Rossby Wave-Zonal Flow Turbulence in a Tangled Magnetic field

This work is supported by the U.S. Department of Energy under Award No. DE-FG02-04ER54738

APS Division of Plasma Physics, Fort Lauderdale, Florida, October 23th 2019

Chang-Chun Chen¹, Patrick H. Diamond¹, and Steven M. Tobias² ¹University of California, San Diego, US ²University of Leeds, Leeds LS2 9JT, UK

<u>Why we study tangled magnetic fields?</u>

1. Astro: Interstellar Medium and Solar tachocline.

2. Fusion: energy and momentum transport problem in L-H transition at edge of tokamaks with resonant magnetic perturbation (RMP).

Turbulent transport processes still poorly understood.

We focus on the solar tachocline:

- 1. Between the convective and radiative zone.
- 2. Strongly stratified/Pancake-like structures. Incompressible rotating fluid in 2D layers— β -plane model
- 3. Zonal Flow and Rossby Waves—

as in the Jovian Atmosphere.

4. A weak mean field—large magnetic Kubo number:

$$B = B_0 + B$$
$$Ku_{mag} \equiv \frac{\delta_l}{\Delta_{eddy}} = \frac{l_{ac} |\widetilde{\mathbf{B}}|}{\Delta_{eddy} B_0}$$

Quasi-Linear Theory (QLT) fails.

Need a model beyond QLT.

Introduction

***** A model for PV transport in Strong mean magnetic fields

* A Model for PV Transport in Random, small-scale Magnetic fields

Model- Strong mean field & The Quasi-Linear Method

	Notations w	<u>e have:</u>	<u>Two main equations:</u>	
	Stream Function	$\psi = \psi(x, y, z)$	► QL closure	
	Velocity field	$\boldsymbol{u} = (\frac{\partial \psi}{\partial y}, -\frac{\partial \psi}{\partial x}, 0)$	Linear response of pe	
J	Fluid Vorticity Potential Field	$\boldsymbol{\zeta} = (0, 0, \zeta)$ $\boldsymbol{A} = (0, 0, A)$	$(\frac{\partial}{\partial t} + \mathbf{u}_{\perp} \cdot \nabla_{\perp})\zeta - \beta \frac{\partial \psi}{\partial x} = -\frac{(\mathbf{B}\nabla_{\perp})}{\mathbf{u}_{\perp}} + \mathbf{u}_{\perp} \cdot \nabla_{\perp})\zeta - \beta \frac{\partial \psi}{\partial x} = -\frac{(\mathbf{B}\nabla_{\perp})}{\mathbf{u}_{\perp}} + \mathbf{u}_{\perp} \cdot \nabla_{\perp})\zeta - \beta \frac{\partial \psi}{\partial x} = -\frac{(\mathbf{B}\nabla_{\perp})}{\mathbf{u}_{\perp}} + \mathbf{u}_{\perp} \cdot \nabla_{\perp})\zeta - \beta \frac{\partial \psi}{\partial x} = -\frac{(\mathbf{B}\nabla_{\perp})}{\mathbf{u}_{\perp}} + \mathbf{u}_{\perp} \cdot \nabla_{\perp})\zeta - \beta \frac{\partial \psi}{\partial x} = -\frac{(\mathbf{B}\nabla_{\perp})}{\mathbf{u}_{\perp}} + \mathbf{u}_{\perp} \cdot \nabla_{\perp})\zeta - \beta \frac{\partial \psi}{\partial x} = -\frac{(\mathbf{B}\nabla_{\perp})}{\mathbf{u}_{\perp}} + \mathbf{u}_{\perp} \cdot \nabla_{\perp})\zeta - \beta \frac{\partial \psi}{\partial x} = -\frac{(\mathbf{B}\nabla_{\perp})}{\mathbf{u}_{\perp}} + \mathbf{u}_{\perp} \cdot \nabla_{\perp})\zeta - \beta \frac{\partial \psi}{\partial x} = -\frac{(\mathbf{B}\nabla_{\perp})}{\mathbf{u}_{\perp}} + \mathbf{u}_{\perp} \cdot \nabla_{\perp})\zeta + \mathbf{u}_{\perp} \cdot \nabla_{\perp} \cdot$	
	Magnetic Field	$\boldsymbol{B} = (\frac{\partial A}{\partial v}, -\frac{\partial A}{\partial x}, 0),$	$(\frac{\partial}{\partial t} + \mathbf{u}_{\perp} \cdot \nabla_{\perp})A = B_0 \frac{\partial \psi}{\partial t} + \eta \nabla^2 A$	
	 PV flux: ▶ By using Taylor Identities we have the Reynolds and Maxwell stress. ▶ Encode the DV flow with two diffusivities 			
	D_{fluid}	$= \sum_{k} \widetilde{u}_{y,k} ^2 \frac{1}{(\omega)}$	$\frac{1}{\omega^{2} + \omega_{A}^{2} \frac{\eta k^{2}}{\omega^{2} + \eta^{2} k^{4}}}$ $- \omega_{A}^{2} \frac{\omega}{\omega^{2} + \eta^{2} k^{4}} \right)^{2} + \left(\nu k^{2} + \omega_{A}^{2} \frac{\eta k^{2}}{\omega^{2} + \eta^{2} k^{4}}\right)^{2}$	
	D_{mag} :	$= \sum_{k} \widetilde{u}_{y,k} ^2 - \frac{1}{\omega^2} \left(\frac{1}{\omega^2} \right)^2 + \frac{1}{\omega^2}$	$\omega_A^2 \left(\nu k^2 (\omega^2 + \eta^2 k^4) + \omega_A^2 \eta k^2 \right)$ $w_A^2 \left(\nu k^2 (\omega^2 + \eta^2 k^4) + \omega_A^2 \eta k^2 + \left(\nu k^2 (\omega^2 + \eta^2 k^4) + \omega_A^2 \eta k^2 + \omega_A^2 + \omega_A^2 \eta k^2 + \omega_A^2 + \omega_A^$	

