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Introduction
Why we study tangled magnetic fields?  
1. Astro: Interstellar Medium and Solar tachocline.  
2. Fusion: energy and momentum transport problem in L-H 
transition at edge of tokamaks with resonant magnetic 
perturbation (RMP).  
 Turbulent transport processes still poorly understood.   

We focus on the solar tachocline: 
1. Between the convective and radiative zone.  
2. Strongly stratified/Pancake-like structures. 
    Incompressible rotating fluid in 2D layers— β-plane 
model 
3. Zonal Flow and Rossby Waves— 
 as in the Jovian Atmosphere. 
4. A weak mean field— large magnetic Kubo number:                              

B = B0 + B̃

Kumag ≡
δl

Δeddy
=

lac | B̃ |
ΔeddyB0

Quasi-Linear Theory (QLT) fails.   
Need a model beyond QLT.
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A model for PV transport in Strong mean magnetic fields 
 

A Model for PV Transport in Random, small-scale  Magnetic 
fields

Outline
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Toroidal mean field

Poloidal mean field

B0  

(Tobias et al. in preparation)

Reynolds stress  

Reynolds stress  

Maxwell stress  

Maxwell stress  

Fully Alfvénized

Stresses

Model— Strong mean field & The Quasi-Linear Method
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Stream Function ψ = ψ(x, y, z)

Velocity field u = (
∂ψ
∂y

,−
∂ψ
∂x

,0)

Fluid Vorticity ζ = (0,0,ζ)
Potential Field A = (0,0,A)

Magnetic Field B = (
∂A
∂y

,−
∂A
∂x

,0),

Quasi-Linear Approximation:

ζ = ⟨ζ⟩ + ζ̃
ψ = ⟨ψ⟩ + ψ̃

A = ⟨A⟩ + Ã

Perturbations 
produced by 
turbulences

Two main equations: 
➤ QL closure 
➤ Linear response of perturbations

Notations we have:

, where ⟨ ⟩ =
1
L ∫ dx

1
T ∫ dt

ensemble average over the zonal scales 

PV flux: 
➤ By using Taylor Identities we have the Reynolds and 
Maxwell stress. 
➤ Express the PV flux with two diffusivities 

The Reynolds stress drops 
occurs at weaker B0  than 
that for which  the system 
is fully Alfvènized!

The cross phase effect 
suppresses the Reynolds 
stress when mean field 
is weak!

Dfluid = ∑k | ũy,k |2
νk2 + ω2

A
ηk2

ω2 + η2k4

(ω − ω2
A

ω
ω2 + η2k4 )

2

+(νk2 + ω2
A

ηk2

ω2 + η2k4 )
2

Dmag = ∑k | ũy,k |2
ω2

A(νk2(ω2 + η2k4) + ω2
Aηk2)

ω2(ω2 + η2k4 − ω2
A)

2

+(νk2(ω2 + η2k4) + ω2
Aηk2)

2 .

(
∂
∂t

+ u⊥ ⋅ ∇⊥)ζ − β
∂ψ
∂x

= −
(B∇)(∇2 Az)

μ0ρ
+ ν∇2ζ

(
∂
∂t

+ u⊥ ⋅ ∇⊥)A = B0
∂ψ
∂x

+ η∇2 A,
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A model for PV transport in Strong mean magnetic fields 
 

A Model for PV Transport in Random, small-scale  
Magnetic fields

Outline
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Model— Random fields: Order of Scales
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F̄ = ∫ dR2 ∫ dBst ⋅ P(Bst,x,Bst,y)F

Two-average Method: 
1.                                                       2.  

⟨ ⟩ =
1
L ∫ dx

1
T ∫ dt

ensemble average 
over the zonal 

scales 

Random fields

k

Properties of random fields are (Rechester & Rosenbluth 1978): 
1. Smaller scale, Static   
2. Randomness in space  
3. Auto-correlation length of fields is small.  
4. Amplitudes of random fields distributed  statistically.  
(assumption: PDF Gaussian)

Kumag ≡
ũτac

Δeddy
=

l∥ | B̃ |

Δ⊥Bl
< 1

Function of fields F = F0 + F̃ + Fst
Order of Scales:

The large-scale magnetic field is distorted by the small-scale fields. 
The system thus is the ‘soup’ of cells threaded by sinews of open 
field line (Zeldovich, 1957). 

Zonal flow

〈 〉

kzonal

Rossby Wave

kRossby

Random-field 
averaging region

kavg



Model— Random fields: Assumption, Derivation & Results
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ζ̃k = ( i

ω + iνk2 +
iB2

st, jk2
j

μ0ρηk2 + i
μ0ρ

B2
0k2

x

ηk2 − iω
)ũy,k( −

∂
∂y

ζ − β)Linear response of the vorticity: 

Dispersion relation of the Rossby-Alfvén wave in random magnetic fields: 

Two main equations: 
∂
∂t ζ − β ∂ψ

∂x = (B ⋅ ∇)J
μ0ρ + ν∇2ζ

∂
∂t A = B ⋅ ∇ψ + η∇2 A .

