How Decoherence of Reynolds Force by Stochastic Magnetic Fields Raises the L-H Transition Power Threshold

Chang-Chun Chen¹, Patrick H. Diamond¹, Rameswar Singh, and Steven M. Tobias²

¹University of California, San Diego, US ²University of Leeds, Leeds LS2 9JT, UK

This work is supported by the U.S. Department of Energy under Award No. DE-FG02-04ER54738

APS-DPP, Virtual Meeting, November 09th 2020

Introduction— Why

(a)

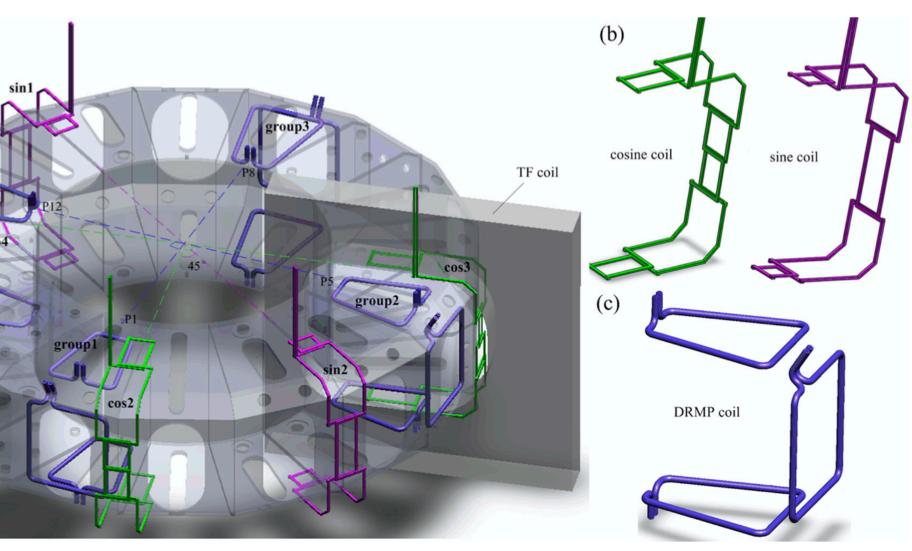
- thresholds.
- Studies have shown that Reynolds stress bursts at the edge are suppressed and hence so is the zonal flow.

The tokamak

3D with $k \cdot B = 0$ resonance

APS-DPP, Virtual Meeting (CST), November 09th 2020

The resonant magnetic perturbation (RMP) raises L-H transition power



(J-TEXT)

We examines the physics of stochastic fields interaction with zonal flow near the edge.

3D The model (Cartesian Coordinate):

1. Strong mean field (3D). 2. $\underline{k} \cdot \underline{B} = 0$ (or $k_{\parallel} = 0$) resonant at rational surface has third direction — $\omega \rightarrow \omega \pm v_A k_z$. 3. Kubo number: $Ku_{mag} = \frac{l_{ac} |\widetilde{\mathbf{B}}|}{\Delta_{\perp} B_0} < 1$). 4. Four-field equations — (b)Induction equation — A, J (c)Pressure equation — \mathbf{P} Mean-field Approximation: (d)Parallel flow equation — \mathbf{v}_{\parallel} $\zeta = \langle \zeta \rangle + \widetilde{\zeta}$ Perturbations produced by $\psi = \langle \psi \rangle + \widetilde{\psi}$ turbulences $A = \langle A \rangle +$

ensemble average over the zonal scales

 $L \int T \int$

, where $\langle \rangle$

APS-DPP, Virtual Meeting (CST), November 09th 2020

Vortices

Model

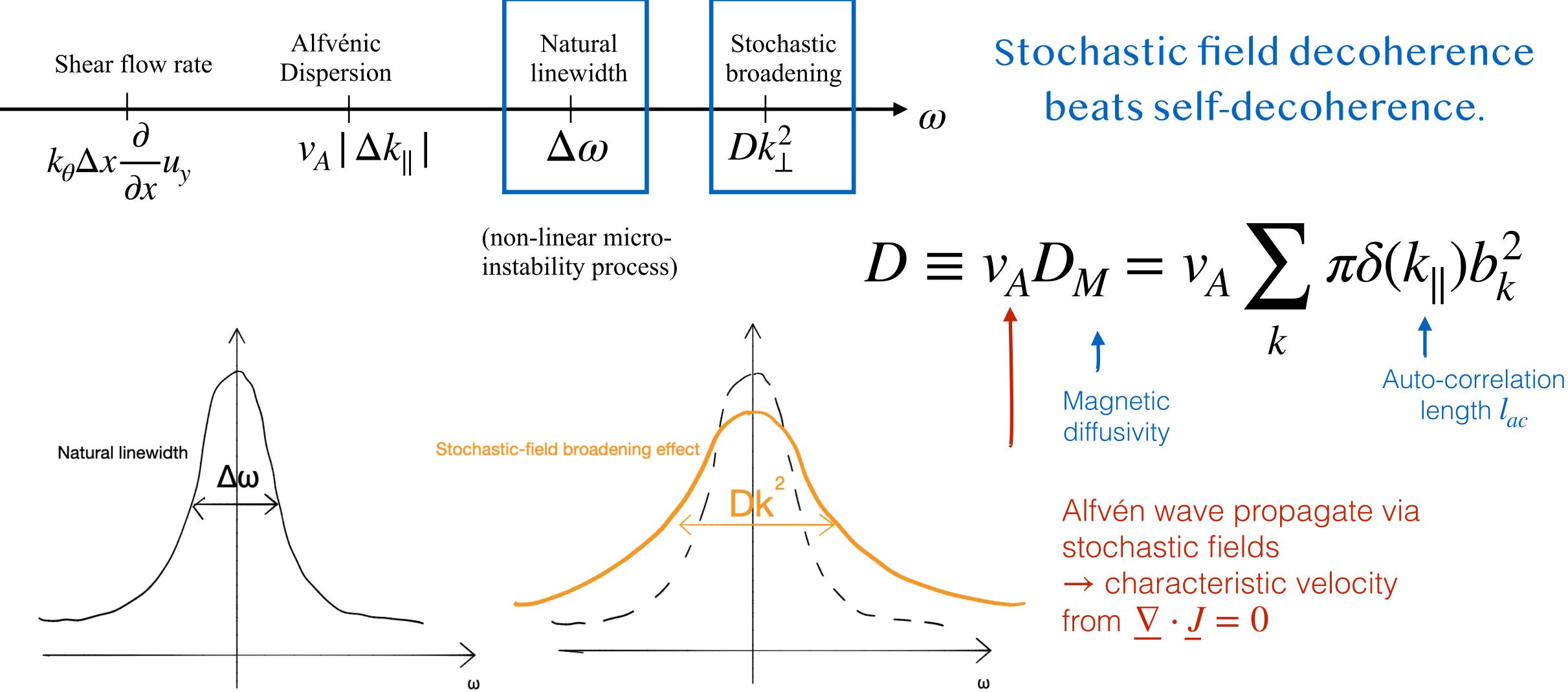
(a) Vorticity equation — vorticity $-\nabla^2 \psi \equiv \zeta$ EM drift wave **B**₀ OB_{st,x} B_{st,y}

