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Outline

• Why study hysteresis?
What is rotation reversal hysteresis, and what can it tell us about turbulence?

• Experimental characterization of hysteresis on C-Mod
What is experimentally observed in hysteresis, and can we infer any changes in 
turbulence?

• Understanding observations through quasilinear modelling
Can we use reduced models to identify a candidate theory for the reversal, 
despite the complexity of plasma turbulence?
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Focus: Turbulent Transport of Heat and 
Momentum in Tokamaks 
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Two Major Questions:

• Energy Confinement – How does 
turbulence influence transport of 
injected power in the tokamak?

• Toroidal Rotation – When do large-
scale coherent flows form from 
turbulence in tokamaks?
• Fusion energy context: How is this 

interrelated with energy confinement?

https://fusion.gat.com/theory/Gyromovies

https://fusion.gat.com/theory/Gyromovies
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Introduction: A Tale of Two Transitions in 
Tokamak Turbulence

• LOC/SOC transition is a universally 
observed transition in confinement time 
found in L-mode plasmas

• Intrinsic Rotation Reversal is a 
spontaneous reorganization of toroidal 
rotation in plasmas with no external 
momentum input

• Rich phenomenology observed (impurity 
asymmetry, density profile peaking, cold 
pulse propagation, etc…)1

• How are these transitions linked? Can we 
build a qualitative understanding of the 
underlying turbulent state?
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Rice NF 2013
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Background: Understanding of Drift Wave 
Turbulence Necessary to Characterize LOC/SOC

• Gyrokinetic drift wave turbulence 
is responsible for most heat and 
particle transport in tokamaks

• Observed rotation profiles require 
a non-zero residual stress, driven 
by turbulence1

• LOC/SOC and reversal thought to 
be linked to a transition in DW 
turbulence from TEM to ITG2,3

• Studies based on linear stability 
alone have been inconclusive
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1Diamond NF 2013
2Diamond PoP 2008
3Camenen PPCF 2017



Motivation: Hysteresis Experiments Provide 
Controlled Probe of Turbulent Transition!

• Reversals exhibit hysteresis, so the 
same mean plasma parameters 
manifest different (bifurcated) 
rotation states

• This Work1: 
1. The physics of the dominant linear 

instability alone is not enough to 
explain the link between transitions

2. A candidate subdominant mode 
transition found through quasilinear 
modelling which is consistent with 
the observed transport
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Experiments show hysteresis is a reproducible 
phenomenon across multiple shots
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5.4 T, 0.8 MA



Experiments show hysteresis is a reproducible 
phenomenon across multiple shots
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• Hysteresis robust to perturbative LBO



Experiments show hysteresis is a reproducible 
phenomenon across multiple shots
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• Hysteresis robust to perturbative LBO
• Well-defined and well-separated rotation 

states => distinct states of turbulence

 LOC

SOC 
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Nearly Indistinguishable Density and Temperature 
Profiles Can Lead to Different Rotation States
• Profiles are shown here for LOC (t=0.96 s) and SOC (t=0.6 s)

• Electron profiles from same discharge (Thomson, GPC-ECE)
• error rigorously estimated with GPR1

• Ion profiles from different but matched shots (HIREXSR XICS) 1Chilenski NF 2017
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Linear Gyrokinetic Simulations Show Mode 
Stability Unchanged across LOC/SOC Transition

• Linear CGYRO run for multiple times in 
the same shot in rotation reversal 
region
• Matched profiles from LOC and SOC
• ±1σ scan from SOC, shown in gray

• Ion-scale instabilities robustly remain 
ion-directed near transition – change 
in dominant linear instability not 
sufficient to explain LOC/SOC 
transition!
• Consistent with previous work on Alcator 

C-Mod and AUG plasmas1,2,3

• Note: <2σ from TEM/ITG boundary

• Motivates a need to look at 
subdominant modes to diagnose 
turbulent state

𝜔𝑅 [ Τ𝑐𝑠 𝑎]

𝛾 [ Τ𝑐𝑠 𝑎]

r/a = 0.575

ion directed

1White PoP 2013
2Sung PoP 2016
3Erofeev NF 2017
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Separation of Linear and Nonlinear Physics: 
Quasilinear Transport Approximation (QLTA) 

• In linear mode QLTA (mQLTA), flux is given by the sum over modes of a 
quasilinear weight (linear eigenmode structure) times a mode intensity 
(nonlinear saturation)

𝐅𝐥𝐮𝐱 =෍

𝑘

𝐰𝐞𝐢𝐠𝐡𝐭 ⋅ 𝐢𝐧𝐭𝐞𝐧𝐬𝐢𝐭𝐲

𝑄𝑒,turb =෍

𝑘

𝑊𝑄𝑒,𝑘
ത𝜙𝑘

2

• Note on Applicability: Weights used in mQLTA match weights from fully 
nonlinear simulation1; cross-phases match experiment2,3 1Waltz PoP 2009

