩=Vmax tanh
x−0.5Lx

LV
. (6.8)

Here, the maximum flow shear is given by Vmax/LV . This allows us to vary either the flow

magnitude or the flow shear, while keeping the other fixed.

As the flow magnitude increases and the flow shear remains constant, the resonance

becomes stronger (Fig. 6.6, left panel). Hence, the mode peak moves closer to the position with

the minimum |ωk − ky⟨vy⟩|, which is at x = Lx (Fig. 6.5). As a result, instability is suppressed

(Fig. 6.6, right panel).

6.2.3 Effect of Flow Shear on Stability

Flow shear weakly destabilizes the drift wave by weakening the resonance. As a result,

the eigenmode profile is flattened (Fig. 6.7). This increases the mode scale Lm/ρs (Fig. 6.8, left

panel). Hence, the drift wave is destabilized by the flow shear (Fig. 6.8, right panel).

Note that the increment in growth rate is not due to enhanced KH instability, because KH
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drive is quantitatively negligible as compared to drift wave drive here.

6.3 Frictionless ZF Saturation by Resonant PV Mixing

In this section, we show that resonant scattering of the zonal vorticity can saturate sec-

ondary flows in the frictionless regime. This process is distinct from the tertiary mechanism.

This shift in paradigm is illustrated by the diagram in Fig. 6.1. The resonant vorticity diffusion

can saturate flows in both marginal and strong turbulence regimes. The stationary flow results

from the balance between the residual vorticity flux and the resonant scattering effect. Since both

of them scale with the turbulence intensity, the stationary flow is then independent of turbulence

strength to leading order. Therefore, this saturation mechanism is effective in the Dimits up-shift

regime, where turbulence is marginally unstable. We calculate the stationary zonal flow shear

and scale directly from analysis, and determine the degree of gyro-Bohm breaking resulting from

strong zonal flow shear.

This saturation mechanism is incorporated into a extended 0D predator–prey model. The

flow state and turbulence level are calculated for frictionless, weakly frictional, and strongly

frictional regimes, and compared to previous results. Also, we use drift wave turbulence as an

example case to calculate the saturated flow state in the frictionless regime. Study for the 0D

model lends considerable insight by enabling calculation of flow scales, and flow and turbulence

states (i.e., fixed points). However, a 1D model is necessary to study the spatiotemporal evolution

in physical systems, such as staircase formation and avalanches[DPDG+10, NCDH96].

6.3.1 Drift Wave–Zonal Flow System in the Resonant PV Mixing Frame-

work

The generation and saturation of zonal flows by drift waves are described by PV (po-

tential vorticity) mixing. The fluctuating PV is defined as q̃ ≡ ñ − ρ̃, and the zonal PV is

116



⟨q⟩ ≡ ⟨n⟩−⟨ρ⟩. Hence, the evolution equation for fluctuating PV can be obtained by subtracting

Eq. (6.2) from Eq. (6.1), yielding

(
d
dt

+ ṽE ·∇
)

q̃+ ṽx
∂
∂x

⟨q⟩= Dq,c∇2q̃. (6.9)

Here, Dq,c ∼ (Dc + χc)/2 is the collisional diffusivity of PV. In multiplying both sides of Eq.

(6.9) by q̃, we obtain the potential enstrophy (PE)–i.e., Ω ≡ ⟨q̃2⟩/2–equation[AD16, AD17]:

∂
∂t

Ω =− ∂
∂x

⟨ṽxq̃2⟩
2

−⟨ṽxq̃⟩ ∂
∂x

⟨q⟩− εcΩ3/2 + γLΩ. (6.10)

The turbulent PE flux is due to nonlinear spreading, and can be approximated as a diffusive flux,

i.e., ⟨ṽxq̃2⟩/2 ∼ −DΩ∂xΩ[AD16]. The nonlinear PE dissipation εcΩ3/2 represents the forward

cascade (to dissipation) of PE. γL is the characteristic linear growth rate of drift waves, which

drives the turbulence and thus produces PE. The coupling of PV flux and zonal PV profile gradi-

ent conserves PE between mean field and fluctuations.

The equations for mean-field density and zonal vorticity are

∂
∂t
⟨n⟩=− ∂

∂x
⟨ṽxñ⟩+Dc∇2⟨n⟩, (6.11)

∂
∂t
⟨ρ⟩=− ∂

∂x
⟨ṽxρ̃⟩−µc⟨ρ⟩−µNL⟨ρ⟩+χc∇2⟨ρ⟩. (6.12)

µc is frictional drag coefficient. The nonlinear flow damping rate µNL depends on ⟨ρ⟩, and is

set by tertiary modes, e.g. Kelvin–Helmholtz instability of zonal flows. In reality, the onset of

such tertiary modes requires the ZF shear to exceed a threshold[RDK00], in order to overcome

the damping of magnetic shear. Onset of tertiary instability can be included in reduced models,

if needed. However, here we neglect it, because the relevance of such tertiary modes to ZF

saturation in confinement devices is negligible.
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To close the system, we need to calculate the turbulence-driven fluxes. The quasilinear

PV flux is diffusive, i.e.,

⟨ṽxq̃⟩=−Dq,turb
∂
∂x

⟨q⟩, (6.13)

which is obtained from Eq. (6.9), neglecting collisional diffusion. Here, the turbulent diffusivity

of PV has a resonant part and a non-resonant part, i.e., Dq,turb = Dres
q +Dnon-res

q .

The resonant diffusivity of PV is set by the resonance between phase velocity of drift

wave and the local ZF profile, which yields

Dres
q = ∑

k
|ṽx,k|2πδ(ωk − ky⟨vy⟩), (6.14)

where ṽx,k is the fluctuating velocity in the radial direction and ωk is the drift wave frequency.

