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Introduction

Turbulence spreading is an important nonlinear phenomenon
in drift wave turbulence

Challenge the conventional wisdom on spreading and point
out issues with the supercritical Fisher equation paradigm

Suggest a new model based on subcritical turbulence, which
features avalanche-like spatiotemporal intermittency

We make testable predictions which distinguish it from Fisher

I might say the words ‘phase’ and ‘dynamics’ at some point,
but probably not consecutively
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What the Fick?: turbulence spreading

Spreading is important because it spells doom for local
Fickian transport models

Turbulence can radially self-propagate (even into linearly
stable zones!) via nonlinear coupling

∂tεk ∼ −
∑
k′

(k·k′×ẑ)2|φ̃k′ |2R(k, k′)Ik →
∂

∂x
Dx (Ik)

∂

∂x
Ik−kk : DIk

Dx =
∑
k′

k ′2y |φk′ |2R(k, k′)

Decouples flux-gradient relation: local turbulence intensity
now depends on global properties of the profiles
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Depiction of spreading

Figure: Spatiotemporal evolution of flux-surface-averaged turbulence
intensity in toroidal GK simulation. Linearly unstable region is
0.42 < r < 0.76. From [Wang et al., 2006]
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Avalanches

Bursty, intermittent transport
events associated with SOC.
Account for a large percentage of
total flux!

Initially localized fluctuation
cascades through neighboring
regions via gradient coupling

Closely related to spreading: both
result in fast, mesoscopic turb front
propagation. Unified model?

Figure: Heat flux spectrum
from GK simulation showing
1/f scaling
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Depiction of avalanching

Figure: Pressure (left) and potential (right) contours for simuliations of
resistive drift interchange turbulence [Carreras et al., 1996]
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Fisher model

Conventional wisdom for spreading is Fisher-type equation for
turbulence intensity:

∂t I = γ0I︸︷︷︸
local lin.

growth/decay

− γnl I
2︸︷︷︸

local nonlin.
coupling to
dissipation

+ ∂x (D0I∂x I )︸ ︷︷ ︸
nonlin. diffusion of turb. energy

For γ0 > 0, dynamics characterized by traveling fronts
connecting unstable “laminar root” I = 0 and saturated

“turbulent root” I = γ0/γnl with speed c =
√

D0γ2
0

2γnl
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Depiction of Fisher evolution

Figure: Evolution of traveling turbulence front in Fisher model. From
[Gürcan and Diamond, 2006]
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How does Fisher do?

Propagation speed and
characteristic front size
` ∼

√
D/γ0 in reasonable

agreement with simulation

Can be derived with some rigor
from Fokker-Planck approach or
renormalization of
Hasegawa-Wakatani
[Gürcan and Diamond, 2005,
Gürcan and Diamond, 2006]

But: weak spreading into stable
zone. Dubiously consistent with
experiment?

Figure: Experiment by
Nazikian et al 2005 clearly
showing fluctuations in stable
zone
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When does Fisher even make sense?

Fisher model purports to describe spreading of a patch of
turbulence in linearly unstable zone

Begs the question: why didn’t noise already excite the whole
system to turbulence?

Only relevant if γ0 � c/∆x i.e. ∆x2γnl � D0

Otherwise, physical fronts separating laminar/turbulent
domains generally require bistability à la [Pomeau, 1986]
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Bistable model
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A new(ish) model is born

Heinonen and Diamond 2019: propose phenomenological
model of form

∂t I = γ1I + γ2I
2 − γ3I

3 + ∂x (D(I )∂x I )

take D(I ) = D0I

New physics: nonlinear turbulence drive ∝ I 2. Can sustain
sufficiently large fluctuations even when linearly damped

Bistable in weak damping regime

Estimate γ1 ∼ εω∗, γ2,3 ∼ ω∗, D0 ∼ χGB

But is MF plasma actually subcritically unstable?
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Evidence for subcriticality

[Inagaki et al., 2013]: experiments
demonstrate hysteresis between fluctuation
intensity and driving gradient (no TB
present). Suggests bistable S-curve relation?