The Reynolds stress drops occurs at weaker **B**₀ than that for which the system is fully Alfvènized!

The cross phase effect suppresses the Reynolds stress when mean field is weak!

Quasi-Linear Approximation:

erturbations $\zeta = \langle \zeta \rangle + \widetilde{\zeta}$ $\frac{\langle \nabla \rangle (\nabla^2 A_z)}{\mu_0 \rho} + \nu \nabla^2 \zeta \quad \psi = \langle \psi \rangle + \widetilde{\psi}$ $A = \langle A \rangle + \widetilde{A}$ erturbations Α,

Perturbations produced by , where $\langle \rangle = \frac{1}{L} \left[dx \frac{1}{T} \right] dt$ turbulences ensemble average over the zonal scales

(Tobias et al. in preparation)

* A model for PV transport in Strong mean magnetic fields

* A Model for PV Transport in Random, small-scale Magnetic fields

Model- Random fields: Order of Scales

1.

The large-scale magnetic field is distorted by the small-scale fields. The system thus is the 'soup' of cells threaded by sinews of open field line (Zeldovich, 1957).

Properties of random fields are (Rechester & Rosenbluth 1978):

- 1. Smaller scale, Static
- 2. Randomness in space
- 3. Auto-correlation length of fields is small. $\longrightarrow Ku_{mag} \equiv \frac{\widetilde{u}\tau_{ac}}{\Delta_{eddy}} = \frac{l_{\parallel} |\widetilde{\mathbf{B}}|}{\Delta_{\perp}B_l} < 1$ 4. Amplitudes of random fields distributed statistically. (assumption: PDF Gaussian)

Two-average Method:

Order of Scales:

$$\overline{F} = \int dR^2 \int dB_{st} \cdot P_{(B_{st,x}, B_{st,y})} F \qquad \overset{2.}{\langle \langle \rangle} = \frac{1}{L} \int dx \frac{1}{T} \int dt \qquad \text{ensemble} \\ \text{over the} \\ \text{scale} \end{cases}$$

Function of fields $\mathbf{F} = \mathbf{F_0} + \widetilde{\mathbf{F}} + \mathbf{F_{st}}$

Model – Random fields: Assumption, Derivation & Results

Assumptions:

1. The collective field at Rossby-scale is NOT large enough to alter the structure of the random fields: $\widetilde{B_{st}} \to 0$

