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Abstract / Introduction/Objectives

Abstract A two-field model for staircase dy-

namics relevant to both beta-plane geostrophic

and drift-wave plasma turbulence is stud-

ied numerically and analytically. The model

evolves an averaged potential vorticity (PV)

whose flux is both driven by, and regulates, an

enstrophy field, ε. The model’s closure uses a

mixing length concept. Its link with bistabil-

ity, vital to staircase generation, is analysed and

verified by integrating the equations numeric-

ally.

Introduction The turbulent transport and

structure formation phenomenon known as a

’staircase’, originally introduced in [2] manifests

itself as follows:

• stably stratified density profile in the ocean

occasionally reorganizes into layers separated

by thin interfaces

• density gradient flattens in the layers and

steepens in the interfaces →’staircase’

• pre-existing turbulent transport is supported

by, and regulates, the gradient

• positive feedback provided by a profile rip-

pling instability is equivalent to a ’negative

diffusivity’ that enhances the profile corrug-

ation instead of smoothing it

• negative diffusion corresponds to a descend-

ing branch of an “S-curve” in the flux - gradi-

ent relation, i.e. a range of ∇n for which

δΓ/δ (−∇n) < 0

• feedback loop drives the transport support-

ing turbulence out of the regions with steeper

profiles into adjacent regions with the flatter

ones, thus settling at a bistable equilibrium

Objectives

1. identification of conditions and the parameter

space for staircase formation

2. demonstration of staircase persistence by dir-

ect numerical integration of the model equa-

tions

3. finding exact analytic steady state solutions

and exploiting them for code verification

4. elucidation of staircase dynamics, long time

evolution, merger events and the role of do-

main boundaries

Model: Qt = ∂y
ε1/2

(1+Q2
y/ε)

2Qy + DQyy εt = ∂y
ε1/2

(1+Q2
y/ε)

2εy + Dεyy +
ε1/2

(1+Q2
y/ε)

2Q2
y − ε3/2

ε0
+ γ

√
ε

Formulation Consider potential vorticity (PV), q, of a geo-

strophic fluid, e.g., on a rapidly rotating planet. It consists of the

planetary vorticity (on β-plane) and fluid vorticity:

q = βy + ∆ψ

where ψ is the stream function, and y is a latitudinal coordinate.

Equation for q:

∂q

∂t
−∇ψ ×∇q = ν∆ψ + f (1)

Decompose q and ψ into a mean and fluctuating parts

q = 〈q (y, t)〉+q̃ (x, y, t)

with q̃ = ∆ψ̃. Separate the x-averaged component Q ≡ 〈q〉 from

fluctuating part squared (enstrophy), ε =
〈

q̃2
〉

/2. The closure

problem for 〈∇ψ̃ ×∇∆ψ̃〉 arises. For fluctuations statistically ho-

mogeneous in x-direction the x-averaged PV flux Γq is:

−∂Γq

∂y
≡ 〈∇ψ̃ ×∇∆ψ̃〉 = ∂2

∂y2

〈

∂ψ̃

∂x

∂ψ̃

∂y

〉

.

Next, we apply a Fickian Ansatz: Γq = −De∂Q/∂y, where

De
(

ε, Qy
)

is the PV diffusivity. This is assumed to follow a

mixing-length hypothesis, De ∼ l |∇ψ̃|, where l
(

ε, Qy
)

is the mix-

ing length, introduced phenomenologically as [1]:

1

l2
=

1

l20
+

1

l2R
. (2)

Here, l0 is a fixed contribution to the mixing length l that char-

acterizes the turbulence, e.g., the stirring scale. lR is the Rhines

scale at which dissipation of ε balances its production, so lR =

lR
(

ε, Qy
)

. In turbulent cascades where wave form of energy co-

exists with turbulent eddies, the Rhines scale is where these two

intersect, i.e., where kṽ ∼ ωk [3]. When the turbulent energy in-

verse cascade reaches this scale, it is intercepted and transported

further by waves both in wave-number and configuration space.

The only dimensionless combination of the variables entering

eq.(2) is l20Q2
y/ε. So, we may generalize the relation in eq.(2) and

write l0/l =
(

1 + l20Q2
y/ε

)κ
. We choose κ = 2. Replacing the eddy

velocity in the Fick’s law by l0
√

ε and measuring y in units of l0,

we can write the averaged eq.(1) for Q as shown above with ad-

ded (small) constant diffusivity D. Applying similar arguments

to the turbulent part of PV, ǫ, and adding the terms responsible

for its production, damping and unstable growth, we obtain the

above evolution equation for the enstrophy ε.

Staircase Prerequisites/Formation/Merger

• SC result from the loss of stability of a ground state solution

for Q and ǫ, characterized by the constant values ε = εB and

Qy = Q′
B that annihilate the enstrophy production-dissipation

term:

R ≡
Q2

y
(

1 + Q2
y/ε

)2
− ε

ε0
+ γ = 0

ε
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• stationary SC structure is a quasi-periodic sequence of regions

with alternating upper and lower stable ε values

• time-asymptotically, this solution can be calculated analytically
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• quasi-stationary SC forms quickly (t ≪ 1) with n steps separ-

ated by shear layers with steep gradient of the mean vorticity

Qy and suppressed enstrophy level, ε

• number n is determined by the maximum growth rate

• over a longer time (but still ≪ 1), most of n steps merge with

their neighbours and the total number of steps becomes ≈ n/2.

After this initial phase the staircase persists for a much longer

time
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• Q-flux grows rapidly, and strongly deviates from its globally

constant value precisely at the merger locations

• shown is a sequence of mergers of 12 initial steps. They proceed

symmetrically from the boundaries towards the centre

• process continues until the mergers converge at the centre and

the central two steps merge into a bigger step
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• flux remains constant when no mergers occur
[

ε1/2
(

1 + Q2
y/ε

)−2
+ D

]

Qy ≡ b = const

• the flux builds up in two phases (slow and fast) before it drops

abruptly to its averaged value after the merger

• the first phase is an initial growth that lasts to about t ≈ 0.065.

The flux increase remains relatively small, < 0.01

• the second phase is explosive and can be accurately fit by the

following function,

F = F0 + B/ (t0 − t)α

with t0 ≈ 0.0863, B ≈ 0.000806, α ≈ 0.879, and a residual flux

F0 ≈ −0.0171.
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