Background: turbulence spreading	Fisher model	Bistable model	Avalanche threshold	Conclusions

Subcritical turbulence spreading and avalanche birth

R.A. Heinonen and P.H. Diamond

CASS and Department of Physics University of California, San Diego

APS DPP 2019

Supported by the Department of Energy under Award Number DE-FG02-04ER54738

Background: turbulence spreading	Fisher model	Bistable model	Avalanche threshold	Conclusions
000	000000	000000		00000000000
Introduction I				

- In magnetic fusion plasma, turbulence driven by linear instability
- However, turbulence is still found to be present in linearly stable regions
- Explanation: turbulence can spread
- Basic example of nonlocality

Figure: Experiment [Nazikian et al., 2005] clearly showing fluctuations in stable zone

Background: turbulence spreading 000	Fisher model	Bistable model 000000	Avalanche threshold	Conclusions 00000000000
Introduction II				

- Turbulence spreading: old news?
- Challenge the conventional wisdom on spreading (supercritical Fisher model)
- Suggest a new model based on subcritical turbulence, which testably differs from old story
- Will see that new model also serves as basic framework for avalanching

Figure: Conventional wisdom on turbulence spreading

- New model accounts for robust penetration of turbulence into stable regions via **ballistic propagation**, whereas old model features weak, evanescent penetration $\ell \sim \Delta_c$
- New model features threshold for propagation of a puff of turbulence, akin to an avalanche
- Power law threshold for puff size vs. intensity

Penetration into stable zone in Fisher model (left) and new model (right)

Background: turbulence spreading	Fisher model 000000	Bistable model 000000	Avalanche threshold	Conclusions 00000000000
Outline				

2 Fisher model

3 Bistable model

4 Avalanche threshold

Background: turbulence spreading	Fisher model	Bistable model	Avalanche threshold	Conclusions
•00	000000	000000	0000000	00000000000

Background: turbulence spreading

What the Fick?: turbulence spreading

- Turbulence can radially self-propagate via **nonlinear coupling**. Intensity profile gradient → intensity flux
- Can penetrate linearly stable zones
- Decouples flux-gradient relation: local turbulence intensity now depends on global properties of the profiles
- Spells doom for local Fickian transport models i.e. $Q \propto \partial_x T$

Figure: Mesoscale gradient in intensity envelope generates turbulence flux

Background: turbulence spreading	Fisher model	Bistable model	Avalanche threshold	Conclusions	
00●	000000	000000	0000000	00000000000	
Depiction of spreading					

Figure: Spatiotemporal evolution of flux-surface-averaged turbulence intensity in toroidal GK simulation. Linearly unstable region is 0.42 < r < 0.76; profiles are fixed. From [Wang et al., 2006]

Background: turbulence spreading	Fisher model	Bistable model	Avalanche threshold	Conclusions
	00000			

Fisher model

• Conventional wisdom [Gürcan and Diamond, 2005, Hahm et al., 2004, Naulin et al., 2005] for spreading is Fisher-type equation for turbulence intensity:

- When $\gamma_0 > 0$, uniform fixed points are "laminar" I = 0 and "saturated turbulence" $I = \gamma_0 / \gamma_{nl}$
- Dynamics characterized by traveling fronts connecting roots, with speed $c=\sqrt{\frac{D_0\gamma_0^2}{2\gamma_{nl}}}$

Backg 000	round: turbuler	nce spreading	Fisher model 00●000	Bistable model 000000	Avalanche threshold 0000000	Conclusions 00000000000
-			1.1.1			

Depiction of Fisher evolution

Figure: Evolution of traveling turbulence front in Fisher model. From [Gürcan and Diamond, 2006]

Penetration into stable zone: Fisher

- Consider spreading of turbulence from linearly unstable to linearly stable zone
- Simple model: $\gamma_0 > 0$ for x < 0, $\gamma_0 < 0$ for x > 0
- Allow turbulent front to form in lefthand region and propagate
- Penetration is **weak**: forms stationary, exponentially-decaying profile with $\lambda \sim \sqrt{D_0/\gamma_{nl}} \sim \Delta_c$. Puny!