2White PoP 2010
3Freethy PoP 2018
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mQLTA: Experimental Fluxes Provide a Constraint 
on Nonlinear Mode Saturation Levels

𝐅𝐥𝐮𝐱 =෍

𝑘

𝐰𝐞𝐢𝐠𝐡𝐭 ⋅ 𝐢𝐧𝐭𝐞𝐧𝐬𝐢𝐭𝐲

• Turbulent Fluxes inferred from 
power balance (TRANSP - NEO) 

• Quasilinear Weights from Linear 
Gyrokinetic Simulation (CGYRO)
• Example: The only non-zero weight 

on high-k modes is electron heat flux, 
so they only contribute to electron 
heat flux

• Can’t directly invert equation to 
solve for mode intensities

1160506007

Quasilinear Weights, r/a=0.575
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Reduced Family Model Allows Understanding 
Mixed Mode Picture
• Not interested in detailed shape of 

spectrum, only general trends

• Construct a reduced model that 
lumps related modes into ‘families’:

𝐅𝐥𝐮𝐱 = ෍

families

𝐰𝐞𝐢𝐠𝐡𝐭 ⋅ 𝐢𝐧𝐭𝐞𝐧𝐬𝐢𝐭𝐲

• Greatly reduces the number of 
unknowns, and allows for the 
experimental fluxes to be used 
meaningfully as constraints

1160506007

Quasilinear Weights, r/a=0.575
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Reduced Family Model Allows Understanding 
Mixed Mode Picture

𝐅𝐥𝐮𝐱 = ෍

families

𝐰𝐞𝐢𝐠𝐡𝐭 ⋅ 𝐢𝐧𝐭𝐞𝐧𝐬𝐢𝐭𝐲

ITG (a,b) Ion-scale, ion-directed modes; separated 
into low-k (a) and mid-k (b) based on 
particle transport:
(a) Net outward particle transport
(b) Roughly balanced particle transport

TEM Intermediate-scale 𝑘𝑦𝜌𝑠 ≳ 1, electron or 

hybrid-direction modes; marginal modes, 
with inward particle pinch

ETG Electron-scale electron-directed modes; 
exhausts mostly electron heat flux, ions 
adiabatic

1160506007

Inter.
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Electron
Scale

Ion
Scale
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• No core fueling, so Γ𝑒 = 0

• To satisfy particle flux constraint:

• Away from transition, continuity implies 
different transport dependencies
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Novel Candidate Subdominant Mode Transition 
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Mechanism leading to Transition and 
Bistability still Unknown

Experimental Constraints on Possibilities:

1. We’re on a stability boundary, so small profile changes lead to big 
changes in turbulence
• Robustness to perturbative LBO seems to rule this out

2. Mean rotation profiles contribute to change in turbulence through 
ExB shearing
• Reminiscent of L-H transition, next slide will discuss…

3. Change in meso-scale or micro-scale turbulent nonlinear 
interactions (e.g. entering/leaving weak turbulence regime)
• QL may fail for TEMs1,2, and shear flows affect cross-phase3. How to identify 

key physics, and what happens to QL estimates?
APS-DPP 2019 22

1Xiao PRL 2009
2Kosuga PoP 2011
3Terry PRL 2001
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Change in mean ExB shear across transition 
possibly non-negligible?

• Mean ExB shearing rate calculated 
from force balance

𝛾𝐸 =
𝑟

𝑞

𝑑𝜔0

𝑑𝑟

• CGYRO scans show shear is not 
enough to linearly stabilize observed 
ion modes, but could play a role in 
saturation of more marginal modes
• Not conclusive based on linear 

arguments alone! Need to consider 
nonlinear interactions1

• Possibly amenable to reduced 
dynamical modelling through 
predator-prey (similar to L-H2,3)

SOC

LOC

1Waltz et al PoP 1998
2Diamond et al PRL 1994
3Kim et al PRL 2003
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Summary and Paths Forward

• Experiments show changes in toroidal rotation and turbulent residual 
stress despite nearly identical density and temperature profiles
• A change in dominant linear instability alone is not sufficient to explain the LOC/SOC 

transition

• Quasilinear modelling identifies a candidate subdominant ITG/TEM 
transition which is consistent with the observed transport
• Reminiscent of a “population collapse” or quenching of marginal TEM turbulent 

intensity

• Provides a stepping stone for future inquiry:
• Hints towards nonlinear physics required to adapt reduced dynamical models
• Hysteresis experiments in nonlinear global simulation to probe residual stress physics
• Characterize turbulent fluctuations in hysteresis experiments on other machines
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What Evidence Exists for ITG/TEM Picture of 
LOC/SOC Transition?

