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Summary slide

We present a model for turbulence
front propagation (spreading)
based on subcritical turbulence:

∂t I = γ1I+γ2I
2−γ3I

3+∂x (D0I∂x I )

Familiar to fluids community (c.f.
Pomeau, Barkley) — describes
spreading of a vortex patch by
entrainment — but new to plasma.

We calculate a threshold size,
generated by a competition
between turbulence diffusion and
nonlinear turbulence production,
for a patch of turbulence to spread
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Figure An initially localized
path of turbulence may either
spread (above) or collapse (be-
low)



Introduction: spreading and subcritical transition

Certain fluid flows exhibit a
subcritical (Re < Recrit) transition
to turbulence where laminar and
turbulent domains coexist

As Re increases, localized puffs
evolve into spreading slugs of
turbulence

How to characterize the evolution
and spreading of localized patches
of turbulence?

Figure A vortex patch en-
trains and expands into the
surrounding irrotational fluid.



Turbulence spreading in plasma

Analogously, turbulent fluctuations
in confined plasma can propagate
radially via pulses, fronts
[Garbet et al., 1994,
Diamond and Hahm, 1995]

Fluctuations can penetrate into
linearly stable zones and excite
turbulence there
[Hahm et al., 2004,
Naulin et al., 2005]

Closely related conceptually to
avalanching: both are mesoscale,
nonlinear turbulent front
propagation phenomena
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Figure Cartoon depicting a
turbulence pulse propagating
into the stable zone and ex-
citing turbulence there.



Why does the plasma physicist care?

Magnetic fusion people want to understand and control fluxes
of heat and particles

Spreading results in the fluctuation intensity being influenced
by dynamics outside of the turbulence correlation length

Result: fluctuation level, turbulent fluxes have nonlocal
dependence on driving gradient, e.g.

Q(r) = −χ∇T (r) −→ Q(r) = −χ
∫

dr ′ K (r , r ′)∇T (r ′)

Spreading also believed to be involved in (a) observed
breakdown of gyro-Bohm transport scaling
[Lin and Hahm, 2004], (b) transport barrier formation, (c)
staircase formation



Avalanches

Bursty, intermittent transport
events. Should be thought of as a
kind of spreading

Account for a large percentage of
total flux

“Domino effect”: localized
fluctuation cascades through
neighboring regions via local
gradient coupling

Exhibits features of self-organized
criticality, e.g. long tails, 1/f
spectra, profile stiffness,
near-marginal.

Prototypical model is the sandpile

Interact with PV staircase

Figure Heat flux spectrum
from GK simulation



Conventional wisdom: Fisher equation

Simplest, most common model:

∂t I = γ0I︸︷︷︸
local lin.

growth/decay

− γnl I
2︸︷︷︸

local nonlin.
coupling to
dissipation

+ ∂x (D0I∂x I )︸ ︷︷ ︸
nonlin. diffusion of turb. energy

Spreading occurs in supercrit.
(γ0 > 0): traveling waves
connecting the laminar and
turbulent fixed points with
constant speed

c =

√
D0γ2

0

2γnl

No marginal or subcrit. spreading
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Figure Fisher equation dy-
namics



Does it make sense?

While partly successful (e.g.
propagation speed), supercritical
spreading is a cheat! Noise should
excite the system in the first place

For turbulent/laminar phase
coexistence, a subcritical bifurcation is
necessary
[Pomeau, 1986, Pomeau, 2015]

Also, penetration into stable zone is
weak. Turbulence level decays
exponentially to finite depth
∼
√
D0/γnl , i.e. just a few correlation

length [Gürcan and Diamond, 2005]
— suggests Fisher may be insufficient
to explain nonlocality!
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Figure Penetration of Fisher
front into stable zone



A new model is born

We propose (Heinonen and Diamond PoP (2019)) a new
model:

∂t I = γ1I + γ2I
2 − γ3I

3 + ∂x (D0I∂x I ) (∗)

Roughly anticipate γi ∼ ω∗,D0 ∼ χGB ∼ csρ
2
i /a

Motivation: simplest, generic 1D model with subcritical
bifurcation. Other forms possible, but qualitative features
should be the same!

Similar to [Barkley et al., 2015, Pomeau, 2015] models for
onset of turbulence in pipe flow

But is MF plasma turbulence actually subcritical?