Figure: A front of turbulence crosses into stable zone and penetrates a finite depth

• No

- Fisher model purports to describe spreading of a patch of turbulence in linearly unstable zone
- Begs the question: why didn't noise already excite the whole system to turbulence?
- Only relevant if $\gamma_0 \ll c/\Delta x$ i.e. $\Delta x^2 \gamma_{nl} \ll D_0$
- Otherwise, physical fronts separating laminar/turbulent domains generally require *bistability* à la [Pomeau, 1986]

Figure: Fisher spreading only makes sense if front propagation rate beats linear growth

Background: turbulence spreading	Fisher model	Bistable model	Avalanche threshold	Conclusions
000	00000●	000000		00000000000
Bistability				

Figure: Free energy of unistable system, corresponding to Fisher

Figure: Free energy of bistable system

Background: turbulence spreading	Fisher model	Bistable model	Avalanche threshold	Conclusions
000	000000	•00000	0000000	00000000000

Bistable model

 Heinonen and Diamond 2019: propose phenomenological model of form

- Simplest extension of Fisher-like model with bistability
- New physics: nonlinear turbulence drive
 ²
 ²
- Bistable in weak damping regime
- Estimate $\gamma_1 \sim \epsilon \omega_*, \ \gamma_{2,3} \sim \omega_*, \ D_0 \sim \chi_{GB}$ (drift-wave/Gyro-Bohm scaling)

Evidence for bistability/subcriticality

- [Inagaki et al., 2013]: experiments demonstrate hysteresis between fluctuation intensity and driving gradient (no TB present). Suggests bistable S-curve relation?
- Turbulence subcritical in presence of strong perpendicular flow shear [Barnes et al., 2011] or in the presence of magnetic shear [Drake et al., 1995]
- Profile corrugations

 [Guo and Diamond, 2017] and phase space structures
 [Lesur and Diamond, 2013] can drive nonlinear instability

Figure: Hysteresis between intensity and gradient, flux and gradient

Background: turbulence spreading	Fisher model	Bistable model	Avalanche threshold	Conclusions
000	000000	000●00		00000000000
Bistable regime				

- Qualitatively similar to Fisher EXCEPT in bistable/weak damping case
- Can then transform to Zel'dovich/Nagumo equation

$$\partial_t I = f(I) + \partial_x (DI \partial_x I)$$
$$f(I) \equiv \gamma I (I - \alpha) (1 - I)$$

Figure: Reaction function has stable nodes at I = 0, 1 and unstable node at $I = \alpha$

Penetration into stable zone: new model

- Take $\gamma_1=\gamma_g>0$ for $x<0,~\gamma_1=-\gamma_d<0$ for x>0
- In contrast to Fisher, a new front with reduced speed/amplitude forms in second region if weakly damped $(\gamma_d < \frac{15\gamma_2^2}{64\gamma_2})$
- Hence: can have ballistic propagation into stable zone!
- Much stronger penetration than possible in Fisher—resolves issue of feeble, evanescent penetration

Penetration into stable zone: simulation

Figure: Spreading into stable zone in GK simulation with magnetic shear [Yi et al., 2014]. Evidence of ballistic propagation? More careful study needed!

Background: turbulence spreading	Fisher model	Bistable model	Avalanche threshold	Conclusions
			000000	

Avalanche threshold

Background: turbulence spreading	Fisher model	Bistable model	Avalanche threshold	Conclusions
000	000000	000000	0●00000	00000000000
Avalanches				

- Bursty, intermittent transport events associated with SOC
- Accounts for a large percentage of total flux
- Initially localized fluctuation cascades through neighboring regions via gradient coupling, simultaneous firing of many cells
- What does this have to do with spreading?

Figure: Cartoon depicting generic avalanche process via overturning of fluctuation into neighboring cells

C I		00000		
Background: turbulence sprea	iding Fisher model	Bistable model	Avalanche threshold	Conclusions

ട

- Fast, mesoscopic turb front propagation
- Interaction of a small scale (DW, cell) with a mesoscale (envelope, avalanche)
- Turbulence intrinsic to avalanching \rightarrow drives spreading
- Unified model?

Figure: Spreading and avalanching both result from coupling of small scale kwith mesoscale q ($q \ll k$)

000	000000	000000	0000000	000000000000000000000000000000000000000
Doniction of avalar	ching			

Figure: Pressure (left) and potential (right) contours for simulations of resistive drift interchange turbulence [Carreras et al., 1996]. Diagonal lines \rightarrow propagating transport events

- In contrast to Fisher, sufficiently large localized puff of turbulence will grow into front and spread. Suggestive of an avalanche triggered by sufficiently strong initial seed
- How to determine threshold?

Two puffs differing only in spatial size are initialized; one grows and spreads, other collapses

Background: turbulence spreading 000	Fisher model	Bistable model 000000	Avalanche threshold	Conclusions 00000000000
Avalanche threshol	d			

- Obviously puff amplitude must exceed $I_0 = \alpha$ or else $\gamma_{eff} = (I - \alpha)(1 - I) < 0$
- Consider "cap" of puff (part exceeding *I* = α)
- Competition between diffusion of turbulence out of cap and total nonlinear growth in cap
- Sets threshold lengthscale $\sqrt{D/\gamma}$

Figure: "Cap" of initial data. There is a competition between nonlinear growth and turbulence diffusion here.

