

Physics of Scale Selection for Mesoscale Patterns in Drift Wave Turbulence

Special Focus: Physics of ExB Staircase (楼梯)

Weixin Guo<sup>1</sup>, P. H. Diamond<sup>2</sup>, Arash Ashourvan<sup>3</sup>, Lu Wang<sup>1</sup>

- 1. IFPP Lab, SEEE, HUST
- 2. CASS and Dept. of Physics, UCSD; SWIP
- 3. PPPL; DIII-D

\*Supported by U. S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738

\*Supported by Graduate School, HUST and NSFC Grant Nos. 11675059 and 11305071



### Outline



#### Basics of nonlinear patterns

• Pattern formation (scale, structure ?) in magnetic confinement plasma⇔Scale selection

Especially, zonal flow  $\rightarrow$  staircase

- Formation mechanism and feedback loops
  - → Shearing and Rhines mechanisms, transport bifurcation, .....

Recent model study of zonal pattern formation / sustainment

- ✓ Parameter scans
- ✓ Feedback loop studies
- ✓ Turbulence spreading
- ✓ Initial condition sensitivity
- ✓ Boundary condition sensitivity......

#### Conclusions and plan

1/24



## Scales Determine Transport **IFP**

#### Several spatial scales enter transport

- ✓ Drift wave, micro-scale P
- ✓ Mean flow, macro-scale  $L_n \sim a$
- ✓ Zonal flow, meso-scale ( $\sqrt{\rho L_n}$  ?)
- $\rho$ : Larmor radius
- a: minor radius
- $L_n = -n/\nabla n$ : density scale length

#### Goal→Predicting turbulence and transport in saturated states

$$D = D_{Bohm} \left(\frac{\rho}{a}\right)^{\alpha}, 0 < \alpha < 1. \quad \begin{cases} \alpha = 0, Bohm \ scaling \ (Bad) \\ \alpha = 1, Gyro - Bohm \ scaling \ (Good) \end{cases}$$

- $\rightarrow$ Turbulent diffusivity *D* scaling with  $\rho/a$  is a key question in fusion!
- $\rightarrow$ Value of  $\alpha$  is directly linked to **meso-scale selection**
- The ecology of feedback loops must enter the scaling of spatial structure

$$|\delta \varphi| \sim l_{mix} \sim \frac{1}{1 + \sigma(v'_{E \times B})^2}$$



### **Physics of Scale Selection**

- Formation of patterns in self-organizing, non-equilibrium and nonlinear systems is widely observed.
- Layered Stratification

- ✓ Transport Barrier
- ✓ Potential Vorticity (PV) and ExB Staircase ✓ Zonal Flow (ZF) ......
- ZF:

3/24

→minimal inertia and Landau damping → benign repository for free energy→regulate turbulent transport, trigger L-H and ITBs

Closing the feedback loop when predators meet the prey



### Important Element: GLOBAL Bistability



Experimental observation of hysteresis reflected by the non-linear *VT<sub>e</sub>* dependence of fluctuation intensity (a) and heat flux (b).

→self-organized **global hysteresis** 

- Hysteresis strongly suggests
  bistability in the fluctuation intensity
- Here, not due to local transport barrier



#### A Hint: ExB Staircase

- ✓ In ion temperature gradient (ITG) turbulence, quasi-regular (spatial) and long-lived (temporal) E×B flows coexisting with temperature corrugations are observed numerically + experimentally density vorticity
  - → Meso-scale E×B staircase (楼梯), by analogy to PV (n u) staircases and atmospheric jets



[G. Dif-pradalier, et al, , Phys. Rev. Lett. 114, 085004 (2015).]

Dritschel, McIntyre, Journal of the Atmospheric Sciences, 2008



華中科技大学

#### Simulation +> Reduced Models



■ Works: simulations in ITG turbulence (GYSELA, GKNET) G. Hornung et al NF 2017

#### Leave many questions:

G. Hornung et al NF 2017G. Dif-Pradalier et al NF 2017W. Wang, Y. Kishimoto et al NF 2018

 $\rightarrow$  Conditions for existence of the E×B staircase?

→Explore dimensionless parameter dependence?

→Vary boundary condition (B. C.) and initial condition?

→ Robustness in parameter space?

→Impact on transport and confinement?

→ Relation to the barrier? .....

Especially, which feedback is critical for the formation and sustainment of ExB staircase?