The resonant scattering here has a characteristic spectral autocorrelation time scale τck ∼ |∆(ωk−

ky⟨vy⟩)|−1 ∼
{
|(vg,y − vph,y)∆ky|+ |vg,x∆kx|

}−1, where we have used ⟨vy⟩ ∼= ωk/ky = vph,y. The

resonance is between drift waves and the instantaneous ZF profile. Thus, this autocorrelation

time is shorter than the time scale of ZF evolution, i.e., τck ≪ τZF , consistent with ZF evolution

by turbulent PV mixing. The correlation time τck is shorter as compared to the 1D case, where

the spectral width is associated with the mismatch between group velocity and phase velocity,

i.e., τck ∼ |(vg−vph)∆k|−1, only. As a result, the resonant diffusivity is Dres
q = ∑k k2

yρ2
s c2

s |φk|2τck.

The non-resonant diffusivity can be obtained by quasilinear theory, and is

Dnon-res
q = ∑

ωk ̸=ky⟨vy⟩
k2

yρ2
s c2

s |φk|2
|γk|

|ωk − ky⟨vy⟩|2
. (6.15)

γk is the linear growth rate of drift waves. In marginally stable turbulence, γk should be replaced

by the nonlinear decorrelation rate of turbulence, i.e., ∆ωNk/N0 where Nk ∼ |φk|2/ωk is the wave

action density. As a consequence, in marginally stable turbulence, the non-resonant diffusivity
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is

Dnon-res
q = ∑

ωk ̸=ky⟨vy⟩
k2

yρ2
s c2

s
|∆ω|

I0

|φk|2|φk|2

|ωk − ky⟨vy⟩|2
, (6.16)

where I0 ≡ ∑k |φk|2. This is analogous to wave–particle scattering due to higher order Landau

resonance[MD68] in Vlasov plasmas. The Doppler shifted frequency and the growth rate of the

drift wave are given by Eq. (6.6) and (6.7). Both of them depend upon the eigenmode scale

in radial direction, which is Lm ≡ ⟨k2
x⟩−1/2. Thus, the non-resonant diffusivity depends on the

mode scale, which yields

Dnon-res
q ∼ ∑

ωk ̸=ky⟨vy⟩

k2
yρ2

s c2
s

k2
∥D∥

k2
yρ2

s +L−2
m ρ2

s

1+ k2
yρ2

s +L−2
m ρ2

s
|φk|2. (6.17)

The mode scale does not affect the turbulent diffusivity significantly. This follows since for

drift wave scaling where kyρs ∼ 1, the factor involving the mode scale does not vary strongly

(with that scale) while it ranges from 0.5 to 1. The non-resonant diffusivity is negligible in

comparison to the resonant diffusivity, because Dnon-res
q ∼ (k2

∥D∥)
−1 and k2

∥D∥ ≫ τ−1
ck for near–

adiabatic electrons. Therefore, the mixing of PV is primarily resonant.

The turbulent particle flux driven by drift wave turbulence in the adiabatic regime is

diffusive, i.e.,

⟨ṽxñ⟩=−Dn,turb
∂
∂x

⟨n⟩, (6.18)

where

Dn,turb = ∑
k

k2
yρ2

s c2
s

k2
∥D∥

k2
yρ2

s +L−2
m ρ2

s

1+ k2
yρ2

s +L−2
m ρ2

s
|φk|2. (6.19)

We can then obtain the vorticity flux by subtracting the PV flux from the particle flux, i.e.,

⟨ṽxρ̃⟩= ⟨ṽxñ⟩−⟨ṽxq̃⟩, which is

⟨ṽxρ̃⟩=−(Dn,turb −Dres
q )

∂
∂x

⟨n⟩−Dres
q

∂
∂x

⟨ρ⟩. (6.20)
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Here, the last term is the flux induced by resonant diffusion. The non-diffusive component

forms a residual vorticity flux, i.e., ΓRes
ρ = −(Dn,turb −Dres

q )∂x⟨n⟩. ΓRes
ρ is driven by drift wave

turbulence, so it is proportional to the density gradient. As discussed in Ref. [DIIH05b], ΓRes
ρ

drives zonal flows against diffusive vorticity mixing. The gradient of ΓRes
ρ can accelerate zonal

flows from rest. Note that this mean field calculation of the vorticity flux is technically applicable

to the stationary state, while modulational instability analysis is limited to the stage of ZF growth.

We then arrive at the DW–ZF system including resonant PV mixing, which is

∂
∂t
⟨n⟩= ∂

∂x
Dn,turb

∂
∂x

⟨n⟩+Dc∇2⟨n⟩, (6.21)

∂
∂t
⟨ρ⟩= ∂

∂x

[
(Dn,turb −Dres

q )
∂
∂x

⟨n⟩+Dres
q

∂
∂x

⟨ρ⟩
]
−µc⟨ρ⟩−µNL⟨ρ⟩+χc∇2⟨ρ⟩, (6.22)

∂
∂t

Ω = DΩ
∂2

∂x2 Ω+Dres
q

[
∂
∂x

(⟨n⟩−⟨ρ⟩)
]2

− εcΩ3/2 + γLΩ. (6.23)

This system consists of the equations for mean-field density (Eq. (6.21)), zonal vorticity (Eq.

(6.22)), and fluctuation PE (Eq. (6.23)). Initially produced by linear drift wave instability, the

PE of this system is conserved up to frictional dissipation and nonlinear turbulent saturation,

which transfer PE to small scales. The evolution of total PE is given by

∂
∂t

∫
dx
[

Ω+
(⟨n⟩−⟨ρ⟩)2

2

]
=

∫
dx
[
γLΩ− εcΩ3/2 −Dq,c|∇(⟨n⟩−⟨ρ⟩)|2 −µc⟨ρ⟩2 −µNL⟨ρ⟩2

]
.

(6.24)

The collisional diffusion of zonal PV (the term with Dq,c in Eq. (6.24)) is a sink. In contrast, the

turbulent PV diffusion conserves PE between mean field and fluctuations.