Turbulence subcritical in presence of strong
perpendicular flow shear
[Carreras et al., 1992, Barnes et al., 2011,
van Wyk et al., 2016] or in the presence of
magnetic shear [Biskamp and Walter, 1985,
Drake et al., 1995]

Profile corrugations
[Waltz, 1985, Waltz, 2010] and phase space
structures [Lesur and Diamond, 2013] can
drive nonlinear instability

Figure: Hysteresis
between intensity and
gradient, flux and
gradient
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Cousin models

Compare to bistable models for subcritical transition to fluid
turbulence [Barkley et al., 2015, Pomeau, 2015].

Compare to [Gil and Sornette, 1996] model for sandpile
avalanches

∂tS = γ (|∂xh|/gc − 1)S + βS2 − S3+∂x (DSS∂xS)

∂th = ∂x (DhS∂xh).

S ↔ I , h↔ p

Weak gradient coupling limit Dp � DI ⇒ our model

Strong gradient coupling limit: I slaved to p. ∂xp ∝ I−1 ⇒
linear term is c − γI , where c is a constant which depends on
BCs. Bistable again!
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Model analysis I

∂t I = γ1I + γ2I
2 − γ3I

3 + ∂x (D(I )∂x I )

Qualitatively similar to Fisher
EXCEPT in weak damping case
γ1 < 0 and γ2

2 > 4|γ1|γ3

Can then transform to
Zel’dovich/Nagumo equation

∂t I = f (I ) + ∂x (DI∂x I )

f (I ) ≡ γI (I − α)(1− I )

where α ≡ I−/I+, γ ≡ I 2
+γ3, D ≡

I+D0, I± ≡ (γ2 ±
√
γ2

2 − 4|γ1|γ3)/2γ3

α 1
I

f (I)
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Model analysis II

Can write in variational form

D(I )∂t I = −δF
δI

with free energy functional

F =

∫
dx [

1

2
(D(I )∂x I )

2︸ ︷︷ ︸
kinetic/flux

−
∫ I

0
dI ′D(I ′)f (I ′)]︸ ︷︷ ︸
potential

and dF/dt ≤ 0
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Model analysis III

I = 0 metastable for α < α∗ = 3/5, abs. stable for α > α∗

“Potential barrier” at I = α: threshold for onset of nonlinear
instability

0 1

0

0 1

0

0 1

0

Figure: “Potential” part of F
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Model analysis IV

Unlike Fisher, traveling fronts admitted in marginal/weak
damping case!

Propagation speed c ∼
√
Dγ (depends on α), characteristic

scale ` ∼
√

D/γ

“Maxwell construction” for speed

c

∫ ∞
−∞

D(I (z))I ′(z)2 dz =

∫ 1

0
D(I )f (I ) dI

z = x − ct

Thus turbulence spreads if α < α∗, recedes if α > α∗.
Corresponds to (meta)stability of fixed points
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Penetration into stable zone I

Consider spreading of turbulence from
lin. unstable to lin. stable zone

Simple model: γ1 = γg > 0 for x < 0,
γ1 = −γd < 0 for x > 0

Allow turbulent front to form in
lefthand region and propagate

In Fisher model, penetration is weak:
forms stationary,
exponentially-decaying profile with
λ ∼

√
D0/γnl ∼ ∆c . Dubiously

consistent with observation

x

0

0
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nl

I

0
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0

0
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Penetration into stable zone II

However, in our model, a new front with reduced
speed/amplitude forms in second region if weakly damped
(i.e. γd is small enough that α < α∗)

Hence: can have ballistic propagation even in stable zone!

More strongly delocalizing effect on the flux-gradient relation,
compared to Fisher
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Penetration into stable zone III

Figure: Spreading into stable zone in GK simulation with magnetic shear
[Yi et al., 2014]. Ballistic propagation???
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Local threshold behavior

In contrast to Fisher, sufficiently large localized puff of
turbulence will grow into front and spread. Suggestive of an
avalanche triggered by initial seed

How to determine threshold?
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Two puffs differing only in spatial size are initialized; one grows
and spreads, other collapses
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Avalanche threshold

Obviously puff amplitude must exceed
I0 = α or else γeff = (I −α)(1− I ) < 0

Consider “cap” of puff (part exceeding
I = α)

Size threshold governed by
competition between diffusion of
turbulence out of cap and total
nonlinear growth in cap (suggested by
free energy functional)

Sets scale
√
D/γ

x

I

I=

I=I
0

x0-x0

cap
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Avalanche threshold (details)

Strategy: assume initial puff is symmetric, has single max I0
and single lengthscale L