• Modelling Consistent with TEM in deep LOC, ITG in deep SOC
• Romanelli (analytic w/ mixing length), Erofeev, Grierson (Predictive Transport 

Modeling w/ TGLF)

• Rodriguez-Fernandez (role of TEMs vs ITGs in determining cold pulse 
dynamics)

• Residual Stress physics and Theoretical Suspicions
• Wang, Grierson (GTS papers), Hornsby (GKW)

• Camenen, Diamond (wave group velocity in relation with momentum)

• Experimental Signatures
• JET and Tore Supra Citrin (QC-TEMs go away at LOC/SOC; “TEMs being 

unstable is not enough”)
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Co-current +20 km/sCounter-current -7 km/s

1.1 MA Ohmic – different toroidal rotation, 
same local profiles, different PCI spectra
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PCI Spectra provide circumstantial evidence of 
turbulence change in hysteresis experiments

• Circumstantial evidence suggests a 
sudden change in turbulence, in 
direction of LOC => SOC, before the 
reversal finishes
• Reminder: Bistability robust to perturbative 

laser blow-off injection
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time [sec]

1160506009

Observed ±𝑘𝑅 Fluctuation Asymmetry 
(𝑃+𝑘𝑅 − 𝑃−𝑘𝑅)/

ത𝑃

SOC

LOC

[N.M. Cao TTF 2017]

SOC
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What Exactly are the intermediate-k Modes?
Appear in the crossover between TEM and ITG branches of dispersion, 
when the overlap decreases, almost certainly the remnants of TEM+ITG; 
unstable TEM also have inward particle pinch



Nonlinear Heat Flux Spectra Possibly 
Consistent with mQLTA Prediction
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Heat flux spectra at r/a=0.8

Peaking 
factor 1.5

Peaking 
factor 2

Ion heat flux spectrum 
more peaked in SOC!



Ways the Quasilinear Approximation Could 
Fail, and Resulting Physics

Possibilities include…

1. Wave-particle nonlinearity (Kubo number)
• ITG Kubo # good, TEM Kubo # > 1

2. DW-DW interactions
• TEM dispersion weak at ion-scales

3. DW-Flow shear interaction (note difference between trapped and 
passing particle response)
• Hahm-Burrell Shearing parameter
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Calculating Gradients and Uncertainties has 
“Coastline Paradox” Problem
• Coastline measurement paradox involves the measurement of arclength, 

which depends on derivative

∫ 𝑑𝑠 ≈ ∑ Δ𝑥2 + Δ𝑦2

• Problem is ill-posed; answer tends to diverge as length of ruler gets smaller 
e.g. detail increases as length-scale used to view increases, typically with 
𝛼 < 0 [Richardson]

𝐿 𝐺 = 𝑀𝐺𝛼

• Note relationship with anomalous dissipation in turbulence, appearance of 
singularities in limit of zero dissipation

• This is an issue intrinsic to the derivative operator (related to sensitivity to 
high frequency components), not a quirk of the measurement! There is no 
such thing as a gradient measurement without a length scale.

• Importance of different length scales imply different physics



What about momentum?

• Don’t expect many intrinsic 
stress sources to be captured 
by local linear runs

• [Grierson PRL 2017] Turbulent 
momentum diffusion balances 
with intrinsic stress generation
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Momentum Transport Predicted is Primarily 
Diffusive
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Flow Shear Affects Growth Rates of 𝑘𝑦𝜌𝑠~1
Marginal Modes

• Performed scans reducing mean 
ExB and Mach flow shear (color 
scale on plot to the right)

• Marginal modes with large 
enough 𝑘𝑦𝜌𝑠 strongly affected by 
flow shear, while ion modes 
relatively unchanged

• Provides possible mechanism for 
bifurcation (increasing flow shear 
-> changed mode population -> 
increasing flow shear)
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Hysteresis Observed Robustly in Multiple 
Plasma Conditions
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• Hysteresis is observed at multiple currents, and survives perturbation 
from LBO.

• Low-power ICRF heating ramps also lead to hysteresis, with similar
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Fluctuation Measurements Change Despite 
Nearly Identical Profiles
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• Power spectra of complex signal 
from 88 GHz channel of C-Mod 
midplane O-Mode reflectometer 
shown for LOC and SOC

• Reflectometry is sensitive to density 
perturbations, 𝑘⊥ up to 10 cm-1 [Lin 
PPCF 2001]

• Open question if change in power 
spectrum actually due to change in 
turbulence, not just Doppler shift
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Reflectometer, r/a = 0.53
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