Evidence for subcritical turbulence

Experiments have clearly
demonstrated hysteresis between
fluctuation intensity and gradient
in the L-mode (no ITB)
[Inagaki et al., 2013] → bistable
S-curve relation??

In simulation, subcritical
turbulence observed in the presence
of magnetic shear damping
[Biskamp and Walter, 1985,
Scott, 1990] or strong
perpendicular sheared flows
[Barnes et al., 2011,
van Wyk et al., 2016]

Figure Inagaki et al. 2013



Summary of model regimes

regime
stable
roots

unstable
roots waves comments

γ1 > 0 I+ 0
forward-

propagating
unistable

similar to Fisher

γ1 < 0

|γ1|γ3/γ
2
2 < 15/64 0, I+ I−

foward-
propagating

α < α∗

turbulent root abs. stable

γ1 < 0

15/64 < |γ1|γ3/γ
2
2 < 1/4 0, I+ I− receding

α > α∗

turbulent root metastable

γ1 < 0

|γ1|γ3/γ
2
2 > 1/4 0 none none “strong damping”

Table Summary of features of the various parameter regimes in cubic
model. Here I± = (γ2 ±

√
γ2 + γ1γ3)/2γ3.

In bistable case can transform to FitzHugh-Nagumo form

∂t I = f (I ) + ∂x (DI∂x I )

with f (I ) = γI (I − α)(1− I ), γ = γ3I
2
+,D = I+D0, α = I−/I+



Free energy picture

Dynamics governed by dissipation of free energy: can rewrite

D(I )∂t I = −δF
δI

with free energy functional

F =

∫
dx [

1

2
(D(I )∂x I )

2︸ ︷︷ ︸
kinetic/flux

−
∫ I

0
dI ′D(I ′)f (I ′)]︸ ︷︷ ︸
potential

and dF/dt ≤ 0

0 1

0

0 1

0

0 1

0

Figure Plot of potential part of free energy V(I ) = −
∫ I

0
dI ′ D(I )f (I )



Key predictions of bistable model

In marginal and weakly subcritical
regime, again have propagating
turbulence fronts with speed
∼
√
Dγ (coeff. depends on α)

If turbulence level driven globally
above “potential barrier” at α (say
by external flux), system relaxes to
turbulent root → explains
hysteresis in Inagaki

There is also local threshold
behavior: a sufficiently large slug of
turbulence will grow and propagate.
How to determine threshold size?
Spreading of a turbulent spot is
classic problem in turbulence
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Figure A slug will either grow
into a wave (above) or collapse
(below)



Threshold for spreading of a slug of turbulence

Threshold for amplitude is clear:
intensity must exceed I = α
somewhere

Otherwise effective linear growth
γeff = (I − α)(1− I ) is negative
everywhere

What about threshold in spatial
extent? Question seems largely
unexplored in literature!

α 1
I

γeff (I)

Figure Plot of effective local
linear growth as function of
turbulence intensity



Lengthscale threshold

Can estimate by assuming initial
growth of turbulent mass in “cap”
(part > α) of slug governs
asymptotic spreading

Threshold then determined by
competition between outgoing
diffusive flux from cap and local
growth in cap

This competition suggested by
form of free energy functional

Leads to power law
Lmin ∼ (I0 − α)−1/2. Excellent
agreement with simulation of PDE
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Figure Illustration of slug’s
“cap”



Lengthscale threshold: analytical vs. simulation

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
I
0

0

5

10

15
L

m
in

theory

I
1

I
2

I
3

Figure Numerical result for threshold at α = 0.3 for three types of initial
condition (Gaussian (I1), Lorentzian (I2), parabola (I3)), compared with
analytical estimate



From slugs to avalanches

So: an initially localized turbulent slug with amplitude
exceeding I− and spatial extent exceeding Lmin will spread and
excite the system to turbulence
This closely resembles an avalanche. Note the similarity of our
model to [Gil and Sornette, 1996] model for sandpile
avalanching
Diffusion both provides mechanism for turbulence to topple
from one region to next and limits avalanching by setting
minimum scale length
Near marginal linear stability, threshold is “small”:

