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”Tour Guide”

• This is NOT a traditional study of plasma physics.
• It is about a new system that is related to systems you are familiar
with in plasma physics

• There	are	many	similarities, but	some	important	differences. Watch	
for	these!

• We studied the	fundamental	physics	of	cascades and self-organization
in this system and in MHD

• It provides a new look at classic themes in plasma physics.
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Elastic Media? -- What	Is	the	CHNS	System?

• Elastic media – Fluid with internal DoFsà “springiness”
• The	Cahn-Hilliard	Navier-Stokes	(CHNS)	system describes phase separation
for binary fluid (i.e.	Spinodal Decomposition)
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AB

Miscible	phase	
à Immiscible	phase

[Fan et.al. Phys. Rev. Fluids 2016] [Kim et.al. 2012]



Elastic Media? -- What	Is	the	CHNS	System?

• How to describe the system: the concentration field

• 𝜓 𝑟, 𝑡 ≝ [𝜌) 𝑟, 𝑡 − 𝜌+ 𝑟, 𝑡 ]/𝜌 : scalar field

• 𝜓 ∈ [−1,1]

• CHNS equations:

𝜕1𝜓 + �⃑� 4 𝛻𝜓 = 𝐷𝛻8(−𝜓 + 𝜓: − 𝜉8𝛻8𝜓)

𝜕1𝜔 + �⃑� 4 𝛻𝜔 =
𝜉8

𝜌
𝐵? 4 𝛻𝛻8𝜓 + 𝜈𝛻8𝜔
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Outline

• A	Brief	Derivation	of	the	CHNS	Model
• 2D	CHNS	and 2D	MHD
• Linear	Wave
• Ideal	Quadratic	Conserved	Quantities
• Scales,	Ranges,	Trends
• Cascades
• Power Laws
• Transport
• Conclusions
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A	Brief	Derivation	of	the	CHNS	Model

• Second	order	phase	transition	à Landau Theory.
• Order	parameter:	𝜓 𝑟, 𝑡 ≝ [𝜌) 𝑟, 𝑡 − 𝜌+ 𝑟, 𝑡 ]/𝜌
• Free energy:

F 𝜓 = B𝑑𝑟(
1
2
𝐶F𝜓8 +

1
4
𝐶8𝜓H +

𝜉8

2
|𝛻𝜓|8)

�

�

• 𝐶F(𝑇),	𝐶8(𝑇).
• Isothermal	𝑇 < 𝑇M .	Set	𝐶8 = −𝐶F = 1:

F 𝜓 = B𝑑𝑟(−
1
2
𝜓8 +

1
4
𝜓H +

𝜉8

2
|𝛻𝜓|8)

�

�
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Phase Transition Gradient	Penalty



A	Brief	Derivation	of	the	CHNS	Model

• Continuity	equation:	N?
N1
+ 𝛻 4 𝐽 = 0. Fick’s	Law:	𝐽 = −𝐷𝛻𝜇.

• Chemical potential: 𝜇 = ST ?
S?

= −𝜓 + 𝜓: − 𝜉8𝛻8𝜓.

• Combining	above	à Cahn	Hilliard	equation:
N?
N1
= 𝐷𝛻8𝜇 = 𝐷𝛻8(−𝜓 + 𝜓: − 𝜉8𝛻8𝜓)

• 𝑑1 = 𝜕1 + �⃑� 4 𝛻.	Surface	tension:	force	in	Navier-Stokes equation:

𝜕1�⃑� + �⃑� 4 𝛻�⃑� = −
𝛻𝑝
𝜌
− 𝜓𝛻𝜇 + 𝜈𝛻8�⃑�

• For	incompressible	fluid,	𝛻 4 �⃑� = 0.
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2D	CHNS	and 2D	MHD

• 2D	CHNS	Equations:

𝜕1𝜓 + �⃑� 4 𝛻𝜓 = 𝐷𝛻8(−𝜓 + 𝜓: − 𝜉8𝛻8𝜓)

𝜕1𝜔 + �⃑� 4 𝛻𝜔 =
𝜉8

𝜌
𝐵? 4 𝛻𝛻8𝜓 + 𝜈𝛻8𝜔

With �⃑�=𝑧W×𝛻𝜙, 𝜔 = 𝛻8𝜙, 𝐵? = 𝑧W×𝛻𝜓, 𝑗? = 𝜉8𝛻8𝜓.
• 2D	MHD	Equations:

𝜕1𝐴 + �⃑� 4 𝛻𝐴 = 𝜂𝛻8𝐴

𝜕1𝜔 + �⃑� 4 𝛻𝜔 =
1
𝜇]𝜌

𝐵 4 𝛻𝛻8𝐴 + 𝜈𝛻8𝜔

With �⃑�=𝑧W×𝛻𝜙, 𝜔 = 𝛻8𝜙,	𝐵 = 𝑧W×𝛻𝐴,	𝑗 = F
^_
𝛻8𝐴.
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−𝜓:	Negative diffusion term
𝜓::	Self nonlinear term
−𝜉8𝛻8𝜓	:	Hyper-diffusion term

𝐴:	Simple	diffusion term



Linear Wave

• CHNS supports linear “elastic” wave:

𝜔 𝑘 = ±
𝜉8

𝜌
�

𝑘×𝐵?] −
1
2
𝑖 𝐶𝐷 + 𝜈 𝑘8

Where
• Akin	to	capillary	wave	at	phase	interface.	Propagates	only along the
interface of the two fluids, where |𝐵?| = |𝛻𝜓| ≠ 0.

• Analogue of Alfven wave.
• Important differences:	

Ø𝐵? in CHNS is large only in the interfacial regions.
ØElastic	wave	activity	does	not	fill	space.
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Air

Water

Capillary	Wave:



Ideal	Quadratic	Conserved	Quantities
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• 2D	CHNS
1.	Energy

𝐸 = 𝐸f + 𝐸+ = B(
𝑣8

2
+
𝜉8𝐵?8

2
)𝑑8𝑥

�

�

2.	Mean	Square	Concentration

𝐻? = B𝜓8
�

�

𝑑8𝑥

3.	Cross	Helicity

𝐻M = B �⃑� 4 𝐵?

�

�

𝑑8𝑥

• 2D	MHD
1.	Energy

𝐸 = 𝐸f + 𝐸+ = B(
𝑣8

2
+
𝐵8

2𝜇]
)𝑑8𝑥

�

�
2.	Mean	Square	Magnetic	Potential

𝐻) = B𝐴8
�

�

𝑑8𝑥

3.	Cross	Helicity

𝐻M = B �⃑� 4
�

�

𝐵𝑑8𝑥

Dual cascade expected!



Scales,	Ranges,	Trends

• Fluid	forcingà Fluid	straining	vs	Blob	coalescence
• Scale	where	turbulent	straining	~	elastic	restoring	force	(due	surface	
tension): Hinze Scale

𝐿j~(
𝜌
𝜉
)lF/:𝜖n

l8/o
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How	big	is	a	raindrop?
• Turbulent	straining	
vs	capillarity.

• 𝜌𝑣8 vs	𝜎/𝑙.
[Hinze	1955]



Scales,	Ranges,	Trends
• Elastic range: 𝐿j < 𝑙 < 𝐿N: where elastic effects matter.

• 𝐿j/𝐿N~(
r
s
)lF/:𝜈lF/8𝜖n

lF/Ft à Extent	of	the elastic	range

• 𝐿j ≫ 𝐿N required for	large	elastic	rangeà case	of	interest
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𝐻? Spectrum
𝐻v
?	

𝑘𝑘wx 𝑘j 𝑘N

Elastic	Range
Hydro-
dynamic	
Range

(𝐻v
? = 𝜓8 v)



Scales,	Ranges,	Trends
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• Key	elastic	range	physics:	Blob	coalescence
• Unforced case: 𝐿 𝑡 ~𝑡8/:.
(Derivation: �⃑� 4 𝛻�⃑�~ sy

r
𝛻8𝜓𝛻𝜓 ⇒ {̇y

{
~ }
r
F
{y
)

• Forced case: blob	coalescence	arrested	at	Hinze	scale 𝐿j.

• 𝐿 𝑡 ~𝑡8/: recovered
• Blob growth arrest observed
• Blob growth saturation scale 

tracks Hinze scale (dashed 
lines) 



Cascades

• Blob	coalescence	in	the elastic range of CHNS	is analogous	to	flux	
coalescence	in	MHD.