6.3.2 Frictionless ZF Saturation via Resonant PV Diffusion

As demonstrated by Ref. [Tay15, DK91], vorticity flux is identical to the Reynolds

force, and thus drives the zonal flow. The residual vorticity flux excites the zonal flow, and
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thus the resonant diffusion is the only damping for zonal flows in the frictionless limit–i.e.,

µc,χc,µNL → 0. By multiplying Eq. (6.22) by ⟨ρ⟩, we obtain the net production of mean flow

enstrophy in the frictionless limit, which is

∂
∂t

∫
dx

⟨ρ⟩2

2
=

∫
dx

[
−(Dn,turb −Dres

q )
∂⟨n⟩
∂x

∂⟨ρ⟩
∂x

−Dres
q

(
∂⟨ρ⟩
∂x

)2
]
. (6.25)

Hence, we see resonant diffusion of zonal vorticity saturates zonal flows in the frictionless

regime–i.e., its contribution to ∂t
∫

dx⟨ρ⟩2 is negative definite.

The zonal vorticity profile is stationary when the net flow production is zero, i.e., ∂t
∫

dx⟨ρ⟩2 =

0. Therefore, in the frictionless regime, the stationary vorticity profile is determined by the bal-

ance between residual vorticity flux and the resonant vorticity diffusion (i.e., so ⟨ṽxρ̃⟩= 0) which

implies

⟨vy⟩′′ ∼ − cs

ρsLn

(
1− 1

τckk2
∥D∥

k2
yρ2

s +L−2
m ρ2

s

1+ k2
yρ2

s +L−2
m ρ2

s

)
. (6.26)

In the relevant limit of near-adiabatic electrons, i.e., τckk2
∥D∥ ≫ 1, the zonal flow scale is

LZF ∼
(
⟨vy⟩
cs

)1/2√
ρsLn. (6.27)

Only a fraction of turbulence energy is coupled to zonal flows. Thus, the flow magnitude is

obtained using mixing length estimation for the turbulence energy, and a coupling fraction f :

⟨vy⟩2

c2
s

∼ f
l2
mix
L2

n
. (6.28)

Here, 0 < f < 1 is the fraction of turbulence energy coupled to the zonal flow. Note that f

and the mixing length are as yet unspecified. The flow scale follows as LZF ∼ f 1/4√ρslmix,

which depends only weakly on f . Clearly, the mixing length is much larger than the microscale
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(ρs) and can be as large as an extended cell (∼ Ln), i.e., ρs ≪ lmix ≤ Ln. Indeed, lmix ∼ Ln is

the appropriate “base state” scale, absent zonal flows. Thus, LZF necessarily lies between the

microscale (ρs) and the mixing scale (lmix). The questions are to determine the relative weighting

of lmix and ρs, and to account for shear modification of lmix.

To determine lmix, note that the base state mixing length is reduced by zonal flow shearing.

This yields

l2
mix ∼

l2
0

1+(⟨vy⟩′τc)2 , (6.29)

where l0 is the mixing length for zero flow shear. In the case of drift wave turbulence, we have

l0 ∼ Ln for extended cells absent flow shear.

For weak or modest zonal flow shear, the decorrelation time is the eddy turnover time.

The eddy size is set by the mixing length and the eddy turning speed is set by the mean square

root of the velocity fluctuations. Then, we obtain τc ∼ ε−1/2 ∼ lmix/⟨ṽ2⟩1/2. The mixing length

model yields ⟨ṽ2⟩/c2
s ∼ (1− f )l2

mix/L2
n. Thus, the mixing length is l2

mix ∼ (1− f )l2
0

/(
|⟨vy⟩|

cs
Ln

LZF

)2
.

As a result, the zonal flow scale is LZF ∼ f 1/6(1− f )1/6ρ2/3
s l1/3

0 . The zonal flow shear is then

|⟨vy⟩′|∼ f 1/6(1− f )1/6 cs
Ln

(
l0
ρs

)1/3
.

For strong zonal flow shear, i.e., ⟨vy⟩′ ≫ eddy turnover rate, the decorrelation time is

set by τc ∼ (⟨vy⟩′2k2
r D)−1/3, i.e., the scale set by the well known interaction of shearing and

radial scattering[BDT90]. Due to the strong zonal flow shear, the turbulent diffusivity is res-

onant, so D ∼ ∑k |ṽr|2δ(ωk − kθ⟨vy⟩). The resonance time scale is controlled by the shear-

ing rate, which yields δ(ωk − kθ⟨vy⟩) ∼ |⟨vy⟩′|−1. Hence, the diffusivity becomes D ∼ (1 −

f )(c2
s/|⟨vy⟩′|)(l2

mix/L2
n). The mixing length is l2

mix ∼ (1− f )2/3l2
0

/(
|⟨vy⟩|

cs
Ln

LZF

)4/3
. The zonal

flow scale is LZF ∼ f 3/16(1− f )1/8ρ5/8
s l3/8

0 . The zonal flow shear is then |⟨vy⟩′| ∼ f 3/16(1−

f )1/8 cs
Ln

(
l0
ρs

)3/8
. Here, the flow shear is larger, and the flow scale is larger. This follows because

|⟨vy⟩′| ∼ |⟨vy⟩|/LZF and both |⟨vy⟩|/cs and LZF increase with the underlying drive scale (lmix).

Nevertheless, the flow shear calculated here is close to that calculated for the weak shear case.

122



Hence, in both cases, the flow shear are similar.

In either case, the factors f and 1− f enter with small exponents. Thus, the zonal flow

emerges as mesoscopic, but weighted somewhat more strongly toward microscale (ρs) than

macroscale (l0). Note that while the mesoscopic zonal flow scale, i.e., ρs < LZF < Ln and

LZF ∼
√

ρsLn in particular, is frequently assumed, here they are determined by the analysis.

The zonal flow shears in both cases are similar and robust. Even for the weak shear case, the

calculated zonal flow shear is significant. Hence, the case of strong zonal flow shear–and thus

flow resonance–is likely to be most relevant to the frictionless DW–ZF system discussed here.

Note that we have calculated the zonal flow scale and shear self-consistently by considering the

shearing feedback on mixing length. Externally driven flows may enhance the flow shearing,

and thus reduces the mixing scale.