2. We approxi **Derivation:**

Tw

Li

Dispersion relat

Random fields: Result I— Cross-Phase Modification

Mean PV Flux (\Gamma) and PV diffusivity (D_{PV}):

$$\overline{\Gamma} = -\sum_{k} |\widetilde{u}_{y,k}|^{2} \frac{\nu k^{2} + (\frac{B_{0}^{2}k_{x}^{2}}{\mu_{0}\rho})\frac{\eta}{\omega^{2} + (\nu k^{2})}}{\left(\omega - (\frac{B_{0}^{2}k_{x}^{2}}{\mu_{0}\rho})\frac{\omega}{\omega^{2} + \eta^{2}k^{4}}\right)^{2} + \left(\nu k^{2}\right)}$$

$$\overline{\Gamma} = -D_{PV}\left(\frac{\partial\overline{\zeta}}{\partial y} + \beta\right) \qquad \text{PV Diffusivity } \mathbf{D}_{\mathbf{pv}}$$
In a certain limit where $B_{0}^{2} \ll \overline{B_{st,y}^{2}}$:
$$D_{PV} = \sum_{k} |\widetilde{u}_{y,k}|^{2} \frac{\nu k^{2} + \frac{\overline{B_{st,y}^{2}}k_{y}^{2}}{\omega^{2} + \left(\nu k^{2} + \frac{\overline{B_{st,y}^{2}}k_{y}^{2}}{\mu_{0}\rho\eta k^{2}}\right)^{2}}$$

The large- and small-scale magnetic fields have a synergistic effect on the cross-phase in the Reynolds stress.

Cross-phase effect in the Reynolds stress decreases for stronger random fields.

Random fields: Result II— Resisto-Elastic Medium

Evolution of Zonal Flow

> Random magnetic fields suppress the Reynolds stress and increase the drag.

$$\frac{\partial}{\partial t} \langle u_x \rangle = \langle \overline{\Gamma} \rangle - \frac{1}{\eta \mu_0 \rho} \langle \overline{B}_{st,y}^2 \rangle \langle u_x \rangle +$$

Cross-phase effect on Reynolds Stress Force

If we turnoff the Rossby frequency, we have a 2D non-rotating plane:

$$\omega^2 + i(\alpha + \eta k^2)\omega - (\alpha \eta k^2 + \chi) = 0$$

drag + resistivity dissipation

effective spring constants

Alfvèn waves propagate in a resisto-elastic medium. Energy dissipates due to the coupling of the drag and the resistivity.

More can be done:

Fractal Network (Site-percolating) —

Calculate the effective spring constant, effective Young's Modulus of elasticity, and effective "conductivity" of vorticity (such as encountered in amorphous solids).

 $\nu \nabla^2 \langle u_x \rangle$ Random magnetic fields have an effect on both the **PV flux** and the **magnetic drag**.

 $\mu_0 \rho$

Magnetic drag force $(J_{st} \times B_{st})$

 $\alpha \equiv \frac{B_{st,j}^2 k_j^2}{\mu_0 \rho \eta k^2} \propto$ spring constant dissipation $\chi \equiv \frac{B_0^2 k_x^2}{2}$

APS DPP, Fort Lauderdale, Florida, 10/23/2019

Two effects!

Schematic of the nodes-linksblobs model (Nakayama & Yakubo 1994).

What studies have shown and what we obtained:

Maxwell stress balances the Reynolds stress.

The flow generated by PV mixing/Reynolds force are reduced by:

• Coupling of resisto-elastic waves, which is $\overline{B_{st}^2}$ dependence.

• Increase of the magnetic drag.

Cross-phase effect and **the magnetic** drag reduce shear flow generation.

Takeaways I

Reynolds stress will be suppressed at levels of field intensities well below that of Alfvènization, where

Related: Experiment on edge of DIIID:

1. Stochastic magnetic fields due to RMP inhibits Reynolds stress and shear suppression. This work is relevant— close analogy between Rossby-Alfvèn wave and EM drift wave turbulence.

$$\overline{\Gamma} = -\sum_{k} |\widetilde{u}_{y,k}|^2 \frac{\nu k^2 + \left(\frac{B_0^2 k_x^2}{\mu_0 \rho}\right)}{\left(\omega - \left(\frac{B_0^2 k_x^2}{\mu_0 \rho}\right)\frac{\omega}{\omega^2 + \eta^2 k^4}\right)^2 + \frac{\omega}{\omega^2 + \eta^2 k^4}}$$

2. Our results imply: Reduction of Reynolds stress, due to the effect of the stochastic field $\overline{B_{st}^2}$ in cross-phase, inhibits the growth of zonal flow, by coupling energy into elastic waves. Hence, the **nonlinear energy transfer** from turbulence to flow and thus shear suppression at the edge are reduced. (See experiments from D. M. Kriete et al.)

3. Conjecture: Stochasticity of fields might raise the power threshold, by weakening Reynolds stress trigger.

Takeaways II— RMP on DIII-D

11

