On How Stochastic Magnetic Perturbations Influence Dynamics and Relaxation

P.H. Diamond ⁽¹⁾, <u>Mingyun Cao</u>^(2,1)

⁽¹⁾ U.C. San Diego (aka UZSD)
 ⁽²⁾ Shanghai Jiaotong University

Kikuchi Matsuri (菊地祭), Oct. 2020

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.

Outline

- Why this problem, <u>now</u>?
- · Some History mostly Ancient
- Formulating a "Simple" Problem !?
- Some Insight inspired by a classic
- Two Scale Formulation and 'Solution'
- What's the <u>Physics</u>?

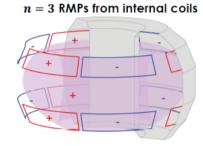
- What's the <u>Physics</u>? cont'd
 - Nonlinear magnetic torque
 - $-\langle E_{\parallel}\rangle$ along perturbed lines
 - 'Screening' and small scale $ilde{\phi}$
 - Convective cells
- Where it stands formulating a perturbation theory
- Conclusion: Lessons Learned
- Open Issues

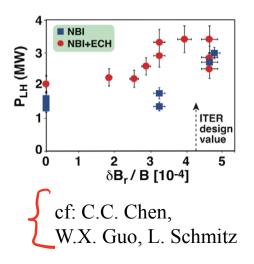
Syntheses of good confinement and optimal power handing drive us to <u>3D</u>, likely involving stochastic magnetic fields

<u>i.e.</u>

Why <u>Now</u>?

- RMP raises L→H transition threshold:
 - Stochastic layer ~ separatrix
 - Turbulence persists, though modified
 - Interaction with flows modified - decoherence, etc.
- Stellerator: can support stochastic regions





- Island Configurations (c.f. K. Ida)
 - ITBs, NTM, ...
 - Stochastic layers frequently present, near colored and S
- Disruptions
 - Thermal quench, etc. results from stochastic field
 - Confinement, including electron momentum (i.e. current quench), also of interest

→ Fluctuations, Flows, (Er), all modified → Turbulence ?!

How is turbulence modified?

• How does a stochastic field modify the instability process?

Question motivated by stochastic field transport (~ late 70's) <u>Classic of Ancient History</u>: Kaw, Valeo, Rutherford '79 et. seq.

- Tearing, in braided magnetic field
- 'anomalous dissipation' by { electron viscosity hyper-resistivity rescue resistive MHD

i.e. $E_{\parallel} = \mathcal{M} J_{\parallel} - \mu \nabla_{\perp}^2 J_{\parallel}$

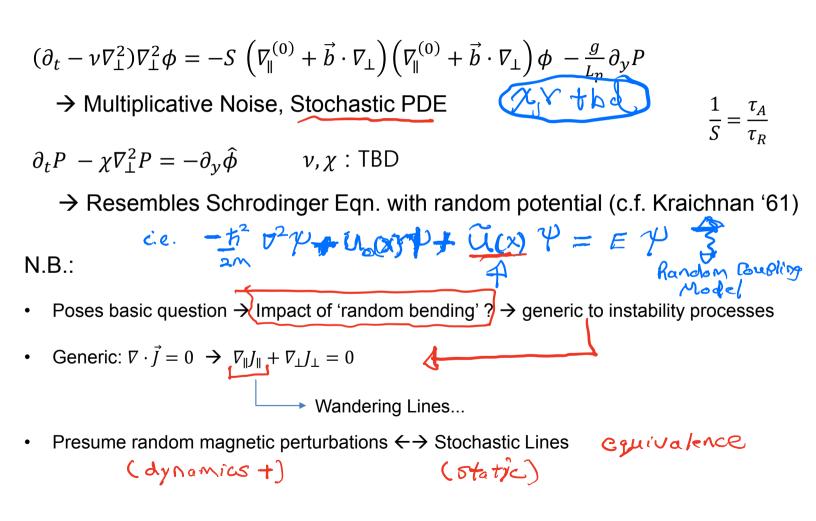
- lack of, or very simple, micro \rightarrow macro connection