This mesoscopic zonal flow appears as a limiting case with near-adiabatic electrons (i.e.,

τckk2
∥D∥ ≫ 1). When τckk2

∥D∥ is comparable to unity, LZF is linked to the mode scale. In that case,

the resonance between drift wave and zonal flow regulates the flow structure by modifying the

local mode scale. In the hydrodynamic limit (i.e., τckk2
∥D∥ ≪ 1), the generation and saturation of

zonal flows must be reconsidered. The drift wave model discussed here is not directly applicable

to the hydrodynamic case where convective cells, not drift waves, are generated.

The mixing length derived here allows us to calculate the scaling of turbulent diffusivity

with ρ∗ ≡ ρs/Ln. Following the mixing length model, the turbulent diffusivity scales as D ∼

lmixv∗, where v∗ ≡ ρscs/Ln is the electron drift velocity. Thus, we obtain D ∼ DBlmix/Ln, where

DB ∼ ρscs is the Bohm diffusivity. When there is no zonal flow, the mixing length is the size of

an extended cell, i.e., lmix ∼ Ln. This recovers the Bohm scaling, i.e., D ∼ DB. In the presence

of zonal flow shear, the mixing length is larger than ρs, and thus gyro-Bohm scaling is a lower

bound for turbulent diffusivity, i.e., D > DBρ∗. Hence, D lies between the gyro-Bohm and Bohm

limits, i.e., D ∼ DBρα
∗ where 0 < α < 1. The question is to determine α, i.e., the degree of gyro-

Bohm breaking. The mixing length in the case of strong zonal flow shear is lmix ∼ ρ1/4
s l3/4

0 ∼
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ρ1/4
s L3/4

n . This indicates that the scaling of turbulent diffusivity is closer to the Bohm regime,

i.e., D ∼ DBlmix/Ln ∼ DBρ1/4
∗ (l0/Ln)3/4 ∼ DBρ1/4

∗ . Therefore, the zonal flow shear leads to a

gyro-Bohm correction to the diffusivity which is initially Bohm, absent flow shear. As a result,

the diffusivity lies somewhere between Bohm and gyro-Bohm, but weighted more toward Bohm.

Note the zonal flow shear here is determined self-consistently by considering shearing feedback

on mixing length. Externally driven flow shears are not restricted by this self-consistent feedback

mechanism. Thus, the external flow shear could make the diffusivity weighted more toward gyro-

Bohm, i.e., D ∼ DBρ1/4+β
∗ where β > 0 is induced by external shear. External shear reduces the

mixing scale through the shearing feedback. Also, increasing external power input may lead to

the formation of transport barriers[MAC+11a]. The barriers can then reduce the mixing scale

and thus can make the diffusivity more gyro-Bohm.

6.3.3 Extended Predator–Prey Model

The frictionless saturation induced by resonant PV mixing can be incorporated in the

predator–prey model of the DW–ZF system. In this subsection, we show the derivation of this

new, 0D model and compare the results with previous models. Note that even though the 0D

model studied here is sufficient to demonstrate the flow and turbulence states as well as the

flow scale, a model with at least one spatial dimension is necessary to study the spatiotemporal

dynamics of the system, such as the formation of transport barriers.

Eq. (6.25) shows that in the frictionless regime, the net production of zonal field en-

strophy is driven by the vorticity flux. Ignoring the evolution of ⟨n⟩, the total mean-field

PE is related to the zonal vorticity through V ′′2 ∼
∫

dx⟨vy⟩′2/L2
ZF ≡

∫
dx⟨ρ⟩2/L2

ZF . The total

fluctuation PE is E ≡
∫

dxΩ. Zonal flow is driven by the residual vorticity flux, but dissi-

pated by the resonant scattering of zonal vorticity. Thus, the net mean-field PE is produced

by ⟨ṽxρ̃⟩V ′′ = ΓRes
ρ V ′′ −Dres

q V ′′2 ∼ α1E|V ′′|−α2V ′′2E. Therefore, with frictional damping and
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nonlinear damping by tertiary instability included, the predator (flow) equation is

L2
ZF
2

dV ′′2

dt
= α1|V ′′|E −α2V ′′2E − γNLV ′′2 −µcV ′′2. (6.30)

The vorticity flux conserves enstrophy between zonal field and fluctuations. Thus, the

residual vorticity flux forms a sink of the fluctuation PE and the resonant vorticity diffusion

forms a source. As a consequence, the prey (turbulence) equation can be written as

dE
dt

=−α1|V ′′|E +α2V ′′2E − εcE3/2 + γLE. (6.31)

Here, baseline (i.e., without flow) nonlinear saturation of turbulence is through the forward cas-

cade of PE. Ultimately, PE is dissipated by collisional diffusion at small scales. The linear

growth of energy is due to the (linear) instability of fluctuations.

Eq. (6.30) and (6.31) form a new predator-prey model for the DW-ZF system. This

model conserves PE and includes resonant PV mixing. The model is zero dimensional, because

the quantities here have been integrated over space. Though the accuracy of this simplified

0D model is limited, we can use it to obtain useful insights. In this new model, the net flow

production by turbulence consists of two terms, which are the turbulent production driven by

residual stress and the dissipation induced by resonant diffusion.

Eq. (6.30) shows that in the frictionless regime, where the frictional drag µc → 0, the res-

onant vorticity diffusion saturates the zonal flow production, even without the nonlinear damping

induced by tertiary instability. It should be stated that drift wave instability requires finite elec-

tron collisionality, while the frictional drag and collisional diffusion of particles and vorticity are

both determined by ion collisionality and/or ion-neutral drag. Hence, flipping between frictional

and frictionless regimes does not require a change in the drift wave drive.

The flow and energy states are set by the fixed points of the system, i.e. dV ′′2/dt =

dE/dt = 0. We ignore the nonlinear flow damping by tertiary instability, because it is irrelevant
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Table 6.2: Flow states and turbulence states compared among regimes with different frictional
damping rates. µc is the frictional drag coefficient, E is the turbulence energy (measured by
fluctuation enstrophy), γL is the linear growth rate of turbulence, and α1 and α2 are coefficients
in the predator–prey model resulting from residual vorticity flux and vorticity diffusion.

