Background	Machine learning approach	Results	Discussion

Learning a model for mean-field turbulence dynamics

R.A. Heinonen and P.H. Diamond

CASS and Department of Physics University of California, San Diego

APS DPP 2019

Supported by the Department of Energy under Award Number DE-FG02-04ER54738

Introduction: can a computer do plasma physics?

- Calculating turbulent fluxes is an important challenge for the plasma physicist
- Introduce new machine learning technique for studying fluxes
- Can the algorithm pick up physics we missed?

Figure A computer studies tokamak physics

Introduction	· this talk		
Background	Machine learning approach	Results	Discussion
00		00000	00000

- Apply new method to resistive DW turbulence via 2D Hasegawa-Wakatani system
- Reproduce analytic result for particle flux, including often-overlooked term induced by ZF
- Discuss implications of ZF term, future directions

Figure Snapshot of vorticity field from simulation of 2D HW

Background	Machine learning approach	Results	Discussion
••			

Background

Background	Machine learning approach	Results	Discussion
⊙●		00000	00000
Drift-wave tur	bulence		

- Drift-wave turbulence features complex interaction between mean profile, ZF, and turbulence
- Dynamics controlled by cross-correlations between fluctuating quantities (turbulent fluxes). E.g. particle flux $\Gamma = \langle \tilde{n}\tilde{v}_x \rangle$ and Reynolds stress $\Pi = \langle \tilde{v}_x \tilde{v}_y \rangle$
- Difficult to calculate! Not many approaches beyond quasilinear theory

Figure Feedback loop illustrating interaction of mean fields in DW turbulence

Background	Machine learning approach	Results	Discussion
	● 0 0		

Machine learning approach

Background		Machine learning approach	Results	Discussion
		000		
D · (11		and the second second	

Basic formalism: pushing MFT to the limit

- Seek maps f_q which send local mean fields to local fluxes, i.e. f_q:

 (n, ∂_xn,..., φ, ∂_xφ, ζ, ∂_xζ,..., ε, ∂_xε,...) ↦
 ⟨q̃v_x⟩. Here ε = (ñ ζ̃)² is turb. PE, ζ = ∂²_xφ is vorticity
- Idea: rather than attempt direct calculation or fitting parameters, use supervised learning to train a neural network on numerical simulations
- Essentially nonlinear, model-free regression. Could capture physics missed by human?

Figure Schematic of machine learning method

Background	Machine learning approach	Results	Discussion
00	00●	00000	00000
Detailed method	ds		

- As proof of concept, learn particle flux Γ from simulations of 2D HW (at fixed α = 2). Advantages: fast simulations, captures full feedback loop, yet simple to treat analytically
- Constrain problem using symmetries of HW:
 - Invariance under uniform shifts $n \rightarrow n + n_0$ and $\phi \rightarrow \phi + \phi_0$ eliminate dependence on n, ϕ
 - Invariance under boosts in y

$$\begin{cases} \phi & \to \phi + v_0 x \\ y & \to y - v_0 t \end{cases}$$

eliminates dependence on ZF speed $\partial_x \phi$ Seflection symmetries $x \to -x, y \to -y$ and $\phi \to -\phi, n \to -n, x \to -x$ and $\phi \to -\phi, n \to -n, x \to -x$ which are enforced by duplicating and transforming data

Background	Machine learning approach	Results	Discussion
		0000	

Results

Background	Machine learning approach	Results	Discussion
00		00000	00000
Particle flux lea	rned by NN		

NN learns a model roughly of the form

$$\overline{} = -D_n \varepsilon \partial_x n - D_\zeta \varepsilon \partial_x \zeta$$

Usual QL flux plus an "off-diagonal" term driven by vorticity! (no clear dependence on other quantities)

Figure Curves (at fixed $\varepsilon = 10$, $\zeta = 1$, $\partial_x \varepsilon = 0$, and various $\partial_x n$) of Γ vs vorticity gradient. Appears to be simple linear combination of $\partial_x n$ term and $\partial_x \zeta$ term

Background	Machine learning approach	Results	Discussion
00	000	00●00	00000
Derivation of of	ff-diagonal term		

Careful analytic treatment in adiabatic limit reproduces off-diagonal term. Need include frequency shift due to ZF!