Background: turbulence spreading	Fisher model	Bistable model	Avalanche threshold	Conclusions
000		000000	000000●	00000000000
Avalanche thresho	d II			

• Analytic result: puff grows if

$$L > L_{\min} \sim (I_0 - \alpha)^{-1/2}$$

• Near linear marginality, threshold is weak:

$$L_{-} \sim rac{|\gamma_1|}{\gamma_2} \ll 1, \; L_{
m min} \sim \left(rac{\chi_{\it GB}}{\omega_*}
ight)^{1/2} \sim \Delta_{-}$$

• Thus, avalanche could be triggered by noise. Another possibility: corrugation

Figure: Numerical result for threshold at $\alpha = 0.3$ for three types of initial data (Gaussian (I_1), Lorentzian (I_2), parabola (I_3)), compared with analytical estimate

Background: turbulence spreading	Fisher model	Bistable model	Avalanche threshold	Conclusions
				•00000000000

Conclusions

Fisher vs. new mo	odel			
Background: turbulence spreading	Fisher model 000000	Bistable model 000000	Avalanche threshold	Conclusions 0000000000

	Fisher	new model
Spreading possible		
above lin. marginal	1	\checkmark
Spreading possible		
below lin. marginal	×	\checkmark
Threshold behavior	×	\checkmark
Penetration into stable zone	evanescent	ballistic or evanescent

Two key tests:

- To investigate avalanches: perturb plasma locally, observe spatiotemporal response à la [Van Compernolle et al., 2015]. Need distinguish from linear mode response!
- Can we see ballistic penetration of stable region in numerical experiments? More careful study à la [Yi et al., 2014]

Figure: Cartoon (poloidal cross section) depicting basic setup for avalanching experiment observing response to local pulse.

[Inagaki et al., 2013] is interesting but not the last word. We suggest:

- More basic experiments exploring \tilde{n}/n vs ∇T hysteresis
- Better resolution of dependence of fluctuation intensity on the input power
- More careful study of relaxation after ECH is turned off
- More information on fluctuation field (e.g. spatial correlations)
- Simultaneous measurement of zonal flow pattern

	000000	000000	0000000	0000000000
Spreading in cont	ext			

- How does spreading affect profiles in a real system?
- Spreading will be most important when profiles force sharp ∇I
- Basic example: NML. Spreading reduces turbulence intensity, leading to increased pedestal height/width — spreading can be "good" for confinement
- More details: see Rameswar Singh's talk, NO4.2 "When does turbulence spreading matter?"

Figure: Intensity and pressure profiles; σ =spreading strength

Background: turbulence spreading 000	Fisher model	Bistable model 000000	Avalanche threshold	Conclusions 00000000000
Conclusions				

- Update to Fisher model that allows for **physical** fronts separating laminar/turbulent domains and robust penetration of stable regions
- Supported by substantial evidence for subcritical turbulence
- Provides simple framework for understanding avalanching: local exceedance of nonlinear instability threshold by turbulent puffs
- Key testable predictions: ballistic spreading into weakly linearly damped regions, power-law threshold for spreading of puffs
- Need more experiments in the vein of Inagaki to study bistability

000	turbulence spreading	000000	000000	0000000	000000000000000000000000000000000000000
Refere	nces I				
	Barkley, D., Song, B., Mu	kund, V., Lemoult,	G., Avila, M., and Ho	f, B. (2015).	
	The rise of fully turbulent Nature, 526:550–553.	flow.			
	Barnes, M., Parra, F. I., H	lighcock, E. G., Sci	hekochihin, A. A., Cow	ley, S. C., and Roach, C. M	. (2011).
	Turbulent transport in tok Phys. Rev. Lett., 106:1750	amak plasmas with 004.	rotational shear.		
	Carreras, B. A., Newman,	D., Lynch, V. E., a	and Diamond, P. H. (1	996).	
	A model realization of self Physics of Plasmas, 3(8):2	f-organized criticali 2903–2911.	ty for plasma confinem	ent.	
	Drake, J. F., Zeiler, A., ar	nd Biskamp, D. (19	95).		
	Nonlinear self-sustained d	rift-wave turbulence	2.		
	Phys. Rev. Lett., 15:4222-	-4225.			
	Gil, L. and Sornette, D. (1	1996).	·		
	Phys. Rev. Lett., 76:3991-	-3994.	cicality.		
	Guo, Z. B. and Diamond,	P. H. (2017).			
	Bistable dynamics of turb Physics of Plasmas, 24(10	ulence spreading in)).	a corrugated temperat	ture profile.	
	Gürcan, O. and Diamond,	P. (2005).			
	Dynamics of turbulence sp	preading in magnet	ically confined plasmas		

Physics of Plasmas, 12(3):032303.

