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Outline

* Introduction: Shear layer collapse at the density limit.
* Density limit n/n; — 1 as a transport phenomenon.
 Recent experimental studies related to the density limit.

« A model for the collapse of zonal flowsasn — ng.
A closer look at the:

* Energy and Momentum fluxes in the adiabatic and hydrodynamic electron limit.
* PV mixing in both electron limits.
« Scaling of the transport fluxes and evolution of the shear flow layer.

 Implications and recommended experimental tests.



Introduction

« An explanation of the density limit phenomenon using a simple mechanism of DW
turbulence. Note that the density limit is manifested in tokamaks, stellerators and RFPs.

» Understand why ZFs collapse in the hydrodynamic electron limit
2,2 2
Key parameter: Local adiabaticity parameter o = AT NN (at fixed kgp; and w ~ w™)

|w|Ve; n

* Previous work simply described the symptoms of the density limit but did not present a
physical explanation of the enhancement of turbulence and particle transportasn — ng.



Density limit as a transport phenomenon-1
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assoclated with:

MARFE radiation = impurity flux (sometimes)
MHD disruptions.

Divertor detachment.

H— L back transition.
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Density limit as a transport phenomenon-2
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Recent Experiments- 1
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(b) Line average density (10'° m™)

(Y. Xu et al., NF, 2011)

 Decrease in maximum correlation value of LRC (i.e.
ZF strength) as line averaged density <n> increases at
the edge (r/a=0.95) in both TEXTOR and TJ-II.

e At high density ((n,) > 2 x 10 m™3), the LRC (also
associated with GAMSs) drops rapidly with increasing
density.

* Interestingly, the reduction in LRC due to increasing
density Is also accompanied by a reduction in edge
mean radial electric field (Relation to ZFs).




Recent Experiments - 2
(Schmid et al., PRL, 2017)

* First experimental verification of the importance of
collisionality for large-scale structure formation in TJ-K.

 Analysis of the Reynolds stress and pseudo-Reynolds

o0 | slIess shows a decrease in the coupling between density
— -tie 11 and potential for increasing collisionality — hindering of
= = = Ar 11 zonal flow drive.
_ TN Kr
= oi0f g, E
& “'- ] . .
- ||« Decrease of the zonal flow contribution to the complete
turbulent spectrum with collisionality C.
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a) Increase in decoupling between density (red) and potential (blue) coupling with collisionality C.
b) Increase in ZF contribution to the spectrum in the adiabatic limit (C—0)



Recent Experiments— 3
(Hong et al., NF, 2018)

« An Ohmic L-mode discharge experiment in HL-2A
showed that, as n/ng is raised:

+ Enhancement of edge turbulence.
+ Edge cooling.

: kZv?Z
| [—e—0sne + Drop in a = |a)Z|—Vth from 3 t0 0.5.
=0 - - - . el
100 - - - - + Drop In edge shear.

50

(T2) (eV)

 Note the low values 0.01<f<0.02 in this experiment
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* Electron adiabaticity a =

local parameter.

2,2

|w|Vei

emerges as an interesting

» Particle flux 1 and Reynolds power Pr, = —(Vy)0,(V..Vy)
| as a drops below unity.




Synthesis of the Experiments

 Shear layer collapse and turbulence and D (particle transport) rise as ﬁi - 1.
G

2,2
kzvth

|lw|Vei

« ZF collapse as a = dropsfroma > 1toa < 1.

 Degradation in particle confinement at density limit in L-mode is due to ZF
collapse and rise in turbulence.

* Note that £ In these experiments is too small for conventional Resistive
Ballooning Modes (RBM) explanations.



A model for the collapse of the ZFs as n—ng
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Dispersion Relationfora < 1and a > 1

a(14+k p))

Dispersion relation: W — %( —q
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Hydro Limit:
(a Kl1land @ < |w|)

Whydrodynamic =

Convective Cell



An ldiot proof argument for ZF collapse for Hydrodynamic
Electrons: Wave propagation

Adiabatic regime (k2v3, /|w|ve; > 1): Hydrodynamic regime (k2v,/|w|vey; < 1):
k k ow, k
k k V, &)= oy v v _ _ _hydro _ By or
< > Z | (Dk < 9r8> Zl—l— kJ_IOs De <VxV > Z k | (Dk Vgr akr sz_ whydro

V,, IS not proportional to k
¢ vpe X < 0and vy >0 > kk,>0 or 15 T1OLPIOP m
* - Condition of outgoing wave energy flux does not

* Momentum flux <0 and energy flux>0 constrain the momentum flux, as v, is not
« Causality implies a counter flow spin-up > proportional to k., = no implication for Reynolds
eddy shearing and ZF formation stress

BOTTOM LINE:

- 4= Momentum flux toward excitation

m— —» Energy flux outward from excitation _ _ o
The Tilt and Stretch mechanism fails in the

gt -Wyte => vg,g-/ﬂ-&vg, Hydrodynamic limit, as causality does not
XIS \J constrain the Reynolds stress.