### Reduced models: Why and What ?

Reduced models: self-consistently <u>relate</u> variations in mean plasma fields <u>to</u> fluctuation intensity !

lower computational cost, flexibility, simplicity, variety, supply essential understanding.....

Hasegawa–Wakatani (H–W) system

- ✓ Simple generic system describing collisional drift wave turbulence, which conserves energy and Potential Enstrophy↔  $PE \equiv \frac{1}{2}(n - u)^2$ density vorticity
- Inhomogeneous PV mixing and symmetry generate ZF from turbulence via transport
- Flexible reduced model to understand the physics of meso-scale patterns derived from H-W equation
  - ✓ Inhomogeneous effect of the mean field (density, PV.....)
  - ✓ Mixing length: key element  $\rightarrow$  What is it ?

7124



1<sup>st</sup> Chengdu Theory Festival (CTF), August 20-31, 2018

#### Mixing Length→Rhines Scale

- Mixing length is a nonlinear hybrid of two length scales
  - A constant **excitation** scale  $l_0$
  - A dynamic length scale l<sub>d</sub> a function of the system gradient
- Not the conventional mode scale B B Kadomtsev 《 Plasma turbulence》, 1965
- Inhomogeneous PV mixing process selects the mixing scale  $l_{mix}$  to generate pattern.
  - $\rightarrow$ Feedback loop strongly depends on  $l_{mix}$
- $l_d = l_{Rh} \leftrightarrow \text{Rhines scale}$









#### What is Rhines Scale ?





- $l < l_{Rh} \rightarrow$  short memory, turbulence is eddy-like  $\rightarrow$  strong mixing
- $l > l_{Rh} \rightarrow$  long memory, turbulence is wave-like  $\rightarrow$  weak mixing

9/24



#### **Reduced Model from H-W Equation**

Evolution of mean density *n*, vorticity *u* and turbulent potential enstrophy  $\varepsilon$ 



10/24



#### Reduced Model→Pattern Formation



- → **"Staircase"** pattern : consequence of modulational bistability feedback
- Similar to shock wave, which forms due to self-steepening of ordinary waves

11/24





### Key questions---Apply Reduced Models

- What are the dimensionless parameters and how does the pattern structure respond to parameter scan?
- What is the principal feedback loop physics?
- How does the pattern respond to turbulence spreading and/or avalanching?
- Does the pattern have memory of initial condition?
- What is the effect of mean E × B shear on pattern? (Macro ↔ Meso scale)



#### Dimensionless parameters

Parameter sensitivity studies



FOM : Number of steps  $(N_s)$  in density profile

↔ structure complexity

✓ Both  $\mu_c$  / and  $D_c$  / (remove energy) →  $N_s$  / → Damp the staircase

$$\checkmark Pr \swarrow \implies N_s \checkmark$$

$$\checkmark \gamma_{\varepsilon} \nearrow \Longrightarrow N_{s} \nearrow$$









### What is the Feedback Mechanism?

In the case of mean perpendicular shears, mixing length is presented

$$l_{mix}^2 = \frac{l_0^2}{\left[1 + \left(\bar{v}'_{\boldsymbol{E}\times\boldsymbol{B}}\right)^2 \tau_c^2\right]^{\kappa}}$$

The correlation time is given

$$\tau_c = \left(\frac{u^2\varepsilon}{l_0^2}\right)^{-1/4}$$

 $\varepsilon$ : turbulent PE

• 
$$u = \bar{v}'_{E \times B}$$

Time



 $l_{mix} = \frac{\iota_0}{\left[1 + \frac{|u|}{1 + \sqrt{c}}\right]^{\kappa/2}} \quad \leftrightarrow \text{Feedback loop works through} \\ \text{shearing dependent mixing length}$ 

•  $l_0$ : the mixing scale without  $v_{E \times B}$ 

•  $\tau_c$ : fluctuation correlation time

•  $\bar{v}'_{E \times B}$ : perpendicular shear rate

■ Rhines scale: 
$$l_{mix} = \frac{l_0}{\left(1 + l_0^2 \left[\partial_x \left(n - u\right)\right]^2 / \varepsilon\right)^{\kappa/2}}$$

A. Ashourvan and P. H. Diamond, PoP 2017. PRE 2016

Multiple candidate, which mechanism is key?