Background: turbulence spreading	Fisher model 000000	Bistable model 000000	Avalanche threshold	Conclusions 0000000000000
References II				

Gürcan, O. D. and Diamond, P. H. (2006).

Radial transport of fluctuation energy in a two-field model of drift-wave turbulence. *Physics of Plasmas*, 13(5):052306.

Hahm, T. S., Diamond, P. H., Lin, Z., Itoh, K., and Itoh, S.-I. (2004). Turbulence spreading into the linearly stable zone and transport scaling. *Plasma Physics and Controlled Fusion*, 46(5A):A323.

Inagaki, S., Tokuzawa, T., Tamura, N., Itoh, S.-I., Kobayashi, T., Ida, K., Shimozuma, T., Kubo, S., Tanaka, K., Ido, T., et al. (2013). How is turbulence intensity determined by macroscopic variables in a toroidal plasma? *Nuclear Fusion*, 53(11):113006.

Lesur, M. and Diamond, P. H. (2013).

Nonlinear instabilities driven by coherent phase-space structures. *Phys. Rev. E*, 87:031101.

Naulin, V., Nielsen, A. H., and Rasmussen, J. J. (2005).

Turbulence spreading, anomalous transport, and pinch effect. *Physics of Plasmas*, 12(12):122306.

Nazikian, R., Shinohara, K., Kramer, G., Valeo, E., Hill, K., Hahm, T., Rewoldt, G., Ide, S., Koide, Y., Oyama, Y., et al. (2005).

Measurement of turbulence decorrelation during transport barrier evolution in a high-temperature fusion plasma.

Physical review letters, 94(13):135002.

Background: turbulence spreading	Fisher model 000000	Bistable model 000000	Avalanche threshold	Conclusions 0000000000000
References III				

Pomeau, Y. (1986).

Front motion, metastability and subcritical bifurcations in hydrodynamics. *Physica D: Nonlinear Phenomena*, 23(1):3 – 11.

Pomeau, Y. (2015).

The transition to turbulence in parallel flows: A personal view. *Comptes Rendus Mecanique*, 343:210–218.

Van Compernolle, B., Morales, G. J., Maggs, J. E., and Sydora, R. D. (2015).

Laboratory study of avalanches in magnetized plasmas. *Phys. Rev. E*, 91:031102.

 Wang, W. X., Lin, Z., Tang, W. M., Lee, W. W., Ethier, S., Lewandowski, J. L. V., Rewoldt, G., Hahm, T. S., and Manickam, J. (2006).
 Gyro-kinetic simulation of global turbulent transport properties in tokamak experiments. *Physics of Plasmas*, 13(9):092505.

Yi, S., Kwon, J. M., Diamond, P. H., and Hahm, T. S. (2014).

Effects of q-profile structure on turbulence spreading: A fluctuation intensity transport analysis. *Physics of Plasmas*, 21(9):092509.

- Quasilinear theory describes spreading of active region in phase space
- Related concept but there are key differences
- TS: active region remains fixed
- Real/phase space distinction important. We can compute propagation speeds
- QL spreading more similar to avalanching (gradient propagation). Realistic model should incorporate both effects

Background: turbulence spreading	Fisher model	Bistable model	Avalanche threshold	Conclusions
000	000000	000000		0000000000
Cousin models				

- Compare to bistable models for subcritical transition to fluid turbulence [Barkley et al., 2015, Pomeau, 2015].
- Compare to [Gil and Sornette, 1996] model for sandpile avalanches

$$\begin{split} \partial_t S &= \gamma \left(|\partial_x h| / g_c - 1 \right) S + \beta S^2 - S^3 + \partial_x (D_S S \partial_x S) \\ \partial_t h &= \partial_x (D_h S \partial_x h). \end{split}$$

- $S \leftrightarrow I$, $h \leftrightarrow p$
- Weak gradient coupling limit $D_h \ll D_S \Rightarrow$ our model
- Strong gradient coupling limit: S slaved to h. $\partial_x h \propto S^{-1} \Rightarrow$ linear term is $c - \gamma S$, where c is a constant which depends on BCs. Bistable again!