Reduced MOdel (Hajjar et al., PoP, 2017 and Hajjar et al., PoP, 2018)

* 0n = =0,y + DoVién Imix = . 5~ lo

(1+(lo\7u)2>
£

e d,u = —0,I1 + uyVlu

3
e die+0, . =—T,—IDHO0n—0,u)—ez2+P

Fluxes:

e Particle flux =T, = (i1 ¥,)

» Vorticity flux =TT = (V2 ©,) = —x,, 0,u + [1"* = —0,(D, 7,) (Taylor 1D)

« Potential enstrophy density flux = I, = turbulence spreading due to triad coupling



Expression of Transport Fluxes as calculated by QLT:

(@ + |vm|) dInn
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(6v2) Diffusive Flux
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_ Shear production and acceleration of
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_ _ flow by 'n
turbulent viscosity
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Transport Fluxes

Hydrodynamic limit

Adiabatic limit
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Evolution of the Stationary vorticity flux

A

-

Shear }/T 1

Flow

R

* \orticity gradient emerges as natural
measure of production vs. turbulent mixing.

cI=0->Vu=101I""/y,

 The vorticity gradient is characteristic of the
flow shear layer strength.

Shear

A jump in the flow shear over a scale length I is equivalent to a vorticity gradient over that scale length



Scaling of transport fluxes with «

Adiabatic (a >>1) | Hydrodynamic (a
=1 [ Xy Tand 7es |

- 1 1
Particle Flux T Fadia =7 Chyaro™ 7 as the electron
— response passes from
Turbulent 1 1 L
Xadia™ 7 W™ = adiabatic (o >1) to

Viscosity x .
o " - » Va hydrodynamic (o <1)
Residual stress IT 1765y ~ — I17es gro~-V
[]res a i ( a ) i
X — (wCiVn) X (|(U % |) |(1) *l

« Mean vorticity gradient Vu (i.e. ZF production) becomes proportional to a < 1 in the

hydrodynamic limit.
* Weak ZF formation for « << 1 - weak regulation of turbulence and enhancement of

particle transport and turbulence.



How does ZF collapse square with PV Mixing?

S Rossby waves: Quantitatively
/7%\ « PV =V?%¢ + By is conserved between 8,and * The PV flux T, = (T h) — pZ(T, V)
Lro 92.
P10 - _ _
N / . Total vort|C|tt_y _%Q S-Il_ Ia) gftrozenhm—> (_jhelmgel . Adiabatic limit a > 1-
- N Mean Vorticity 22 1€ads 10 a thange Ih loca +Particle flux and vorticity flux are tightly

vorticity w — Flow generation (Taylor’s ID) coupled (both are prop. to 1/a)

Drift waves: 3 « Hydrodynamic limita < 1 :
e INHW,g=Inn—-V?¢p =Innyg+h+ ¢ — +Particle flux is proportional to 1/Va.
V2¢ is conserved along the line of density +Residual vorticity flux is proportional to
gradient. Va.
pensity « Change in density from position 1 to position
- 2-> change in vorticity = Flow generation . L : :
N (Taylor ID) PV mixing is still possible without ZF

formation - Particles carry PV flux
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Feedback loop for plasma
cooling: transport can lead
to MHD activity
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The Old Story / A Better Story

Modes, Glorious Modes / Self-Regulation and its Breakdown

(Drake and Rogers, PRL, 1998)

MHL Instabality

(Hajjar et al., PoP, 2018)

State Electrons Turbulence Regulation
Base State - L-mode Adiabatic or Collisionless Secondary modes
a>1 (ZFs and GAMs)
H-mode Irrelevant Mean E x B shear
(Vpi)
Degraded particle confinement Hydrodynamic None - ZF collapse due
(Density Limit) a <1 weak production for o < 1

UpmHD
Nl
g
Rg?d i i
o aymp = — 2% _, yp and ballooning drive

to explain the phenomenon of density limit.
 Invokes yet another linear instability of RBM.
« What about density limit phenomenon in

plasmas characterized by a low ?

Secondary modes and states of particle confinement

L-mode: Turbulence is regulated by shear flows but not

suppressed.
H-mode: Mean EXB shear «»Vp, suppresses turbulence and

transport.
Approaching Density Limit: High levels of turbulence and

particle transport, as shear flows collapse.




Conclusions - 1

L-mode density limit experiments:
 Density limit is consequence of particle transport processes.

* Edge, turbulence-driven shear layer collapses as n—n,
- Relation to the local parameter o

« ZF production drops as a decreases below unity, while edge particle transport and
turbulence increase.

 Cooling front:
- Extent penetration of turbulence spreading?

- Strength — operation regime



Conclusions - 2

H-mode density limit experiments:

 Density limit a ‘back-transition’ phenomenon i.e. drift-ZF state — convective cell, strong
fluctuation turbulence

— scaling of collapse? (spatio-temporal)
— bifurcation? Trigger?, hysteresis?!
— control parameter < o

)

« Pedestal quiescent while SOL turbulence set by: Pedestal

-~ Q

— Fueling
— Divertor conditions U

E,. well sep

SOL



Future work

« Numerical investigation of the evolution of a plasma transition from one limit to the
other.

* Experimental investigation of which happens first: a drop in o or a decrease in the ZF
production:

1. Experimental verification of the drop in the total Reynolds work as n/ng — 1.

2. Increase n and decrease T, so to keep o ~T,?/n constant.
In theory, no collapse of ZFs should be observed, as a constant.

3. Investigation of the role of high edge Vp and high 8 values in H-modes on the
enhancement of turbulence and prole evolution in density limit experiments.

* Verify the decrease in bi-spectra of <ZF|DW,DW> as n/n; —1.



