L→H Transition in a Stochastic Magnetic Field

P.H. Diamond

U.C. San Diego

Galeev Symposium, Oct. 2020

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.

Re: A. A. Galeev

Tremendous, well known contributions to magnetic

confinement theory and basic plasma theory:

- Weak Turbulence Theory: "Sagdeev and Galeev" books
- Neoclassical Transport, Plasma Rotation
- Reconnection and Tearing

What else?

Some personal favorites:

- Galeev, '67: Seminal paper on renormalization and DIA-like approach to Vlasov Turbulence
 - Resonance broadening theory encompassed
 - Noted applicability connected to absence of decay instability (particle vs. wave processes)
 - Cautioned on applicability of γ/k_{\perp}^2 , dimensional estimates A lesson ahead of its time...
 - Remarkable intellectual honesty and clarity!

- Galeev, Rosner, Vaiana, '76: Hot AGN corona from buoyant flux of loops stretched by V'_{θ} :
 - End state of magnetic viscosity driven accrection (c.f. Eardley, Lightman); now more significant, as MRI appreciated
 - Concepts of 'disk flares'
- Galeev, Kuznetsova, Zeleny, '85 et. sequence
 - 'Patchy reconnection' due stochastic fields, magnetic
 percolation * micro-macro connection of intermittency
 - Linked to local drift-tearing dynamics

The Rest:

- Changing focus of MFE theory
- ELM and RMP: Benefits and Costs
- L \rightarrow H Transition in Stochastic Magnetic Field
 - Status
 - Revisiting ZF generation Implications
 - Implications
- Turbulenct transport of momentum and particles in stochastic B-field

Evolution of MFE Theory

• Beginnings: 60's ~ 1980

Trieste	Т3	∫ Galeev still
Micro-stability	Alcator A	active in program
Neoclassical theory	PLT	
Disruption models	TFR	
Taylor Relaxation		

Prehistory: 3D

Understanding Good Confinement: 1980 ~ 2010

[Self-Organization]

ExB shear, ZF's	ASDEX → H-mode
Transport Bifurcations	Alcator C, C-Mod \rightarrow pellet, n-limit
Gyrokinetics, Simulation	TFTR, JET → D-T
AE modes	DIII-D \rightarrow ETBs, ITBs
Intrinsic Rotation	JT-60U \rightarrow ETBs, ITBs

Evolution of MFE Theory

Good Confinement + Good Power Handling → ITER:
 2010 – Present, and beyond

ELMs, Peeling-Ballooning	DIII-D, AUG
<u>RMP</u> , QH-mode	Alcator C-Mod
Multi-scale problems	LHD
Core-Edge coupling,	W7X
Turbulence Spreading	RFX-QSH ★
Disruptions (?)	EAST, KSTAR
SOL Heat Loads (?)	

. . .

N.B.: Return to 3D !

➔ Theory must address trade-offs

ELMs and RMP – A Primer

- RMP = Resonant Magnetic Perturbation δB
 - Stochastic edge
 - Pump out density
 - Mitigate, suppress ELMs,

with good confinement

to ITER

Benefit and Cost

- Need make L \rightarrow H Transition <u>with</u> RMP !
- Increase in P_{th} for L \rightarrow H !?
 - $-(\delta B/B)_{crit}$ for
 - $L \rightarrow H$ Power increase
 - Significant !
- Issues:
 - Why L \rightarrow H threshold \uparrow due RMP
 - What physics defines $(\delta B/B)_{crit}$?
 - What Else?

Kriete et. al. DIII-D

"First ELM

the largest"

Theoretical Problem: L→H Transition in a Stochastic Magnetic Field

• What of $L \rightarrow H$? \rightarrow Converging, though still somewhat

controversial

- Fundamentals:
 - Transport bifurcation
 - Bistability essential S curve
 - Robust feeadback channel ExB shear flows
 - Insulation layer at the edge...

$$\chi_T = \chi_T (V'_{E \times B} / \omega)$$
$$V_{E \times B} = \nabla P / n + \cdots$$

 $\chi_T \downarrow$ for $V'_{E \times B} / \omega >$ crit.

