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Take	Away	Message

-Cross	phase	is	critical	to	evolution	of	the	Reynolds	stress																																																									and	thus	is
a	key	in	the	self-regulation	between	zonal	flows	and	drift	waves.

-Consider	the	nonlinear	phase	evolution	directly	beyond	quasilinear	theory	from	coupled	phase,	
amplitude,	and	flow	equations.

-Phase	curvature	can	directly	drive	zonal	flow	evolution	even	in	the	absence	of	inhomogeneous	
turbulent	intensity	(i.e.	no	modulational instability).	

-Nonlinear	structures	arise	in	the	phase	field

-Phase	dynamics	governed	by	phase	gradient	steepening	vs.	dispersion	– leads	to	stable	collisionless
phase	“shocks”	and	zonal	shear	flow	pulses

-Exact	result	obtained	for	limiting	case	of	phase	field



Motivation

- DW-ZF	system:	regulates	transport	in	confined	plasma

- Key	element	in	the	DW-ZF	system	is	their	self-regulation	within	predator-prey	
dynamics	(exchange	of	energy)

Zonal	flows	in	Jupiter	(Gur̈can,	Diamond	2015)
Zonal	flows	in	the	D-IIID	tokamak	(McKee	G	R	et	al	
2003	Phys.	Plasmas)



Motivation

- Few	models	of	ZF	go	into	the	scale of	the	flow	and	its	nonlinear	evolution.

- Critical	feature	in	this	self	regulation	is	the	Reynolds	stress																						,	which	

is	related	to	the	cross-phase	of																									.

Thus,	why	not	evolve	the	phase	directly	along	with	zonal	flow	evolution?

- Consider	nonlinear	evolution	of	the	phase	directly,	beyond	quasilinear	theory

- ZBG,	PD	(PRL,	2016)	begins	to	address	this,	but	some	issues:

- Eikonal formulation	— not	systematic

- Ad-hoc	phase	diffusion



Basic	System	— Hasegawa-Mima &	Flow	equation	

- Hasegawa-Mima equation	in	the	presence	of	mean	flow:

where																																	is	the	E	x B	drift	velocity,	with	B in	the	direction	of					.	

The	equation	simplifies	to

- The	2D	flow	equation	is

We	can	reduce	the	second	term	on	the	left	through	the	Taylor	identity:

So,	the	flow	equation	is



Coupled	Phase	&	Amplitude	Equations

Rewriting								as																						and	separating	the	real	and	imaginary	components,	we	get	the	
amplitude	evolution	equation:	

and	the	phase	evolution	equation:

where	the	operator																																																			.										



Flow	Equation

The	flow	equation	is

where	the	Reynolds	term	(1st term	on	r.h.s.)	can	be	expanded	to:

so,	the	flow	equation	becomes	



Phase	&	Amplitude	Equations	for	homogeneous	turbulence	intensity

In	the	WKB	limit,	we	drop	all	O(∇A)	and	higher	in	the	phase	&	amplitude	equations,	so	the	
amplitude	equation	now	becomes:

This	effectively	acts	as	a	constraint	on	the	phase	flow	system.	

The	phase	equation	becomes:

which	describes	the	evolution	of	the	phase	for	homogeneous	turbulent	intensity.

phase	steepening



Flow	Equation	for	homogeneous	turbulence	intensity

The	flow	equation	is

The	leading	terms	are	then:

The	second	term	on	the	right	hand	side	goes	away	once	averaged,	as																																													,	
which	disappears	once	averaged	due	to	poloidal	periodicity.

phase	curvature



Observation

Note	that	if	we	average	the	above	equation,	the	second	term	on	the	right	disappears	due	to	
periodicity,	and	thus	the	ZF	can	be	directly	driven	by	phase	curvature	even	in	the	absence	of	
modulational instability	and	/	or	for	homogeneous	intensity	(∇I	=	0).

Specifically,	since																						and																						,	the	zonal	flow	evolution	(without	damping)	goes	like	

so	for	constant	amplitude,	the	radial	derivative	affects	the	wavenumbers	and	thus,	the	flow	is	

driven	by	the	gradient	of	the	radial	wavenumber,							,	which	is	the	phase	curvature.



Reduced	Phase-Flow	system	(I)

-Let	us	eliminate	the	fast	variance	of	the	phase	in					.

Specifically,	let	us	consider	the	evolution	of	the	phase	from	an	initial	simple	plane	wave,	with	fast	
dependence	on					,	such	that	

with	an	eigenfrequency that	we	take	as	constant	for	now,	by	considering	the	Doppler	shift	as	
constant:	



Reduced	Phase-Flow	system	(II)

Since								is	slowly	varying,																									and																														

and	because	dynamics	of							are	predominantly	in						such	that																																																												
and																																																		the	phase	equation	reduces	to

The	first	and	last	terms	on	the	right	hand	side	represent	the	frequency	detuning	by	the	zonal	flow	
and	its	curvature,	and	the	second	term	represents	the	quadratic	self	coupling.	

The	flow	equation,	once	averaged,	reduces	to:



Nonlinear	Phase	Dynamics	(I)	— Nonlinear	Phase-Flow	Waves

-Let	us	consider	weak	damping.	Then,	our	system	described	by	the	following	set	of	equations:	

We	look	for	solutions	in	a	moving	frame,	i.e.		of	the	form																							.	Thus,	we	can	transform	the	temporal	
derivative	as						 where	the	spatial	derivative	is	now	taken	to	be	in	the	moving	frame.		After	
simplification,	we	arrive	at	

where	the	last	term	on	the	r.h.s.	is	an	integration	constant,	and	the	scaling															has	been	absorbed	into						.	