#### Outcome (parameters as before)

- I If only  $E \times B$  shearing feedback  $(u = \overline{v}'_{E \times B})$ 
  - → No layer staircase structure forms !
- If Rhines scale feedback ( $\nabla n$  and  $\partial_x u$ )
  - → **Recover** staircase pattern, three stages:
    - Microscale instabilities→Non-linear (NL) mesoscale structure
    - $\rightarrow$  Merger
    - $\rightarrow$  Migration
  - $\rightarrow$  Check  $\partial_x u$  !
- If turn off  $\partial_x u \rightarrow \text{Recover}$  pattern

↔Experimental, Jiang Min

Feedback through NL gradient drive of mixing is key loop !

1.0 6.60 6.05 0.8 4.95 4.40 0.6 x 0.4 0.2 -13 4 5 -22 0  $Log_{10}(t)$ 

 $\nabla n$ 





### Sensitivity to (Initial) Gradient Drive



16/24

- Initial rise  $\leftrightarrow$  increased free energy to staircase structure  $\rightarrow N_s/$
- Further rise →N<sub>s</sub> / ↔ effects of diffusive dissipation limiting small scales



- Free energy and dissipation define pattern structure
  Minimal step scale exists
- Flux Drive? What defines the selected scale? (Ongoing)





### Response to turbulence spreading

- Evolution of fluctuation potential enstrophy (PE)
  - β measures the effect of turbulence spreading of PE ~
    fluctuation intensitity
  - $\beta$  represents complex mode interaction physics



✓ Moderate increase in  $\beta$ weakens the staircase

 ✓ Pattern is sensitive to turbulence spreading



#### Interaction of Zonal and Mean Shear (I)



- Asymmetric pattern can form when zonal shear is comparable with mean shear
- ✓ Stronger zonal shear (a > b) will destroy pattern

18/24



#### Interaction of Zonal and Mean Shear (II)



✓  $b \leq 1$ , increasing mean shear leaves pattern **unchanged** 

✓ Stronger mean shear (b >1) destroys the pattern

19/24

Pattern retains memory of initialization. Both zonal and mean shear are relevant !



### Further Results: Pattern Threshold

In shearing feedback loop:

- Lower the damping value adopted in Rhines feedback loop
  - $\rightarrow$  Recover the pattern
  - $\rightarrow$ But, sustainment of the pattern is difficult
- Increase (a) the  $\nabla n(t = 0)$  and (b) the initial period of zonal shear → $N_s$ : first increase and then decrease !
- Increasing the zonal shear causes the jumps to become much steeper !





#### Summary of results



Existence of density staircase and vorticity corrugation in H-W system

- Pattern responds to the plasma parameters
  - Increase flow **viscosity**  $(\mu_c)$ , particle diffusion **damping**  $(D_c)$ :  $\rightarrow$  **damp** pattern.
    - $\rightarrow$  Moreover,  $D_c$  is more effective
  - Increase production  $\rightarrow$  selects minimal step scale
- Feedback loop physics

**Shearing vs Rhines**  $\rightarrow$  NL  $\nabla n$  dependence of  $l_{mix}$  is key loop!

Surprise ! : shearing feedback is ineffective

- Moderate turbulence spreading weakens the Pattern
- Pattern retains the memory of initial scale
- Both mean and zonal  $E \times B$  shear act on zonal pattern





- Origin of staircase is simple: quasi-periodic zonal pattern in u, n formed by self-sharpening of modulation
  - Principal feedback is through gradient nonlinearity of mixing and transport (here, Vn determines)
  - □ Pattern scale emerges as minimum set by  $\nabla n$ , dissipation, period of zonal shear.....
- Reduced models are useful complements to large scale simulation !





#### **Ongoing and Future Work**



#### Understanding

- □ Why shearing feedback is not effective?
- Requirement of driving gradient nonlinearity to sustain pattern?
- □ Other feedback mechanism?

Flux driven studies (Extend Ashourvan, Diamond studies )

- □ Scaling of step size ?
- □ Quantity the global hysteresis of state ?
- ❑ Determined condition for ITB transition ? (global→local barrier ?)

Modify the model to treat mean shear consistently, and to treat high density (i.e., hydrodynamic) regime ?.....





# Thank you very much for your attention!

International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics (IFPP, J-TEXT)

#### Wuhan, China



1st Chengdu Theory Festival (CTF), August 20-31, 2018