- Subtleties
 - What is the "trigger"? \rightarrow i.e.,
 - What physics allows $\nabla \hat{P}$ to steepen?
- Coupling of energy to edge zonal flow
 - Interplay of ε_T , V_{ZF} , ∇P
 - $P_{Reynolds}$ crit. needed,

measured (Tynan)

– Crucial to note $\underline{E \times B}$ flow

Implications

(c.f. Samantha Chen, P.D., et al)

- Modest stochastic field $\delta B/B \ge 10^{-3} \sim 10^{-4}$ unlikely to have much effect on ∇P_i so...
- Effect on L→H transition via interference with trigger mechanism
 - Prevent / Retard ZF excitation! , i.e. reduce Reynolds power
 - Relate $(\delta B/B)_{crit}$ to ZF physics !?

– What is physics of ZF dynamics in stochastic field ?!

- Fundamental question...

Resonant Magnetic Perturbations Disrupt Shear Suppression of Turbulence, Increasing the L-H Power Threshold

- RMPs reduce flow shear rates ω_{shear} and raise turbulence decorrelation rates $\Delta \omega_D$ in L-mode
- * Shear suppression parameter $\omega_{shear}/\Delta\omega_D$ is reduced significantly below 1
 - More shear flow must be driven to access Hmode
- ★ RMPs disrupt nonlinear energy transfer from turbulence to flows that can trigger L-H transition

M. Kriete/APS-DPP/October 21-25 2019

- <u>Reynolds Stress Decoherence</u>
 - N.B. Tobias et. al. simulations of β -plane MHD ZF evolution indicate drop in $\langle V_y V_x \rangle$ prior to Reynolds vs Maxwell balance, c.f. Chen, P.D., 2020, ApJ.
- Reynolds Stress <u>Decoherence</u> \rightarrow <u>Dephase</u> V_r , V_{θ}
- N.B. Amplitude change negligible.

Reynolds Stress Decoherence - Heuristics

• ZF Mechanism – Basics → Modulation, etc

$$\langle \tilde{V}_{x}\tilde{V}_{y}\rangle = \sum_{k} c^{2} \frac{|\phi_{k}|^{2}}{B_{0}^{2}} \langle k_{x}k_{y}\rangle$$
 "Tilting Instability" – IKI classic

• What 'correlates' k_x and k_y ? \rightarrow Shear Flow!

$$\frac{d}{dt}k_x = -\frac{\partial}{\partial x}\left(\omega_{0,k} + k_y \langle V_y \rangle\right) \approx -k_y \langle V_y \rangle'$$

$$\therefore \langle k_x k_y \rangle \approx -k_y^2 \langle V_y \rangle' \tau_c$$

Growing shear reinforces correlation

➔ Shear Growth

What of Magnetic Chaos Effects?

- Recall Classic: $\omega^2 \omega_D \omega k_{\parallel}^2 V_A^2 = 0$ $\omega_D = \omega_* / (1 + k_{\perp}^2 \rho^2)$
- Drift-Alfven Dispersion Relation

• Now:
$$k_{\parallel} = k_{\parallel}^{(0)} + \vec{b} \cdot \vec{k}_{\perp} \rightarrow \text{static, stochastic field}$$

 $\omega = \omega_0 + \delta \omega \qquad (after MNR)$

$$\langle \delta \omega \rangle \approx \frac{V_A^2}{\omega_0} \langle 2k_{\parallel} \vec{b} \cdot \vec{k}_{\perp} + (\vec{b} \cdot \vec{k}_{\perp})^2 \rangle \approx \frac{V_A^2}{\omega_0} \langle (\vec{b} \cdot \vec{k}_{\perp})^2 \rangle$$
Ensemble avg. frequency shift