Nonlinear	Phase	Dynamics	(II)	— Nonlinear	Phase-Flow	Waves

Plugging	the	equation	for	flow	back	into	the	phase	equation,	multiplying	both	sides	by								,	then	integrating	once,	we	
get

where																	and					is	an	integration	constant.	Thus,	the	equation	for	the	phase	gradient	is	given	as	

where

Since							represents	the	amplitude	of	the	potential	perturbation,	 is	effectively	the	E	x	B	drift,													.



Nonlinear	Phase	Dynamics	(III)	— Zonal	Shear	Flow	Pulses

If					,														,	the	equation	admits	the	exact	solution .

The	analytic	solution	defines	the	scales	of	the	zonal	flow.

jet

dipole	
acceleration



Nonlinear	Phase	Dynamics	(IV)	— Zonal	Shear	Flow	Pulses

- The	scale	of	the	width	of	the	pattern	is	set	by										.

- The	magnitude	of	the	zonal	flows																			is	set	by for																.

By	conducting	perturbation	theory	in	the	moving	frame	for	the	zonal	flow-based	state	i.e.	A=A(x,t),	we	
numerically	show	that	our	base	states	are	stable solutions	to	our	coupled	system (refer	to	appendix).	



Message	to	Experimentalists

- Coherent	nonlinear	phase	evolution	can	drive	zonal	flow	production

- Cross	phase	dynamics	must	be	treated	on	equal	footing	with	intensity,																	,	etc.		

- Jets	emerge	as	stable	solitons

- ,																			,	length	scale	etc.	set	by	phase	pattern	structure

- Phase	evolution	connects	to	new	feedback	loops

- More	to	the	DW-ZF	theory	than	predator-prey	story

zonal	
shear

dipole	
acceleration



Conclusions	&	Future	Work
- Cross	phase	is	critical	to	evolution	of	the	Reynolds	stress	and	thus	is	a	key	in	the	self-regulation	between	
zonal	flows	and	drift	waves,	as	it	gives	rise	to	the	phase	curvature	term	which	can	directly	drive	zonal	flow		
evolution,	even	in	the	absence	of	inhomogeneous	turbulent	intensity,	through						.

- Must	address	phase	dynamics

- Feedback	loop	between	phase	and	flow	can	be	driven	through	phase	curvature

- Nonlinear	phase	dynamics	governed	by	phase	gradient	steepening															vs.	dispersion															,	which	give	
rise	to	stable collisionless phase	“shocks”	and	zonal	shear	flows.

- Future	work:

- Consider	streamer-based	state

- Investigate	phase	and	amplitude	couplings	in	multi-mode	nonlinear	interactions

- Look	at	dynamic	density	— coupling	between	∇n	and	phase	

- Boundary	effects:	Fate	of	the	pattern?	



Appendix:	Energetics (fluctuation	energy)	

Let	us	demonstrate	the	self	regulation	of	drift	waves	and	zonal	flows	through	their	exchange	of	
energy	under	their	predator	prey	dynamics.

The	fluctuation	energy	is:

where	we	performed	integration	by	parts	to	conclude	to	the	second	line.	Plugging	in	our	Hasegawa-
Mima equation	and	eliminating	terms	due	to	their	periodicity	in	the	poloidal	direction	gives



Appendix:	Energetics (flow	energy)	

The	flow	energy	goes	like

Substituting	in	the	flow	equation

Thus,

confirming	conservation	of	energy	up	to	damping,	as	well	as	showing	energy	exchange	through	
phase	curvature.	



Appendix:	Dynamic	Amplitude	in	the	Zonal	Flow-Based	State	(I)

We	consider	the	zonal	flow-based	state.	In	this	state,	we	restrict	the	amplitude	to	be	only	a	function	of	x .	Thus,	
along	the	equiamplitude surfaces	of	constant	radius,	the	dynamics	of	the	phase	are	dominated	by	ky y.

Thus,	by	transforming ,	our	full	coupled	amplitude-phase-flow	equations	reduce	to	



Appendix:	Dynamic	Amplitude	(Zonal	Flow-Based	State)	(II)	—
Perturbation	Theory
We	now	consider	a	small	perturbation	of	a	homogeneous	amplitude,	

Thus,	the	flow	and	phase	will	be	perturbed	in	the	same	order:	

Plugging	this	in	to	our	reduced	set	of	equations	and	separating	the	scales,	our	zeroth	order	equations	are	given	
by	

which	give	the	equations	for	the	base	state	we	have	already	calculated.



Appendix:	Dynamic	Amplitude	(Zonal	Flow-Based	State)	(III)	—
Perturbation	Theory
The	first	order	equations	are	given	by

Numerical	simulation	is	employed	to	assess	the	stability	of	the	perturbations.	However,	because	our	base	
solutions	are	in	the	moving	frame,	we	transform	the	above	set	of	equations	in	the	moving	frame	through

before	we	simulate	the	above	set	of	equations.



Appendix:	Dynamic	Amplitude	(Zonal	Flow-Based	State)	(IV)	—
Perturbation	Theory
The	results	of	the	numerical	simulation	are	shown	below.	Initial	conditions	were	chosen	such	that	the	derivatives	
disappear	at	the	edges,	with	an	initial	perturbation	only	to	the	amplitude,	whose	initial	field	is	set	by	the	
boundary	conditions	of	A(x,	0) =	10-5,	A(xf,	t) =	0,	where	xf is	the	right	edge	of	the	tokamak,	and	c		and		ky were	
chosen	to	be	4	and	20,	respectively.

The	following	plots	display	the	maximum	magnitude	of	the	perturbations	across	time.

Thus,	our	base	states	are	stable solutions	to	our	coupled	system	in	the	zonal	flow-based	state.

Amplitude Phase Flow