- Need to re+visit <u>Simple Problem</u>: → insight, <u>guide simulation</u>
- For $l_{mfp} < l_c < l_{macro}$:

$$\frac{\rho_{0}}{B_{0}^{2}}d_{t}\nabla_{\perp}^{2}\phi = -\frac{1}{\eta}\nabla_{\parallel}^{2}\phi - \frac{g}{B_{0}}\frac{\partial P}{\partial y} + \nu\nabla_{\perp}^{2}\nabla_{\perp}^{2}\phi$$
$$d_{t}P = -V_{r}\frac{dP_{0}}{dr} + \chi\nabla_{\perp}^{2}P$$
Key:
$$\nabla_{\parallel} = \nabla_{\parallel}^{(0)} + \vec{b} \cdot \nabla_{\perp} \rightarrow \text{parallel gradient}$$
along randomly tilted lines

- Resistive Interchange - test wave - stability - the questions.

- $\vec{b} \rightarrow$ stochastic variable $\rightarrow \underline{\text{static}} \langle \tilde{b}^2 \rangle_{k'}$ specified, $\vec{k}' \, \text{s/t} \, |\vec{k}'| \gg |\vec{k}|$ i.e. specify 2nd moment of Af(\vec{b})



- Key Issue: Physics of 'Stochastic Bending' $\left(\nabla_{\parallel}^{(0)} + \vec{b} \cdot \nabla_{\perp}\right) \left(\nabla_{\parallel}^{(0)} + \vec{b} \cdot \nabla_{\perp}\right) \phi$
- Insight from the <u>Classics</u>
 - Rechester and Rosenbluth '78: Test Particle Picture

 $\chi_{\parallel} \gg \chi_{\perp}$

K + P '78, cont'd

- Aim → mean heat flux
- For $K_u < 1$; (also triplet)

•
$$\langle q_r \rangle = -\chi_{\parallel} \left[\langle \tilde{b}_r^2 \rangle \frac{\partial \langle T \rangle}{\partial r} + \langle \tilde{b}_r \frac{\partial \tilde{T}}{\partial z} \rangle \right] - \chi_{\perp} \nabla_{\perp} \langle T \rangle$$

kinematic \tilde{T} enters from $\widetilde{b \cdot \nabla T} \neq 0$

• For
$$\tilde{T}$$
: $\nabla \cdot \vec{q} = 0 \rightarrow \tilde{T}_k = -\frac{\chi_{\parallel} i k_{\parallel} \tilde{b}_k \partial \langle T \rangle / \partial r}{\chi_{\parallel} k_{\parallel}^2 + \chi_{\perp} k_{\perp}^2} \rightarrow \text{cancellations}$

• N.B.: \tilde{T} adjusts to satisfy $\nabla \cdot \vec{q} = 0$

 \tilde{b} and $\nabla \cdot \vec{q} = 0$ necessitate $\tilde{T} ! \tilde{T}$ not adjustable, and $\vec{q} = 0$

➔ Significant departure from kinematics !

Why revisit K and P? - in this context ??

- Structurally Similar...
- $\nabla \cdot \vec{J} = 0$ is constraint here

 \rightarrow system should prevent local charge accumulation! $\leftarrow \rightarrow$ quasi-neutrality/

- $\nabla_{\parallel}J_{\parallel} + \nabla_{\perp} \cdot J_{\perp} = 0$ parallel perp: polarization + P-S
- Given \tilde{b} , if $\nabla_{\parallel}\tilde{J}_{\parallel} \neq 0 \rightarrow \nabla_{\perp} \cdot \tilde{J}_{\perp} \neq 0 \rightarrow \tilde{\phi}$

Stochastic fields \rightarrow Stochastic cells

Stochastic Field must generate (micro) convective cells

K and P, and Implications - Here

• Problem is <u>multi-scale</u>:

 $\overline{\phi}_k \rightarrow \text{test field}$

•
$$\phi = \overline{\phi}_{k} + \widetilde{\phi}_{k'}$$
 $|\vec{k'}| \gg |\vec{k}|$
 $\tilde{b}_{k'}$ Potential fluctuations generated on
small scale to maintain $\nabla \cdot \vec{J} = 0$
• Approach by method of averaging:
 $T = \left(\nabla_{\parallel}^{(0)} + \vec{b} \cdot \nabla_{\perp}\right) \left(\nabla_{\parallel}^{(0)} + \vec{b} \cdot \nabla_{\perp}\right) \phi \Rightarrow \text{bending}$
 \Rightarrow
 $\overline{T} = \nabla_{\parallel}^{(0)2} \overline{\phi} + \nabla_{\perp} \cdot \langle \tilde{b}\tilde{b} \rangle \cdot \nabla_{\perp} \overline{\phi} + \langle \nabla_{\parallel}^{(0)}\tilde{b} \cdot \nabla_{\perp} \widetilde{\phi} \rangle + \langle (\tilde{b} \cdot \nabla_{\perp}) \nabla_{\parallel}^{(0)} \widetilde{\phi} \rangle$
'mean field' $\Rightarrow \vec{k}$ How get $\overrightarrow{\phi}$

K and P, and Implications, cont'd



- $\tilde{T} = \nabla_{\perp} \cdot \tilde{b} \nabla_{\parallel} \bar{\phi} + \nabla_{\parallel}^{(0)} \tilde{b} \cdot \nabla_{\perp} \bar{\phi}$
- $\tilde{\phi}$ is 'screened' response to $\tilde{b}_{k'} \bar{\phi}$
- $\tilde{b}_{k'}$ determines $\tilde{\phi}_{k'}$, via $\tilde{b} \neq and response$
- Of course, \vec{k} scale $\$ evolutions coupled \vec{k}' scale $\$ ultimately in \vec{p} evolution

=> Feedbeck LoopS....

Two Scale Formulation and 'Solution'

╋

The problem

Test
Mode
$$\gamma \sim S^{-1/3} \tau_A^{-1}$$

 $\Delta x \sim S^{-1/3} a$

low m

Resistive Interchange k

(single test mode)

- $\rightarrow |k'| \gg |k| \rightarrow$ multi-scale
- → Stability, intensity etc. Many Questions...