Regime Frictionless Weakly Frictional Strongly Frictional
Frictional Damping Strength µc ≪ α2E α2E ≪ µc ≪ 4γLα2

1/ε2
c µc ≫ 4γLα2

1/ε2
c

Flow |V ′′| α1
α2

α1γ2
L

µcε2
c

γL
α1

Turbulence Energy E γ2
L

ε2
c

γ2
L

ε2
c

γLµc
α2

1

(usually). Therefore, the flow state can be obtained from Eq. (6.30), and is

|V ′′|= α1E
α2E +µc

. (6.32)

We next discuss three regimes—the frictionless regime, the weakly frictional regime, and the

strongly frictional regime—and compare results to those of previous models. In particular, we

emphasize what determines the turbulence level and what affects the flow in near-marginal tur-

bulence. The states of zonal vorticity and turbulence energy are summarized in Table 6.2. In the

frictionless regime, the turbulence energy level is set only by the linear instability growth rate

and the nonlinear dissipation of PE. This differs from the strongly frictional regime, where the

turbulence level is set by the frictional drag[DLCT94].

Frictionless regime

In the frictionless regime, the drag is negligible compared to the resonant diffusive scat-

tering of vorticity, i.e. µc ≪ α2E. The flow and turbulence states are given by

|V ′′|= α1/α2, (6.33)

E = (γL/εc)
2. (6.34)
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The flow is determined, to leading order, by the balance between residual vorticity flux (α1) and

diffusive mixing of vorticity (α2). The turbulence energy is basically determined by the balance

between linear growth rate and dissipation rate of PE (εc).

In the frictionless regime, turbulence energy is (approximately) independent of the flow

state. The turbulence energy is determined only by the linear instability drive and the non-

linear dissipation of PE. The dissipation rate tied to forward cascade of potential enstrophy is

∼ εcΩ1/2 ∼ εcE1/2. The turbulence state is then set by the balance between the linear growth

rate and the nonlinear dissipation rate, i.e. γL ∼ εcE1/2, yielding E ∼ (γL/εc)2. When the linear

drive is weak, i.e. γL/εc < 1, the turbulence becomes marginal, with E ≪ 1. This is different

from previous results, where turbulence energy is set by the frictional flow damping. In previous

models, below the onset threshold for tertiary instability, the flow is dissipated only by frictional

drag. The energy is coupled from turbulence to flow, which is a one-way coupling. Therefore,

the fixed point is set by the balance between the frictional flow damping and energy coupling,

i.e., αV E ∼ µcV , where α is the coupling coefficient between flow and turbulence energy. As a

result, the saturated turbulence energy E ∼ µc/α.

In addition, the saturated flow does not depend on the turbulence level, to leading or-

der. The balance between residual vorticity flux and the resonant vorticity diffusion sets the

flow. In this balance, the turbulence intensity cancels out. This means there can be significant

zonal flow, even when the turbulence is weak. Therefore, this new frictionless saturation mech-

anism, induced by resonant PV mixing, is effective for turbulence near marginality. In previous

models, the flow is set by the difference between linear growth of turbulence and frictional flow

damping[DIIH05b]. Those models are not relevant to near-marginal turbulence, where γL → 0.
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Weakly frictional regime

When the drag exceeds the rate of turbulent diffusion, i.e. µc ≫ α2E, the flow is linked

to the turbulence strength, which is given by

|V ′′|= α1E/µc. (6.35)

This follows because the flow is driven by turbulence, and collisions are the major source of flow

damping. Thus, in the near marginal regime, both the turbulence and the flow becomes very

weak, as the turbulence drive approaches zero.

The turbulence energy can be obtained from

α2
1E

µcγL
+

εc
√

E
γL

−1 = 0. (6.36)

The exact solution is

E =
ε2

cµ2
c

2α4
1

⎡

⎣
√

1+
4γLα2

1
ε2

cµc
−1

⎤

⎦ . (6.37)

Hence, in the weakly frictional regime, i.e. µc ≪ 4γLα2
1/ε2

c , the turbulence energy is the same as

in the frictionless case, while the flow is given by

|V ′′|= α1γ2
L

µcε2
c
. (6.38)

We thus see that the weakly frictional regime is a hybrid of the frictionless and strongly

frictional regimes. On one hand, the turbulence level is independent of flow damping, as for

the frictionless regime. On the other hand, the flow depends on the turbulence level, meaning

that when the turbulence is near marginal, the flow becomes very weak. This is because the

turbulence driven flow production must be strong enough to overcome frictional damping, in

order to drive a significant flow.

128



Strongly frictional regime

When the frictional flow damping is strong, i.e. in the strong frictional regime where

µc ≫ 4γLα2
1/ε2

c , the turbulence energy is set by the flow damping, which is given by

E = γLµc/α2
1. (6.39)

This recovers the scaling trends of previous predator-prey models. The flow is given by

|V ′′|= γL/α1. (6.40)

Note that in this strongly frictional regime, the flow does not explicitly depend on frictional flow

damping, which is the same as for previous results. The turbulence energy here is controlled by

both the linear drive and the flow damping. As a consequence, the near-marginal state can be

achieved by decreasing the linear forcing of the turbulence. As a result, with strong collisions,

the flow is weak for near marginal turbulence.

The new predator–prey model presented here does not depend sensitively on the specific

turbulence type. For comparison with the results calculated from the zonal vorticity equation,

we now use drift wave instability as an example. The coefficients are

α1 =
k2

yρscs

Ln

(
τck −

1
k2
∥D∥

k2
yρ2

s +L−2
m ρ2

s

1+ k2
yρ2

s +L−2
m ρ2

s

)
, (6.41)

α2 = k2
yρ2

s τck. (6.42)

As a result, in the frictionless regime, the stationary zonal vorticity emerges as

|V ′′|= α1

α2
=

cs

ρsLn

(
1− 1

τckk2
∥D∥

k2
yρ2

s +L−2
m ρ2

s

1+ k2
yρ2

s +L−2
m ρ2

s

)
, (6.43)
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Figure 6.4: For zonal flows, vorticity is equal to flow shear.

which is consistent with Eq. (6.26). Vorticity gradient measures the jump across the flow shear

field. Thus, the ZF profile can be deduced from the zonal vorticity by specifying boundary

conditions. As shown by Fig. 6.4, for zonal flows, vorticity is equal to shear, which is of greater

interest than the flow velocity.

