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Introduction: can a computer do plasma physics?

Calculating turbulent fluxes is an
important challenge for the plasma
physicist

Introduce new machine learning
technique for studying fluxes

Can the algorithm pick up physics
we missed?

Figure A computer studies
tokamak physics
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Introduction: this talk

Apply new method to resistive DW
turbulence via 2D
Hasegawa-Wakatani system

Reproduce analytic result for
particle flux, including
often-overlooked term induced by
ZF

Discuss implications of ZF term,
future directions

Figure Snapshot of vorticity
field from simulation of 2D
HW
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Drift-wave turbulence

Drift-wave turbulence features
complex interaction between mean
profile, ZF, and turbulence

Dynamics controlled by
cross-correlations between
fluctuating quantities (turbulent
fluxes). E.g. particle flux Γ = 〈ñṽx〉
and Reynolds stress Π = 〈ṽx ṽy 〉
Difficult to calculate! Not many
approaches beyond quasilinear
theory

Figure Feedback loop illus-
trating interaction of mean
fields in DW turbulence
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Basic formalism: pushing MFT to the limit

Seek maps fq which send local
mean fields to local fluxes, i.e.
fq :
(n, ∂xn, . . . , φ, ∂xφ, ζ, ∂xζ, . . . , ε, ∂xε, . . . ) 7→
〈q̃ṽx〉. Here ε = (ñ − ζ̃)2 is
turb. PE, ζ = ∂2

xφ is vorticity

Idea: rather than attempt
direct calculation or fitting
parameters, use supervised
learning to train a neural
network on numerical
simulations

Essentially nonlinear,
model-free regression. Could
capture physics missed by
human?

Figure Schematic of machine learning
method
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Detailed methods

As proof of concept, learn particle flux Γ from simulations of
2D HW (at fixed α = 2). Advantages: fast simulations,
captures full feedback loop, yet simple to treat analytically

Constrain problem using symmetries of HW:
1 Invariance under uniform shifts n→ n + n0 and φ→ φ+ φ0

eliminate dependence on n, φ
2 Invariance under boosts in y{

φ → φ+ v0x

y → y − v0t

eliminates dependence on ZF speed ∂xφ
3 Reflection symmetries x → −x , y → −y and
φ→ −φ, n→ −n, x → −x and φ→ −φ, n→ −n, x → −x
which are enforced by duplicating and transforming data
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Particle flux learned by NN

NN learns a model roughly of the form

Γ = −Dnε∂xn − Dζε∂xζ

Usual QL flux plus an “off-diagonal” term driven by vorticity! (no
clear dependence on other quantities)

Figure Curves (at fixed ε = 10, ζ = 1, ∂xε = 0, and various ∂xn) of Γ vs
vorticity gradient. Appears to be simple linear combination of ∂xn term
and ∂xζ term
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Derivation of off-diagonal term

Careful analytic treatment in adiabatic limit reproduces
off-diagonal term. Need include frequency shift due to ZF!
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Comparison to QLT (diagonal term)

Compare NN result to QLT result using spectrum centered at most
unstable k for ∂xζ = 0
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Figure Curves (at fixed ζ = 1, ∂xζ =
∂xε = 0, and various ε) of Γ vs den-
sity gradient from NN

Figure Corresponding curves from
QLT with ∆kx = ∆ky = 1.5
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Comparison to QLT (off-diagonal term)

Figure Curves (at fixed ζ = 1, ∂xn =
∂xε = 0, and various ε) of Γ vs vor-
ticity gradient from NN

Figure Corresponding curves from
QLT with ∆kx = ∆ky = 1.5
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Implications of off-diagonal term

Off-diagonal often dismissed, but
coupling same order of magnitude
(∼ 0.5) as that of usual ∂xn term.
Machine picks it out very clearly!

Consequence: ZF can induce
staircase pattern on profile. If
Vy = V0 sin(qx), ∂xζ term will
contribute

∂t〈n〉 ∼ −
k2
y q

3V0〈ε〉
α(1 + k2)3

cos(qx)

Alternate mechanism independent
of usual shear suppression,
bistability. Could explain DIII-D
pedestal staircase (Ashourvan et al.
PRL 2019)?

Figure Cartoon indicating
how ZF can induce profile
staircase via pinch
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Conclusions and future work

Machine learning technique teaches us that shear-induced
off-diagonal flux is significant effect

Eventually, ML method may be applicable to more complex
systems that resist analytic treatment

In progress:
1 Develop more sophisticated ML methods, e.g. spatially

nonlocal model. Goal: Reynolds stress
2 Complete analytic study of effects of ZF frequency shift

How important is off-diagonal flux relative to other staircasing
mechanisms?
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Hasegawa-Wakatani system

Simplest realistic model for drift-wave turbulence which
captures full feedback loop

∂tn + vE · ∇⊥n = α(φ̃− ñ) + dissipation

∂tζ + vE · ∇⊥ζ = α(φ̃− ñ) + dissipation

with vE = ẑ ×∇⊥φ, ζ = ∇2
⊥φ and α = ηk2

‖ the adiabatic

operator (representing parallel electron response)

Averaging over symmetry directions (〈· · · 〉) yields

∂t〈n〉+ ∂xΓ = dissipation

∂t〈ζ〉 − ∂2
xΠ = dissipation

where Γ = 〈ñṽx〉 and Π = 〈ṽx ṽy 〉
How to calculate Γ, Π?



Background Machine learning approach Results Discussion

Extra slide: error bars

Figure Error bar estimates for NN re-
sults for ∂xζ = 0

Figure Error bar estimates for NN re-
sults for ∂xn = 0
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