Spectrum of prescribed, static magnetic fluctuations

$$|b_{k'}|^2 = |b_0|^2 S(k_{\theta}) \Gamma(r - r_{k'})$$

spatial form factor

WW LL DX

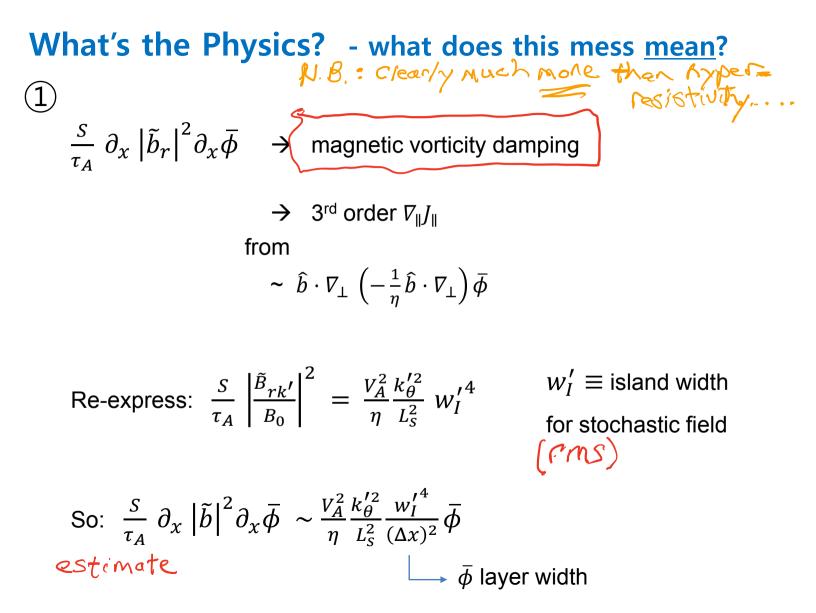
Toward a Solution

$$\begin{split} \phi &= \bar{\phi} + \tilde{\phi} & \overline{\phi} \rightarrow \vec{k} \text{ envelope} \\ & \tilde{\phi}, \, \tilde{b}_{k'} \rightarrow \vec{k'} \\ \hline \underline{\text{Envelope:}} & \end{split}$$

$$\begin{aligned} (\partial_{t} - \nu \nabla_{\perp}^{2}) \nabla_{\perp}^{2} \bar{\phi} + \frac{S}{\tau_{A}} \left. \partial_{x} \left| \tilde{b}_{r} \right|^{2} \partial_{x} \bar{\phi} &= -\frac{S}{\tau_{A}} \left. \nabla_{\parallel}^{(0)2} \bar{\phi} - \frac{g}{L_{P}} \partial_{y} \bar{P} + \left\langle \nabla_{\parallel}^{(0)} \nabla_{\perp} \cdot \left(\tilde{b} \tilde{\phi} \right) \right\rangle + \nabla_{\perp} \cdot \left\langle \tilde{b} \nabla_{\parallel}^{(0)} \tilde{\phi} \right\rangle \\ (\partial_{t} - \chi \nabla_{\perp}^{2}) \bar{P} &= -\bar{V}_{r} \end{aligned}$$

 $\begin{array}{ll} \underline{\text{Small Scale Fluctuation:}} & \text{Inversion} \rightarrow G(x, x'') \\ \hline & \mathcal{Finction} \end{array} \\ (\partial_t - \nu \nabla_{\perp}^2) \nabla_{\perp}^2 \tilde{\phi}_{k'} + \frac{S}{\tau_A} \nabla_{\parallel}^{(0)} \tilde{\phi}_{k'} + \frac{g}{L_P} \partial_y \tilde{P}_{k'} = -\frac{S}{\tau_A} \Big[\nabla_{\perp} \cdot \Big(\tilde{b}_{k'} \nabla_{\parallel}^{(0)} \bar{\phi} \Big) + \nabla_{\parallel}^{(0)} \Big(\tilde{b}_{k'} \nabla_{\perp} \bar{\phi} \Big) \Big] \end{aligned}$