6.4 Discussion

In this paper, we study how wave–flow resonance affects the linear stability of drift wave

turbulence, and how it regulates zonal flow saturation in the frictionless regime by resonant

vorticity mixing. The main results of this paper are:

• Resonance stabilizes drift waves due to wave absorption. Counter-intuitively, flow shear

can destabilize drift wave by weakening the resonance. This contradicts the conventional

wisdom of shearing effects.

• Resonance opens a new channel of zonal flow saturation, absent frictional drag, through

the irreversible turbulent mixing of vorticity. The scale of the stationary flow that forms

is mesoscopic, but weighted somewhat more strongly toward microscale than macroscale.

We show directly from analysis that the zonal flow scale is LZF ∼ f 3/16(1− f )1/8ρ5/8
s l3/8

0

in the relevant adiabatic regime (i.e., τckk2
∥D∥ ≫ 1). The flow shear scales as |⟨vy⟩′| ∼
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f 3/16(1− f )1/8 cs
Ln

(
l0
ρs

)3/8
.

• We calculate the degree of gyro-Bohm breaking and show that the resulting turbulent

diffusivity is closer to the Bohm limit, i.e., D ∼ DBρ1/4
∗ (l0/Ln)3/4 ∼ DBρ1/4

∗ . The base

state mixing length, absent flow shear, is l0 ∼ Ln.

• We incorporate the saturation by mixing of vorticity into the predator–prey model. In

contrast to previous results, the saturated flow is independent of the turbulence level, to

leading order, in the frictionless regime. Thus, it can be significant for the relevant case

of near-marginal turbulence. The turbulence energy is determined by the balance of linear

drive and nonlinear dissipation without involving flow damping, and gives E ∼ γ2
L/ε2

c .

In the presence of strong resonance, flow shear can linearly destabilize the drift wave

turbulence, which is opposite to what the conventional shear suppression models predict. Reso-

nance suppresses the instability as a result of wave absorption, and the flow shear can weaken the

resonance. Therefore, wave-flow resonance is an important factor to be considered when study-

ing the shear flow effect on stability, and on quasilinear fluxes that transport particle, vorticity,

and momentum.

The Dimits up-shift regime spans low to zero collisionality and consists of weak turbu-

lence near marginality. ZF saturation induced by resonant PV mixing is effective in both the

frictionless regime and for near-marginal turbulence, and thus is compatible with the physics of

the Dimits up-shift regime. Resonance regulates ZF saturation in the frictionless regime without

the need to invoke tertiary instability. The saturated flow does not depend on the turbulence inten-

sity. Hence, there can be significant zonal flows for near-marginal turbulence, absent frictional

damping.

The stationary flow profile is determined by the balance between residual vorticity flux

and the resonant diffusivity of vorticity. While ZF scale is often assumed, the new model dis-

cussed here calculates the saturated flow scale in the frictionless limit. In the limiting case with
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near-adiabatic electrons (i.e., τckk2
∥D∥ ≫ 1), the ZF scale is mesoscopic, i.e., LZF ∼ f 3/16(1−

f )1/8ρ5/8
s l3/8

0 , in accordance with conventional assumptions. The mixing length regulated by

the zonal flow shear is then lmix ∼ ρ1/4
s l3/4

0 ∼ ρ1/4
s L3/4

n . This implies a Bohm-like scaling of

turbulent diffusivity, i.e. D ∼ DBlmix/Ln ∼ DBρ1/4
∗ (l0/Ln)3/4 ∼ DBρ1/4

∗ , where DB is the Bohm

diffusivity and ρ∗ ≡ ρs/Ln. Note that absent zonal flow shear, the scaling is purely Bohm, i.e.,

lmix ∼ l0 ∼ Ln and D ∼ DB. As a result of zonal flow shear, the diffusivity scaling exhibits a

gyro-Bohm correction, but weighted more toward Bohm. The scaling takes into account zonal

flow shears that are self-consistently determined by shearing feedback on mixing length. Thus,

externally driven flow shear may be needed to achieve scalings that are more gyro-Bohm. The

flow shear driven by external power sources can reduce the mixing scale through shearing feed-

back. In addition, increasing the external power input can lead to the formation of transport

barriers[MAC+11a]. The transport barrier so formed could also reduce the mixing scale and

thus could make the diffusivity weighted more toward gyro-Bohm.

We have derived an extended predator–prey model, incorporating the resonant PV mix-

ing process. This new model is effective in the near-marginal turbulence. Thus, it can describe

zonal flow saturation in the Dimits up-shift regime. In the frictionless regime, the resonant diffu-

sion of vorticity leads to nonlinear saturation of zonal flow. The turbulence energy is saturated

by nonlinear enstrophy dissipation tied to forward cascade of potential enstrophy. As a result,

the turbulence energy scales with the linear forcing rate as E ∼ γ2
L. The saturated flow does not

depend on the turbulence intensity. Hence, there can be significant flows in near-marginal turbu-

lence. Therefore, frictionless ZF saturation by resonant PV mixing is expected to be effective in

weak turbulence regimes. In the frictional regime with significant frictional flow damping, the

dependence of turbulence energy level on flow damping is recovered. The flow is driven by turbu-

lence, while saturated by collisions. Hence, in this limit, the flow is very weak in near-marginal

turbulence.