N.B.: Independent $B_0 \leftrightarrow \langle \tilde{B}^2 \rangle$ only

Magnetic Chaos, Cont'd

• Then:
$$\omega = \omega_0 + \frac{V_A^2}{\omega_0} \langle \left(\vec{b} \cdot \vec{k}_{\perp} \right)^2 \rangle$$

• Revisit $\langle k_x k_y \rangle$ correlator:

$$\frac{d}{dt}k_x = -\frac{\partial}{\partial x}\left(\omega_0 + \frac{1}{2}\frac{V_A^2}{\omega_0}k_{\perp}^2b^2 + k_y\langle V_y\rangle\right)$$

averaged

frequency shift

• Thus tilting:

shear flow stochastic field
$$\frac{d}{dt}k_x = -k_y \langle V_y \rangle' - \frac{V_A^2}{2\omega_0} k_\perp^2 \partial_x [b^2]$$

 \rightarrow $|b|^2$ enters tilting mechanism

Shear amplification feedback <u>disrupted if [b²] controls tilt process</u>

Magnetic Chaos, Cont'd

Tilting disrupted for:

$$|b|^{2} > \beta \left(\frac{\rho_{s}}{L_{n}}\right)^{2} \frac{L_{b}}{L_{E}} L_{n} \frac{|e|E_{r}}{T} \qquad L_{E}^{-1} \equiv \frac{\partial_{r}E_{r}}{E_{r}}$$

 $L_b^{-1} \equiv \frac{\partial_r |b|^2}{|b|^2}$

– Standard parameters:

$$|b|^2 > 10^{-7} \frac{L_b}{L_E} \rightarrow$$
 achievable for weak, modest field

- Critical field emerges from dephasing condition
- Higher power \rightarrow increased $V'_E \rightarrow$ re-access tilting feedback

Proper Analysis – Schematic

- $\nabla \cdot J = 0 \sim V_A D_M$ characterizes mixing, D_M RSTZ, R.R.
 - → V_A is signal speed along <u>stochastic</u> magnetic field
- $\partial_x \langle \tilde{V}_r \tilde{V}_\theta \rangle = \langle \tilde{V}_r \nabla^2 \tilde{\phi} \rangle$ Taylor Identity Vorticity Perturbation

•
$$\nabla^2 \tilde{\phi} = () \partial_x \langle \nabla^2 \phi \rangle + () k \nabla_y \tilde{P}$$

diagonal
 $\nabla P \text{ etc.} \rightarrow \text{ flow energy}$

• $\tilde{P} \rightarrow \text{Acoustic coupling} - c_s D_M$, slower

Outcome

$$\partial_x \langle \tilde{V}_x \tilde{V}_y \rangle = -D_{PV} \frac{\partial}{\partial x} \langle \nabla^2 \phi \rangle + F_{res} k \, \partial_x \langle P \rangle$$

$$D_{PV} \approx \sum_{k,\omega} \left| \tilde{V}_{r;k,\omega} \right|^2 \left[\frac{V_A b^2 \, l_{ac} k^2}{\overline{\omega}^2 + (V_A b^2 l_{ac} k^2)^2} \right]$$

$$b^2 = \frac{\langle \tilde{B}^2 \rangle}{B_0^2}$$

 l_{ac} = field autocorrelation

$$F_{res} \sim -\sum_{k,\omega} \frac{2k_y}{\omega} D_{PV;k,\omega}$$

• Onset: $\Delta \omega_k \sim k_{\perp}^2 V_A D_M$ spectral linewidth Stochastic field decorrelation must beat ambient limits on Reynolds stress phase

• In practice: $Ku \sim 1$ for effect, a challenge to predictions...