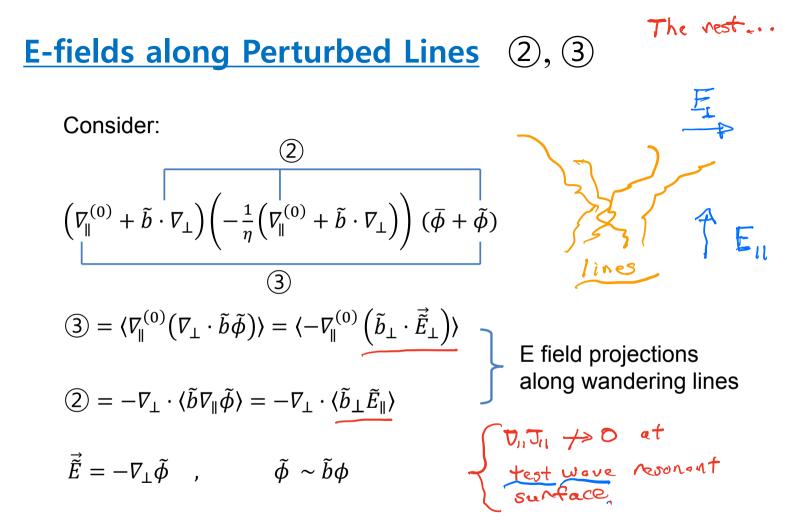
 \tilde{P} equation



Magnetic Torque, cont'd

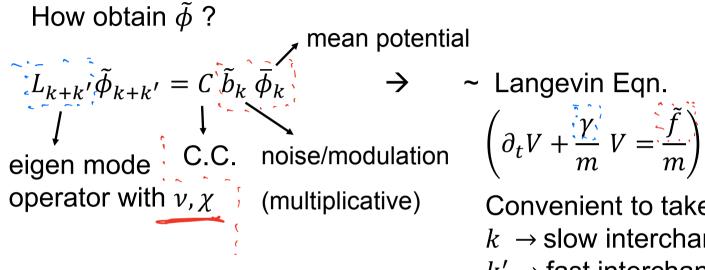
 $(\nabla_{\parallel}J_{\parallel})^{(2)} > (\nabla_{\parallel}J_{\parallel}^{(1)}) \rightarrow$ magnetic torque supplants inertia in vorticity balance

unambiguously stabilizing basic vortex flow of mode



→ Nonlinear Bending + Resistivity → Dissipative Nonlinearity !

Screening, Small Scale $\tilde{\phi}$ and Convective Cells



Convenient to take $k \rightarrow$ slow interchange $k' \rightarrow$ fast interchange

 $|k| \ll |k'|$:

$$L_{k'}\tilde{\phi}_{k'} = C \ b_{k'}\bar{\phi}$$

$$\tilde{\phi} = \int dr'' \, G(r,r'') C b_{k'} \bar{\phi}$$

 \rightarrow obtains $\tilde{\phi}$ via Green's function

Screening, cont'd

 \sim

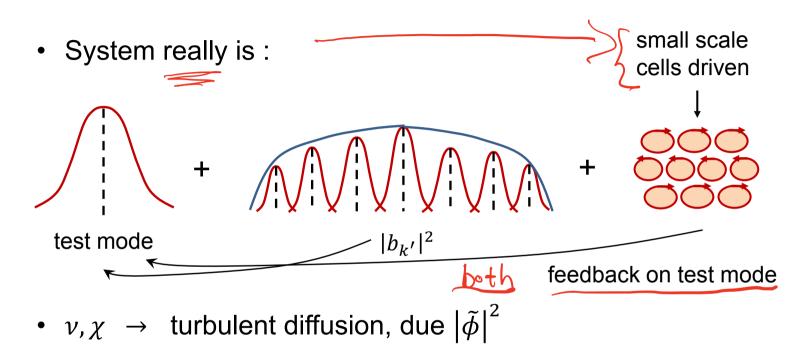
•

• Langevin Eqn. $\leftarrow \rightarrow$ Fluctuation-<u>Dissipation</u> Theorem $\begin{pmatrix} ? \\ ? \\ ? \\ \end{pmatrix}$

$$\begin{split} \left|\tilde{\phi}_{k'}\right|^{2} \approx \frac{|c|^{2} |b_{k'}|^{2} |\bar{\phi}|^{2}}{L_{-k'}L_{k'}} & L_{k} \equiv \text{operator} \\ \Rightarrow k_{\theta}^{\prime 2} \gg k_{\theta}^{2} \\ \Rightarrow \text{ stationarity} \Rightarrow \text{ dampedd} & \therefore \text{ fast interchange} \\ \text{response} \Rightarrow \text{ L must be over-stable} \\ \nu, \chi \Rightarrow \text{ turbulent diffusion from small scale electrostatic cells} & -\underbrace{\forall \cdot \underline{v} \ \forall \cdot \underline$$