• Suggests	inverse	cascade of	〈𝜓8〉 in	CHNS.
• Supported	by	the statistical	mechanics studies (absolute	equilibrium	
distributions).
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MHD CHNS



Cascades

• So,	dual	cascade:
• Inverse cascade	of	 𝜓8 � �
• Forward cascade	of	𝐸� �

• Inverse	cascade	of	 𝜓8 is	formal	expression	of	blob	coalescence	
processà generate	larger	scale	structures	till	limited	by	straining	

• Forward cascade of	𝐸 as usual, as elastic force breaks	enstrophy	
conservation	
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Cascades
• Spectral	flux	of 𝐴8 : Spectral flux of 𝜓8 :

• MHD:	weak	small	scale	forcing	on	𝐴 drives	inverse	cascade
• CHNS:	𝜓 is	unforcedà aggregates naturally
• Both	fluxes	negativeà inverse cascades
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MHD

CHNS



Power	Laws
• 𝐴8 spectrum: 𝜓8 spectrum:

• Both	systems	exhibit	𝑘l�/: spectra.
• Inverse	cascade	of	 𝜓8 exhibits	same	power	law	scaling,	so	
long	as 𝐿j ≫ 𝐿N,	maintaining	elastic	range:	Robust	process.
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CHNSMHD
𝑓)



Power	Laws

• Derivation of -7/3 power law:
• For MHD, key assumptions:

• Alfvenic	equipartition	(𝜌⟨𝑣8⟩ 	∼ F
^_
⟨𝐵8⟩	)

• Constant	mean	square	magnetic	potential	dissipation	rate	𝜖j), so
𝜖j)~

j�

�
~(𝐻v))

�
y𝑘

�
y.

• Similarly, assume the following for CHNS:
• Elastic equipartition (𝜌⟨𝑣8⟩ 	∼ 𝜉8⟨𝐵?8⟩)
• Constant	mean	square	magnetic	potential	dissipation	rate	𝜖j?, so

𝜖j?~
j�

�
~(𝐻v

?)
�
y𝑘

�
y.
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𝑓�

CHNS
More Power	Laws

• Kinetic energy spectrum (Surprise!):

• 2D CHNS: 𝐸vf~𝑘l:;

• 2D MHD: 𝐸vf~𝑘l:/8.

• The -3 power law:
• Closer	to	enstrophy	cascade	range	scaling,	in	2D	Hydro turbulence.
• Remarkable departure	from	expected	-3/2 for	MHD.	Why?	

• Why	does	CHNSßàMHD	correspondence	hold	well	for	
𝜓8 v~ 𝐴8 v~𝑘l�/:, yet	break	down	drastically	for	energy?

• What	physics underpins	this	surprise?	
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Interface Packing Matters!
• Need	to understand	differences,	as	well	as	similarities,	between	CHNS	
and	MHD	problems.	

4/23/18
Sherwood	2018
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MHD CHNS

2D CHNS:
ØElastic	back-reaction	is	limited	to	regions	of	
density	contrast	i.e. |𝐵?| = |𝛻𝜓| ≠ 0.

ØAs	blobs	coalesce,	interfacial	region	
diminished.	‘Active	region’	of	elasticity	decays.

2D MHD:
Ø Fields pervade	system.



Interface Packing Matters!

• Define	the	interface	packing	fraction 𝑃:

𝑃 =
#	��	����	������	�����	|+�|�+�

���

#	��	�����	����	������

Ø𝑃 for CHNS decays;
Ø𝑃 for MHD stationary!

• 𝜕1𝜔 + �⃑� 4 𝛻𝜔 = sy

r
𝐵? 4 𝛻𝛻8𝜓 + 𝜈𝛻8𝜔: small 𝑃à local back reaction

is weak.

• Weak back reactionà reduce to 2D hydro
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Transport: Something Old

• 𝑀8 = 𝑣¡8 /𝑣)]8

• Higher 𝑣)]8 / 𝑣¡8 →	lower
𝐷¢ →	longer 𝐸£ persistance

• Ultimately 𝜂 asserts itself

• Blue: 𝐵 sufficient for
suppression

• Yellow: Ohmic decay phase
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[Cattaneo and
Vainshtein ‘91]



• Initial condition: cos(x) for A
• Shorter time (suppression phase)

• Domains, and domain boundaries
evident, resembles CHNS

• A transport barriers?!

• Longer time (Ohmic decay phase)
• Well mixed
• No evidence nontrivial structure
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Spatial Structure (Preliminary)



Something New, Cont’d

• For analysis: pdf of A
• Suppression phase:

• quenched diffusion
• bi-modal distribution

• quenching prevents fill-in
• consequence i.c.

• Ohmic decay phase:
• uni-modal distribution returns
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Conclusion, of Sorts

• Elastic fluids ubiquitous, interestingly similar and different.
Comparison/contrast is useful approach.

• CHNS is interesting example of elastic turbulence where energy
cascade is not fundamental or dominant.

• Spatio-temporal dynamics of (bi-stable) active scalar transport is a
promising direction. Pattern formation in this system is terra novo.

• Revisiting polymer drag reduction would be interesting.
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