Expand intensity curve about max to quadratic order, plug
into dynamical equation, integrate over extent of cap

Result: growth if

L > Lmin =

√
D(α)I0

f (I0)− 1
3 (I0 − α)f ′(I0)

=

√
3DαI0

γ(I0 − α)((1− 2α)I0 + α)

Power law Lmin ∼ (I0 − α)−1/2
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Avalanche threshold: analytical vs. simulation
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Figure: Numerical result for threshold at α = 0.3 for three types of initial
condition (Gaussian (I1), Lorentzian (I2), parabola (I3)), compared with
analytical estimate
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Triggering an avalanche

How might a puff of sufficient size form?

Near linear marginality, threshold is weak:

I− ∼
|γ1|
γ2
� 1, Lmin ∼

(
χGB

ω∗

)1/2

∼ ∆c

Suggests threshold can be triggered by noise

Simulations of model with appropriate choice of noise
(multiplicative + small additive background) show that front
propagation events will be intermittently excited
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Bistable model: conclusions

Natural extension of Fisher model that allows for coexistence
of laminar/turbulent domains

Supported by substantial evidence for subcritical turbulence

Provides simple framework for understanding avalanching:
local exceedance of nonlinear instability by turbulent puffs

Key testable predictions: ballistic spreading into weakly
linearly damped regions, power-law threshold for spreading of
puffs
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Towards a complete model

A realistic model should include coupling to zonal flow and pressure
profile

Start with Hasegawa-Wakatani:

∂tn + {φ, n} = α(φ− n) + diss.

∂t∇2
⊥φ+ {φ,∇2

⊥φ} = α(φ− n) + diss.

with α = −η∂z
2 the adiabatic operator representing parallel electron

response

Take zonal averages:

∂t〈n〉+ ∂x〈ñṽx〉 = diss.

∂t〈ζ〉+ ∂x〈ζ̃ ṽx〉 = diss.

∂t〈ε〉+ 〈(ñ − ζ̃)ṽx〉∂x〈n − ζ〉+ ∂x〈εṽx〉 = diss.

where ζ = ∇2
⊥φ, ε = 1

2 (ñ − ζ̃)2
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Learning mean field theory

How to proceed? Need model for turbulent fluxes Γq = 〈q̃ṽx〉
but hard to calculate

Idea: use simulations to train machine learning model that
maps mean profiles to local fluxes

Here ML is just a form of nonparametric regression: no need
to impose a model

One approach: local model

Γq(x) = f (∂xn|x , ∂2
xn|x , . . . , ζ|x , ∂xζ|x , . . . , ε|x , ∂xε|x , . . . )

Challenges: feature selection, noise suppression. Also is local
model even valid?
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Preliminary results: particle flux

Training on ∼ 20 simulations of 2D Hasegawa-Wakatani at
α = 2 and constraining the model with symmetries of HW, a
simple neural network learns a reasonable model for the
particle flux

Learned turbulent particle flux as function of density gradient at
zero vorticity gradient (left) and vice versa (right.)
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Preliminary results: particle flux

Flux is approximately linear combination of terms prop. to
∂x〈n〉 and ∂x〈ζ〉. First is obvious, latter less so!
No clear dependence on shear itself

Figure: Dependence of particle flux on both density and vorticity gradients
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Preliminary results: particle flux

Results can be explained by simple quasilinear theory.
However, must include effects of mean vorticity gradient on
dispersion relation! Ignored in most studies

∂t ñ + V (x)∂y ñ + ∂x〈n〉∂y φ̃ = α(φ̃− ñ)

∂t ζ̃ + V (x)∂y ζ̃ − V ′′(x)∂y φ̃ = α(φ̃− ñ)

ω =
ky

1 + k2
(∂x〈n〉+ V ′′) + kyV

for α� 1

Real part of frequency proportional to PV gradient, not
density gradient! This has lots of interesting consequences,
just one of which is effect on particle flux
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Preliminary results: particle flux

Quasilinear flux in adiabatic limit can be computed as

Γn '
1

α

∑
k

−
k2

y

1 + k2

(
k2κ− V ′′

)
|φ̃k|2

Good agreement with ML

Vorticity gradient term can result in staircasing

This project very much a work in progress (vorticity and
enstrophy flux are harder), but this simple result shows its
potential to elucidate new physics
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