C

$$\begin{split} \omega_{\mathbf{k}} &= \frac{k_{y}}{1+k^{2}} (\partial_{x}n - \partial_{x}\zeta) + O(\alpha^{-2}) \\ \gamma_{\mathbf{k}} &= \frac{k_{y}^{2}}{\alpha(1+k^{2})^{3}} (\partial_{x}n - \partial_{x}\zeta) (k^{2}\partial_{x}n + \partial_{x}\zeta) + O(\alpha^{-2}) \\ \Gamma &= \operatorname{Re}\sum_{\mathbf{k}} -ik_{y}\tilde{n}_{\mathbf{k}}\tilde{\phi}_{\mathbf{k}}^{*} \\ &= \sum_{\mathbf{k}} \frac{-k_{y}^{2}\partial_{x}n(\gamma_{\mathbf{k}} + \alpha) + \alpha k_{y}\omega_{r,\mathbf{k}}}{\omega_{r,\mathbf{k}}^{2} + (\gamma_{\mathbf{k}} + \alpha)^{2}} |\tilde{\phi}_{\mathbf{k}}|^{2} \\ &= \frac{1}{\alpha}\sum_{\mathbf{k}} -\frac{k_{y}^{2}}{1+k^{2}} \left(k^{2}\partial_{x}n + \partial_{x}\zeta\right) |\tilde{\phi}_{\mathbf{k}}|^{2} + O(\alpha^{-2}) \end{split}$$

Background 00 Machine learning approach

Results

Discussion

Comparison to QLT (diagonal term)

Compare NN result to QLT result using spectrum centered at most unstable ${\bf k}$ for $\partial_x \zeta = 0$

$$\varepsilon_{\mathbf{k}} = \frac{\langle \varepsilon \rangle}{4\pi\Delta k_x \Delta k_y} e^{-k_x^2/2\Delta k_x^2} \left(e^{-(k_y - \sqrt{2})^2/2\Delta k_y^2} + e^{-(k_y + \sqrt{2})^2/2\Delta k_y^2} \right)$$

Figure Curves (at fixed $\zeta = 1$, $\partial_x \zeta = \partial_x \varepsilon = 0$, and various ε) of Γ vs density gradient from NN

Figure Corresponding curves from QLT with $\Delta k_x = \Delta k_y = 1.5$

Figure Curves (at fixed $\zeta = 1$, $\partial_x n = \partial_x \varepsilon = 0$, and various ε) of Γ vs vorticity gradient from NN

Figure Corresponding curves from QLT with $\Delta k_x = \Delta k_y = 1.5$

Background	Machine learning approach	Results	Discussion
			00000

Discussion

Background Machine learning approach Results Discussion 00 000 0000 0000 00000 0●000

Implications of off-diagonal term

- Off-diagonal often dismissed, but coupling same order of magnitude (~ 0.5) as that of usual ∂_xn term. Machine picks it out very clearly!
- Consequence: ZF can induce staircase pattern on profile. If V_y = V₀ sin(qx), ∂_xζ term will contribute

$$\partial_t \langle n
angle \sim - rac{k_y^2 q^3 V_0 \langle arepsilon
angle}{lpha (1+k^2)^3} \cos(qx)$$

 Alternate mechanism independent of usual shear suppression, bistability. Could explain DIII-D pedestal staircase (Ashourvan et al. PRL 2019)?

Figure Cartoon indicating how ZF can induce profile staircase via pinch

Conclusions an	d future work		
Background 00	Machine learning approach	Results 00000	Discussion

- Machine learning technique teaches us that shear-induced off-diagonal flux is **significant** effect
- Eventually, ML method may be applicable to more complex systems that resist analytic treatment
- In progress:
 - Develop more sophisticated ML methods, e.g. spatially nonlocal model. Goal: Reynolds stress
 - Omplete analytic study of effects of ZF frequency shift
- How important is off-diagonal flux relative to other staircasing mechanisms?

Hasegawa-Waka	itani system		
Background	Machine learning approach	Results	Discussion
00		00000	000●0

• Simplest realistic model for drift-wave turbulence which captures full feedback loop

$$\partial_t n + \mathbf{v}_E \cdot \nabla_\perp n = \alpha(\tilde{\phi} - \tilde{n}) + \text{dissipation}$$

 $\partial_t \zeta + \mathbf{v}_E \cdot \nabla_\perp \zeta = \alpha(\tilde{\phi} - \tilde{n}) + \text{dissipation}$

with $v_E = \hat{z} \times \nabla_{\perp} \phi$, $\zeta = \nabla_{\perp}^2 \phi$ and $\alpha = \eta k_{\parallel}^2$ the adiabatic operator (representing parallel electron response)

• Averaging over symmetry directions ($\langle \cdots \rangle)$ yields

 $\partial_t \langle n \rangle + \partial_x \Gamma =$ dissipation

$$\partial_t \langle \zeta \rangle - \partial_x^2 \Pi = dissipation$$

where $\Gamma = \langle \tilde{n} \tilde{v}_x \rangle$ and $\Pi = \langle \tilde{v}_x \tilde{v}_y \rangle$

• How to calculate Γ , Π ?

Background	Machine learning approach	Results	Discussion
00		00000	0000
Extra slide: erro	or bars		

Figure Error bar estimates for NN results for $\partial_x \zeta = 0$

Figure Error bar estimates for NN results for $\partial_x n = 0$