The model discussed here addresses the long-standing question of “how close is ‘close’”
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in near-marginal systems. It is effective in both near-marginal turbulence and in the friction-

less regime. Thus, when expanded to 1D, it can be used to study avalanches and staircase

formation[DPDG+10, NCDH96]. In 1D, avalanching induces variability of profiles, and thus

of local growth rates. The scaling E ∼ γ2
L suggests a variability-dominated state can result

when γL → 0. This follows because γL has an exponent > 1, which holds true as long as the

self-saturation of fluctuation PE exhibits the dependence εcΩ1+p, where 0 < p < 1. Thus, the

scaling of E with γL is stronger than the conventional weak turbulence result. The local linear

growth rate is then set by both equilibrium (mean) and variable (i.e., avalanche-induced) profile

gradients, i.e., γL = γL + γ̃L. As a result of resonant PV mixing in the frictionless regime, the

turbulence state is determined by E ∼ γ2
L ∼ γ2

L + γ̃2
L. γL is determined by the difference between

mean profile gradient and critical gradient. In near-marginal turbulence, the mean gradient ap-

proaches the critical gradient, so γL → 0. Thus, there the turbulence state is primarily controlled

by noise from avalanche variability, i.e., E ∼ γ̃2
L ≫ γ2

L. Such noise is produced by avalanching,

which stochastically modulates the driving gradient. In this case, the predator–prey model must

be treated as a set of coupled stochastic differential equations. In 1D, the relevant system is a

nonlinear reaction–diffusion model like that of Eq. (6.22) and (6.23), including multiplicative

noise. The results in this work thus define the boundary for “marginality”. The turbulence energy

scales with the dimensionless ratio (γL/εc)2, where εc is the dissipation rate of PE. Therefore,

the turbulence can be “marginal” when the equilibrium growth rate γL < εc. This gives a basis

upon which to define the extent of the “near-marginal regime”.

Chapter 6 has been submitted for publication of the material as it may appear in J. C. Li

and P. H. Diamond, “Another look at zonal flow physics: resonance, shear flows and frictionless

saturation”, Physics of Plasmas (2018), American Institute of Physics. The dissertation author

was the primary investigator and author of this article.
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Figure 6.5: Mode structure for various flow magnitudes, with fixed flow shear. The flow is
given by function Vy =Vmax tanh [(x−0.5Lx)/LV ].

Figure 6.6: Resonance (left) and growth rate (right) vs. flow magnitude, with fixed shear. The
flow is given by function Vy =Vmax tanh [(x−0.5Lx)/LV ].
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Figure 6.7: Mode structure for various flow shears, with fixed flow amplitude. The flow is
given by function Vy =Vmax tanh [(x−0.5Lx)/LV ].

Figure 6.8: Resonance (left) and growth rate (right) vs. flow shear, with fixed magnitude. The
flow is given by function Vy =Vmax tanh [(x−0.5Lx)/LV ].
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Chapter 7

Summary and Future Directions

In this dissertation, we have studied the fundamental issues of intrinsic axial and az-

imuthal flows and their interaction with each other in a linear device absent magnetic shear. We

sought to answer the following questions:

1. What breaks the k∥ spectral symmetry of turbulence and thus generates intrinsic parallel

flows, absent magnetic shear? (Chapter 2)

2. What saturates the axial flows and determines the profile stiffness of flow shear? (Chap-

ter 3)

3. How to demonstrate, in experiments, the causal link from the density gradient to spectral

asymmetry of drift wave turbulence, and the development of mean axial flow? (Chapter 5)

4. How does wave–flow resonance regulate the stability of drift wave turbulence and the

saturation of zonal flow in the frictionless regime? (Chapter 6)

In Chapter 2, we develop a new dynamical symmetry breaking mechanism for the gen-

eration of intrinsic axial flows in uniform magnetic fields. In a simple drift wave system, a seed

axial flow shear can be self-amplifying. The seed flow shear breaks the spectral symmetry by
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setting the growth rate of some modes higher than that of the others. The resulting spectral im-

balance gives rise to a finite residual stress ΠRes
rz ∼ ⟨kθkz⟩. This residual stress induces a negative

increment to the turbulent viscosity. When the negative viscosity increment induced by residual

stress overcomes the turbulence viscosity set by drift waves, such that the total viscosity be-

comes negative, the flow shear is amplified by the modulational instability. When the axial flow

shear exceeds ⟨vz⟩′crit and triggers PSFI, the additional turbulent viscosity by PSFI nonlinearly

saturates the ⟨vz⟩′ growth. The flow profile will then be relaxed by χPSFI
φ . Hence, the axial flow

shear will stay at or below the PSFI threshold ⟨vz⟩′crit.

In Chapter 3, we investigate the physics of negative viscosity in ITG turbulence and

discuss the axial flow shear stiffness when plotted vs. ∇Ti. The negative viscosity increment

induced by residual stress is not limited in the drift wave turbulence. We have shown that pure

ITG turbulence cannot drive intrinsic flows in a straight magnetic field, but can induce a negative

viscosity increment, which reduces the turbulent flow dissipation.

We also study the stiffness of ∇V∥ profile plotted vs. ∇Ti0. PSFI saturates the flow

gradient, when ∇V∥ is driven above the PSFI regime boundary. The flow gradient saturates at

the PSFI regime boundary, which is above the PSFI linear threshold and tracks the ITG drive,

i.e. ∇V∥/|k∥cs| ∼ (∇Ti0)2/3/(k∥Ti0)2/3 The flow gradient in CSDX can be enhanced by various

external sources. When ∇V∥ steepens enough, so that PSFI drive dominates over ITG drive, flow

gradient saturates by PSFI relaxation. PSFI is nonlinear in ∇V∥, and so is the viscosity driven

by PSFI turbulence. Consequently, ∇V∥ saturates at the boundary between PSFI regime and ITG

regime (which is above the linear PSFI threshold) and grows as ∇V∥ ∼ (∇Ti0)2/3. This scaling

of flow gradient implies a generalized Rice-type scaling, i.e. ∇V∥ ∼ (∇Ti0)α, with α = 2/3.

In Chapter 4, we study the interaction of intrinsic azimuthal and axial flows in CSDX.