Key term:  
Average effect of J x B

(ω − ωR +
iB2

st,yk2
y

μ0ρηk2
+ iνk2)(ω + iηk2) =

B2
0,xk2

x

μ0ρ

Dissipative response to  
Random magnetic fields 

AW of the large-scale  
magnetic field

(mean square) (square mean)

Assumptions: 

Derivation: 

B̃st → 0

Br,xBr,y = 0

1. The collective field at Rossby-scale is NOT large enough to alter the structure of 
the random fields: 

2. We approximate the correlation matrix as diagonal: 
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Random fields: Result I— Cross-Phase Modification
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Γ̄ = − DPV( ∂ζ̄
∂y

+ β)

Γ = − ∑
k

| ũy,k |2
νk2 + (

B2
0k2

x

μ0ρ ) ηk2

ω2 + η2k4 +
B2

st,yk2
y

μ0ρηk2

(ω − (
B2

0k2
x

μ0ρ ) ω
ω2 + η2k4 )

2

+ (νk2 + (
B2

0k2
x

μ0ρ ) ηk2

ω2 + η2k4 +
B2

st,yk2
y

μ0ρηk2 )
2 ( ∂

∂y
ζ + β)

PV Diffusivity Dpv
Large-scale field

small-scale  
random fields

Mean PV Flux (Γ) and PV diffusivity (DPV): 

In a certain limit  where                     : B2
0 ≪ B2

st,y

Cross-phase effect in the 
Reynolds stress decreases for 

stronger random fields.

The large- and small-scale magnetic 
fields have a synergistic effect on the 

cross-phase in the Reynolds stress. 

DPV = ∑
k

| ũy,k |2
νk2 +

B2
st,yk2

y

μ0ρηk2

ω2 + (νk2 +
B2

st,yk2
y

μ0ρηk2 )
2

Γ = −
∂
∂y

⟨ ũx ũy⟩ (Reynolds stress force)
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Random fields: Result II— Resisto-Elastic Medium
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Magnetic drag forceCross-phase effect on Reynolds 
Stress Force

∂
∂t

⟨ux⟩ = ⟨Γ⟩ −
1

ημ0ρ
⟨B2

st,y⟩⟨ux⟩ + ν∇2⟨ux⟩

(Jst × Bst)

Evolution of Zonal Flow 
➤ Random magnetic fields suppress the Reynolds stress and increase the drag. 

Random magnetic fields have an effect on 
both the PV flux and the magnetic drag. 

α ≡
B2

st,jk2
j

μ0ρηk2
∝

spring   constant
dissipation

χ ≡
B2

0k2
x

μ0ρ

If we turnoff the Rossby frequency, we have a 2D non-rotating plane:

effective spring constantsdrag   +  resistivity dissipation

Alfvèn waves propagate in a resisto-elastic medium. 
Energy dissipates due to the coupling of the drag and the 
resistivity. 

Resisto-Elastic medium: 

Schematic of the nodes-links-
blobs model (Nakayama & 
Yakubo 1994).

More can be done:  
Fractal Network (Site-percolating) — 
Calculate the effective spring constant, effective Young’s Modulus of 
elasticity, and effective “conductivity” of vorticity (such as encountered in 
amorphous solids).  

Two effects! 
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Takeaways I
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What studies have shown and what we obtained:   
 
Reynolds stress will be suppressed at levels of field intensities well below that of Alfvènization, where 
Maxwell stress balances the Reynolds stress. 
 
 
 

Coupling of resisto-elastic waves, which is            

dependence. 

Increase of the magnetic drag.  

B2
st

The flow generated by PV mixing/Reynolds force are reduced by: 

Cross-phase effect and the magnetic 
drag reduce shear flow generation. 

Toroidal mean field

Poloidal mean field

B 0   (Tobias et al. in preparation)

Reynolds stress  

Reynolds stress  

Maxwell stress  

Maxwell stress  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Takeaways II— RMP on DIII-D
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Related: Experiment on edge of DIIID: 
1. Stochastic magnetic fields due to RMP inhibits Reynolds stress and shear suppression.  
This work is relevant— close analogy between Rossby-Alfvèn wave and EM drift wave turbulence.  

(D. M. Kriete et al., TTF 2019)

3. Conjecture: Stochasticity of fields might raise the power threshold, by 
weakening Reynolds stress trigger.  

2. Our results imply: Reduction of Reynolds stress, due to the  effect of 
the stochastic field      in cross-phase, inhibits the growth of zonal flow, 
by coupling energy into elastic waves.   
Hence, the nonlinear energy transfer from turbulence to flow and thus 
shear suppression at the edge are reduced. 
(See experiments from D. M. Kriete et al.) 

B2
st

Γ = − ∑
k

| ũy,k |2
νk2 + (

B2
0k2

x

μ0ρ ) ηk2

ω2 + η2k4 +
B2

st,yk2
y

μ0ρηk2

(ω − (
B2

0k2
x

μ0ρ ) ω
ω2 + η2k4 )

2

+ (νk2 + (
B2

0k2
x

μ0ρ ) ηk2

ω2 + η2k4 +
B2

st,yk2
y

μ0ρηk2 )
2 ( ∂

∂y
ζ + β)
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Thank you!