Outcome, cont'd

- Stochastic fields dephase Reynolds stress via Alfvenic radiation → inhibit energy transfer to flow
- Key onset condition: $\Delta \omega$ vs $k_{\perp}^2 V_A D_M \leftrightarrow$ 'Patchiness' correction !?
- Suggests trigger at higher power:

Related Work (Executive Summary)

- Broad Theme: Turbulence and Transport [especially momentum, PV] in Stochastic Field
- What of intrinsic rotation? $\rightarrow \langle \tilde{V}_r \tilde{V}_{\parallel} \rangle$
- N.B. : 'Pedestal Torque' essential to stability in high performance discharges!
 - Parallel Flow ↔ <u>Acoustic</u> Dynamics

<u>So</u>

- Scattering effect ~ $c_s D_M \rightarrow$ modest
- $-\nu_T$ and $F_{z,res}$ persist, with modification

Intrinsic Rotation, cont'd

But:

• Broken Symmetry required, for $\langle k_{\theta}k_{\parallel} \rangle \neq 0$

•
$$F_{res} \approx -\frac{k_z}{\omega} v_{Turb}$$

- How does stochastic field interact with symmetry breaking?
 - \rightarrow V'_E is leading candidate mechanism

What of direct effects of Stochastic Field?

$$\partial_t \langle V_{\parallel} \rangle + \partial_r \langle \tilde{V}_r \tilde{V}_{\parallel} \rangle = -\frac{1}{P} \partial_r \langle b \tilde{P} \rangle$$

and like:

kinetic stress (W.X. Ding)

$$\partial_t \langle P \rangle + \partial_r \langle \tilde{V}_r P \rangle = -\frac{\partial}{\partial r} P_0 \langle b \tilde{V}_{\parallel} \rangle$$

- FGC '92 $\rightarrow c_s D_M \leftrightarrow \text{rate: } c_s D_M / l^2$
- But fluxes non-diffusive surprise!

i.e. for static stochastic field

$$B \cdot \nabla V_{\parallel} = 0$$

$$B \cdot \nabla P = 0$$

$$-c_s D_M \nabla \langle P \rangle \rightarrow \pi_{res}$$

$$-c_s D_M \nabla \langle V_{\parallel} \rangle \rightarrow \text{convection}$$

Cont'd

- But: turbulence co-exists with stochastic field!
- Time scales: $k_{\perp}^2 D_T$ vs $k_{\parallel} c_s$ turbulent scattering • Resonance: $\delta(k_{\parallel}) \rightarrow 1/[k_{\parallel}^2 c_s^2 + (1/\tau_c)^2]$

shift, contrast

• What balances $b_r \partial \langle P \rangle / \partial r$?

resonance broadening

 $-c_s \nabla_{\parallel} \tilde{P} \rightarrow$ weak turbulence \rightarrow residual stress *b* only, as previous

 $-k_{\perp}^{2}D_{T} \not(v_{\rightarrow}) \rightarrow \text{ strong turbulence } \rightarrow \underline{\text{magnetic viscosity}}$ $b, v_{\perp} \text{ interplay} \qquad v_{T} \approx \sum_{k} |b_{k}|^{2} c_{s}^{2} / k_{\perp}^{2} D_{T}$

Cont'd

- Structure of flux, 'Fick's law' changes !
- Interesting new direction...
- Correlations?! (M. Cao, P.D. 2020) [Dynamics of Instability in stochastic field]
 - Are \tilde{b} , turbulence uncorrelated?
 - -<u>No</u> \rightarrow interaction develops $\langle b\phi \rangle$ correlation
 - ala' Kadomtsev, Pogutse, impose $\nabla \cdot J = 0$ to all orders
 - Novel small scale convective cell, \tilde{b} structure develops.

Conclusion

- Demands of "Good Confinement" + "Good Power Handling" define more severe demands upon our understanding of turbulence, transport physics
- L \rightarrow H Transition in stochasic magnetic field one such $Ku \sim 1$
- "Turbulence in Stochastic Field" re-appears as an interesting theoretical problem
- A.A. Galeev's contributions will be of importance on the ITER era

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.