I− ∼
|γ1|
γ2
� 1, Lmin ∼

(
χGB

ω∗

)1/2

∼ ρi

Suggests that noise (e.g. background sub-ion-scale
turbulence) can intermittently excite turbulence pulses.
Related: turbulence transition in fluids is highly intermittent
[Pomeau and Manneville, 1980]



Penetration into bistable zone

Finally, let’s revisit the problem of
spreading from weakly supercritical
into weakly subcritical (α < α∗),
now with nonlinear instability

Amplitude of wave in unstable
region always exceeds amplitude
threshold in stable region

Thus, another wave forms in
second region! Turbulence front
propagates at constant speed
(instead of finite depth), as long as
weakly subcritical

Conclude: delocalization effect
much stronger than in Fisher
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Figure A wave develops in the
unstable zone, penetrates into
the bistable zone, and forms a
new traveling wave with reduced
speed and turbulence level.



Conclusions

Updating the unistable Fisher model to a bistable model
simultaneously resolves several issues

1 Subcritical/marginal spreading properly supported
2 Can account for hysteresis in fluctuation intensity
3 Reflects the emerging understanding that MF turbulence is

subcritically unstable, at least in certain scenarios
4 Allows for stronger penetration into stable zone via ballistic

spreading

Also functions as a basic model for avalanching by local
excitation

Future directions:
1 Full model needs to incorporate coupling to zonal flow and/or

profiles
2 Avalanche threshold can be tested by initializing seed

fluctuations in simulation and observing response
3 Should also test for ballistic spreading into stable zone

numerically. Possible inspiration: [Yi et al., 2014]



Experimental ideas

Extensions of Inagaki

Better resolution of dependence of fluctuation intensity on the
input power. Are there any jumps?
More careful study of relaxation after ECH is turned off. How
does relaxation time compare to other timescales of interest?
More information on fluctuation field. E.g. spatial correlations?
Include spatiotemporal measurement of zonal flow pattern via
Thomson scattering, heavy ion beam probe, etc.

To investigate avalanches: perturb plasma locally, observe
spatiotemporal response à la [Van Compernolle et al., 2015].
Compare near-marginal, far above stability threshold to rule
out possibility of linear mode response
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Avalanching 101

Observed in MFE plasma [Politzer, 2000]

Basic picture: a sufficiently large, localized increase in the
turbulence level radially cascades into neighboring regions,
ultimately causing a sudden burst of transport

Closely related to turbulence spreading: avalanching and
(subcritical) spreading essentially two ways of looking at same
phenomenon

Associated with self-organized criticality (occurs near
marginal, 1/f spectra)

Intermittent (long tails)



Bistable case: reduction to FitzHugh-Nagumo

(∗) is bistable for weak damping γ1 < 0 and γ2
2 > 4|γ1|γ3

Roots: I = 0, I± = (γ2 ±
√
γ2

2 − 4|γ1|γ3)/2γ3. 0, I+ stable

(note: nonzero for marginal γ1), I− unstable

If γ1 < 0 and γ2 sufficiently large, can be written

∂t I = f (I ) + ∂x (D(I )∂x I )

with f (I ) = γI (I − α)(1− I ) by defining

|γ3|I+
2 → γ,

I−
I+
→ α, I+D0 → D

This is a version of the Nagumo equation, a simplification of
the FitzHugh-Nagumo model for excitable media
[FitzHugh, 1961, Nagumo et al., 1962]



Lengthscale threshold (details)

Strategy: assume initial slug is even, has single max at I0 and
single lengthscale L

Expand intensity curve about max to quadratic order, plug
into dynamical equation, integrate over extent of cap

Result: growth if

L > Lmin =

√
λD(α)I0

f (I0)− 1
3 (I0 − α)f ′(I0)

=

√
3λDαI0

γ(I0 − α)((1− 2α)I0 + α)



E × B staircase

E × B staircase: quasiperiodic shear
flow pattern observed in GK
simulation [Waltz et al., 2006]

[Guo and Diamond, 2017] showed that
in mean field approx., result is
additional nonlinear drive term,
equation of the type (∗) → global
bistability

Basic physics: inhomogeneous
turbulence mixing. Shear suppression
of turb. heat flux → effective negative
turbulent heat diffusion →
temperature corrugations → critical
gradient locally exceeded →
turbulence growth → further profile
roughening

Figure Profile cor-
rugations correlate
with E × B shear (from
[Dif-Pradalier et al., 2010])