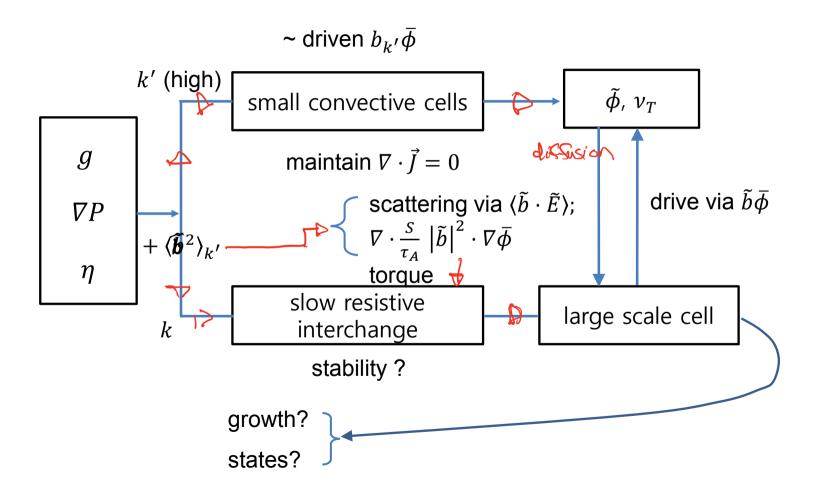
$$\nu_T \approx \sum_{k'} |c_{k'}|^2 \langle \tilde{b}^2 \rangle_{k'} \left| \bar{\phi} \right|^2 \gamma_{k'}^{-1} / \left[k_{\theta}^{\prime 2} - \frac{g k_{\theta}^{\prime 2}}{L_p \left(\nu_T k_{\theta}^{\prime 2} \right)^2} \right]^2 \Rightarrow \underbrace{\frac{1}{\delta \nu_T}}_{\leftarrow \leftarrow}$$

Screening, cont'd



Multi-scale interaction branches thru ES, Magnetic Scattering

The Big Picture:



Where Things Stand

- Integro-differential equation for $\bar{\phi}$ evolution in presence specified $|b_{k'}|^2$
- Technically complex...
- $(\nabla_{\parallel}J_{\parallel})^{(3)}$ magnetic torque is clear and novel effect, damping vorticity
- Can formulate perturbation theory $\gamma_k \rightarrow \gamma_k^{(0)} + \delta \gamma_k$, in terms quadratic form
- Crank ongoing ...

<u>Conclusions – Lessons Learned</u>, so far...

- Problem of instability in stochastic field is intrinsically multi-scale and dynamic: $\bar{\phi}$; $\tilde{\phi}$ and \tilde{b}
- To maintain $\nabla \cdot \vec{J} = 0$ for prescribed $\tilde{b}_{k'}$ + instability $\rightarrow \tilde{\phi}$ generated
- Physics: $\nabla_{\perp} \cdot J_{\perp} \neq 0$ to maintain $\nabla \cdot \vec{J} = 0 \Rightarrow$ Enter electrostatic micro-cells !
- Magnetic vorticity damping is generic to stochastic \tilde{b} + turbulence

• Inertia
$$\rightarrow$$
 Inertia + $\frac{s}{\tau_A} \partial_x |b_r|^2 \partial_x \bar{\phi}$

• FOM:
$$w'_{I}$$
 vs $\left[\left(k_{\theta}^{2}/k_{\theta}^{\prime}\right)(\Delta x)^{4}\right]^{1/4}$ for $\nabla_{II} \mathcal{J}_{II}^{(2)} \sim \mathcal{T}_{II} \mathcal{J}_{II}^{(2)}$

<u>Conclusions – Lessons Learned</u>, so far...

- More generally, for turbulence $\tilde{\phi}$ in stochastic \tilde{b} ; <u>cannot</u> treat as statistically independent i.e. $\langle \tilde{b} \ \tilde{\phi} \rangle \neq 0$
- small scale \tilde{b} leaves 'footprint' on modes

Look Ahead:

- Complete analysis bistability ?
- More effects ? \rightarrow the usual...
- To resistive interchange turbulence... → flows
- Collisionless \rightarrow Alfven radiation into network of $\langle \tilde{b}^2 \rangle$

(c.f. C-C Chen, this meeting)

• Statistical analysis Par(B) • Distribution

Supported by U.S. Dept. of Energy under Award Number

DE-FG02-04ER54738