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Why worry about pedestal height and width?

® Conventional wisdom: Pedestal height and width impact global

confinement. The limiting stable height and width are believed to be

set by P-B mode.

® At pedestal top: pressure gradient changes rapidly; flux continuous.

® Sharp variation in turbulence intensity across pedestal “corner”.
® Strong intensity grdient in NML helps maintain flux continuity.

® Strong intensity near top of pedestal — pedestal performance?

—What is turbulence spreading
doing before pedestal hits P-B?
—Spreading effect on pedestal

seems to be more important

in P-B stable QH mode?
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What is spreading and when does it matter?

Turbulence spreading is spatial scattering of intensity by non-linear
interaction: unstable— stable zone.

Considered as problem of academic interest. Often invoked to
explain fast transients. Profiles?

Conventionally studied as propagating intensity front solutions
(Vfwnt = «/)«7/2) of Fisher-KPP like reaction-diffusion equation

o F—xI-BIP+o0ZI%

® Omits self-consistent profile evolution
Plays significant role in determining the radial profile of turbulence
intensity.
Active in the regions of strong intensity gradient i.e.,

® NML connecting unstable core to stable edge transport barrier
® Edge fluctuation source

Our result: Spreading elevates pedestal by reducing intensity in
NML. Positive role in confinement in H mode.
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Preview of the bottom line

® H mode profiles are strongly affected by turbulence spreading due
strong intensity gradient at interface connecting barrier and core.
Turbulence in NML is reduced and pedestal height and width
increases in response to spreading.

® Spreading is good for H mode confinement.

® \We argue that predictive models of pedestal structure must address
NML turbulence and spreading effects <+ Flux matching.
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3 field model

We consider the following 3 field model consisting of intensity I, pressure
P and density nnone
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FE x B velocity shear is obtained from the radial force balance without
toroidal and poloidal flows
V]é - — 1 djdﬁ
eBn? dx dx
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Pressure source is core localized ¢, = ¢gpe™“»% and particle source is

edge localized ¢,, = (;SOne*("”’wD)Q. Spreading effect is studied by varying
.
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L mode results

With spreading turbulence intensity decreases at the edge and increases
in the core.

Effect of spreading on the density and pressure profiles is negligible !
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H mode results |

® Turbulence intensity is strongest in NML, when spreading is weakest.

® [ntensity flux is radially outward in NML and inward in core.

® Qutward spreading from NML—Pedestal increases and inward
spreading in core decreases with o.

® Decrease of intensity in NML— increase of pedestal height and
width.
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H mode results I

® Turbulence spreads from NML— pedestal, where it is killed by
strong I/ X B shear. Pedestal works as a sink of turbulence coming
from NML.

® Pedestal height grows with turbulence reduction at NML.

e Width and height of pressure pedestal increase maintaining the
pressure gradient.
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Effect of additional non-diamagnetic shear (ng) at NML

® Shear due to toroidal rotation added to diamagnetic shear at NML
elevates the pedestal by reducing turbulence at NML !

® This appears consistent with wide pedestal QH mode transition in
torque ramp down in DIII-D !
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Figure: Radial profiles with V; =V, [© (z — 0.8) — © (z — 0.86)] where
Vd;O =0,—-1,-2
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Proposed Experimental Tests

® Spreading effect on pedestal can be seen in transient response of
pedestal interacting with an intensity front.

® |TB collapse in a double barrier discharge (DBD) can be used to
probe spreading effects on pedestal.

® Preliminary numerical simulations of spreading effect in DBD show
that pedestal size increases at fixed pressure gradient after ITB
shrinks..

® Hence following turbulence front and pressure profile evolution just
after ITB collapse can elucidate the effect of spreading on pedestal.

4 6
3
R ITB
Collapse

2
1

[0}
OO 0.5 1 0 0.5 1

EENREINRELN

TTF March 18-21, 2019, Austin, Texas 10 / 12



Conclusions and Discussions

® Focus: Profiles.

® Spreading affects profiles weakly in L mode, due to weak intensity
gradients.

® H mode profiles are strongly affected by turbulence spreading due
strong intensity gradient at interface connecting barrier and core.
Turbulence in NML is reduced and pedestal height and width
increases in response to spreading.

® Spreading is good for H mode confinement.

® Extremely hard to test spreading effect in G-K simulations and
experiments as there is no external knob to controll spreading.

® Following transient response of pedestal after ITB collapse may
elucidate spreading effect on pedestal height and width.

® Finally we argue that predictive models of pedestal structure must
address NML turbulence and spreading effects <+ Flux matching.
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Back up slide

Boundary Condition

Flux matching
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® Pedestal parameters from
EPED — BCs in GK codes for
core turbulence simulation.

® But no spreading in EPED !

® Flux is continuous at pedestal
top.
® Flux continuity takes care of

turbulence spreading and
vice-versa.

® Flux continuity is more accurate
than fixing BC for core
simulation with EPED.
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