In particular, we have studied how incremental changes of flow shears affect the production

branching ratio PR
z /PR

y . We have also investigated the effects of azimuthal flow shear on intrinsic

axial flow generation and saturation, absent magnetic shear. We have found increasing azimuthal
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flow shear reduces the branching ratio, which is measured by the ratio of axial and azimuthal

Reynolds powers, i.e., PR
z /PR

y . When axial flow shear increases, PR
z /PR

y first increases and then

decreases. This turnover occurs below PSFI threshold. Azimuthal flow shear stabilizes drift

waves by weakening the ∇n0 drive, i.e., reducing the ω∗e by the amount |kyρ2
s ⟨vy⟩′′|. Azimuthal

flow shear slows down the modulational growth of seed axial flow shear, and thus reduces the

production of intrinsic axial flow, absent magnetic shear. Azimuthal flow shear reduces both

axial residual stress (ΠRes
xz ) and turbulent viscosity driven by drift waves (χDW

z ) by the same factor,

i.e., both ΠRes
xz and χDW

z scale with the azimuthal flow shear as |V ′|−2 ∼ |⟨vy⟩′|−2∆−2
x L−2

n ρ2
s c2

s .

However, azimuthal flow shear does not affect the saturated axial flow shear to leading order,

because ⟨vz⟩′ = ΠRes
xz /χDW

z and the reduction by ⟨vy⟩′ cancels.

Chapter 5 discusses the phenomenology of axial and azimuthal flow dynamics in drift

wave turbulence in CSDX. We haven shown, by measurement, the pathway of free energy source

→ turbulence → symmetry breaking → residual Reynolds stress → intrinsic axial flow shear.

The interaction between axial and azimuthal flows is weak. A plausible physical picture of the

system of flows and turbulence discussed in this thesis is summarized in Fig. 7.1. In this study,

the axial Reynolds power is smaller than the azimuthal one by an order of magnitude. Thus,

the azimuthal flow-turbulence interaction is the primary branch in the turbulence-flow system.

The axial mean flow is then parasitic to such system, and is driven by the residual stress. The

azimuthal flow shearing rate is much less than the drift wave frequency, so the residual stress

decouples from the effect of azimuthal flow (dashed line in Fig. 7.1). This axial residual stress

results from a dynamical symmetry breaking mechanism, i.e., driven by drift wave turbulence

with broken symmetry in k-space. This spectral imbalance in ⟨kzkθ⟩ is induced by the seed

axial flow shear, which is in turn amplified by the axial residual stress. These observations are

consistent with the causal link proposed by the heat engine model, i.e., a pathway from symmetry

breaking to the development of residual stress and the onset of axial mean flow.

Although the axial–azimuthal flow coupling appears to be weak in this study, it needs not
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Figure 7.1: The present—a pathway from drift wave turbulence with broken symmetry to the
development of residual stress and the onset of axial mean flow in CSDX.

Figure 7.2: The future—a diagram of hypothesized turbulence–flow interaction in CSDX with
both axial momentum and particle sources. Here, PSFI is the abbreviation for parallel shear
flow instability.
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always be so. There are at least two ways to enhance the interaction between axial and azimuthal

flows in CSDX. The proposed mechanisms are illustrated in Fig. 7.2. One way is to increase the

power of the plasma source, such that ∇n drives stronger drift wave turbulence and thus leads to

enhanced zonal flows via the Reynolds force. When the zonal flow shear is comparable to drift

wave frequency, it will regulate the axial flow production and dissipation by entering explicitly–

and reducing–the axial residual stress and turbulent diffusivity. The enhanced zonal flow shear

will then increase the axial flow shear by reducing the cross-field momentum transport, i.e., thus

forming a transport barrier.

The other way to enhance the coupling between axial and azimuthal flows is to increase

the parallel momentum source. The enhanced axial flow can increase the zonal flow production

via the acoustic coupling. [WDH12a] The parallel flow compression can be converted to zonal

flow by coupling with potential vorticity (PV) fluctuations. This coupling, i.e., ⟨q̃∇∥ṽ∥⟩, breaks

PV conservation, and thus forms a source for zonal flow. This conversion occurs when parallel

flow compression is significant, especially near the PSFI threshold. With increased axial and

azimuthal flow shears, a transport barrier can be formed by increasing the axial momentum

source. CSDX will be equipped with an axial gas-puff system that provides an axial momentum

source. The axial flow then can also be driven by a strong axial momentum source, and thus Vz

would be adjustable within a wide range. In our current experiments, the peak value of the axial

Mach number is about 0.2, which is well below the PSFI threshold. The upgraded system will

present us an opportunity to investigate the role of PSFI in parallel flow saturation as well as

axial-azimuthal flow coupling.

To summarize, we remark that CSDX offers an excellent venue to study the detailed

physics of transport barrier formation with turbulent-driven transverse and parallel shear flows

at zero magnetic shear. In tokamaks, it has been observed that coexistence of large toroidal

rotation and low magnetic shear, i.e., flat-q regime, leads to enhanced confinement states, and

profile “de-stiffening”.[MAC+11b] This regime is under intensive study in the magnetic fusion
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energy community, and it is worthwhile to note that basic experiments can produce substantial

insights into the relevant physics.

In Chapter 6, we study how wave–flow resonance affects the linear stability of drift wave

turbulence, and how it regulates zonal flow saturation in the frictionless regime by resonant

vorticity mixing. Resonance stabilizes drift waves due to wave absorption. Flow shear can

destabilize drift wave by weakening the resonance. This contradicts the conventional wisdom of

shearing effects. The resonance opens a new channel of zonal flow saturation, absent frictional

drag, through the turbulent mixing of vorticity. The scale of the stationary flow that forms is

mesoscopic, but weighed somewhat more strongly toward the microscale than the macroscale.

We show directly from analysis that the zonal flow scale is LZF ∼ f 3/16(1− f )1/8ρ5/8
s l3/8

0 in the

relevant adiabatic regime (i.e., τckk2
∥D∥ ≫ 1). We calculate the degree of gyro-Bohm breaking

and show that the resulting turbulent diffusivity is closer to the Bohm limit, i.e., D ∼ DBρ1/4
∗ .

This new saturation mechanism has been incorporated in the predator–prey model. In contrast

to previous results, the saturated flow is independent of the turbulence level in the frictionless

regime. Thus, it can be significant for the relevant case of near-marginal turbulence. The tur-

bulence energy is determined by the balance of linear drive and nonlinear dissipation without

involving flow damping, and with E ∼ γ2
L/ε2

c .
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