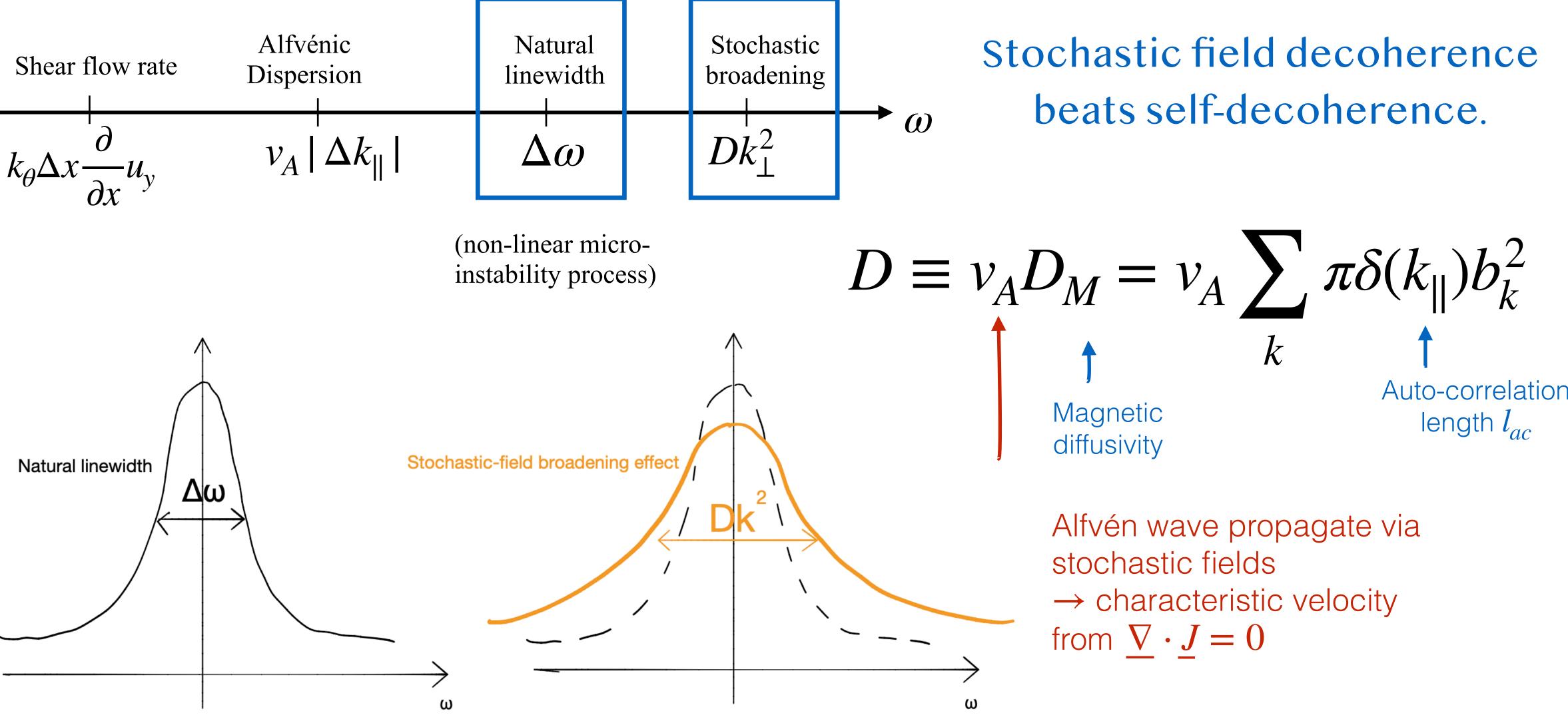
Mean Toroidal Field

Stochastic fields

When does stochastic Fields dephasing become effective?

Basic scales:





APS-DPP, Virtual Meeting (CST), November 09th 2020

Decoherence — L-H Transotion

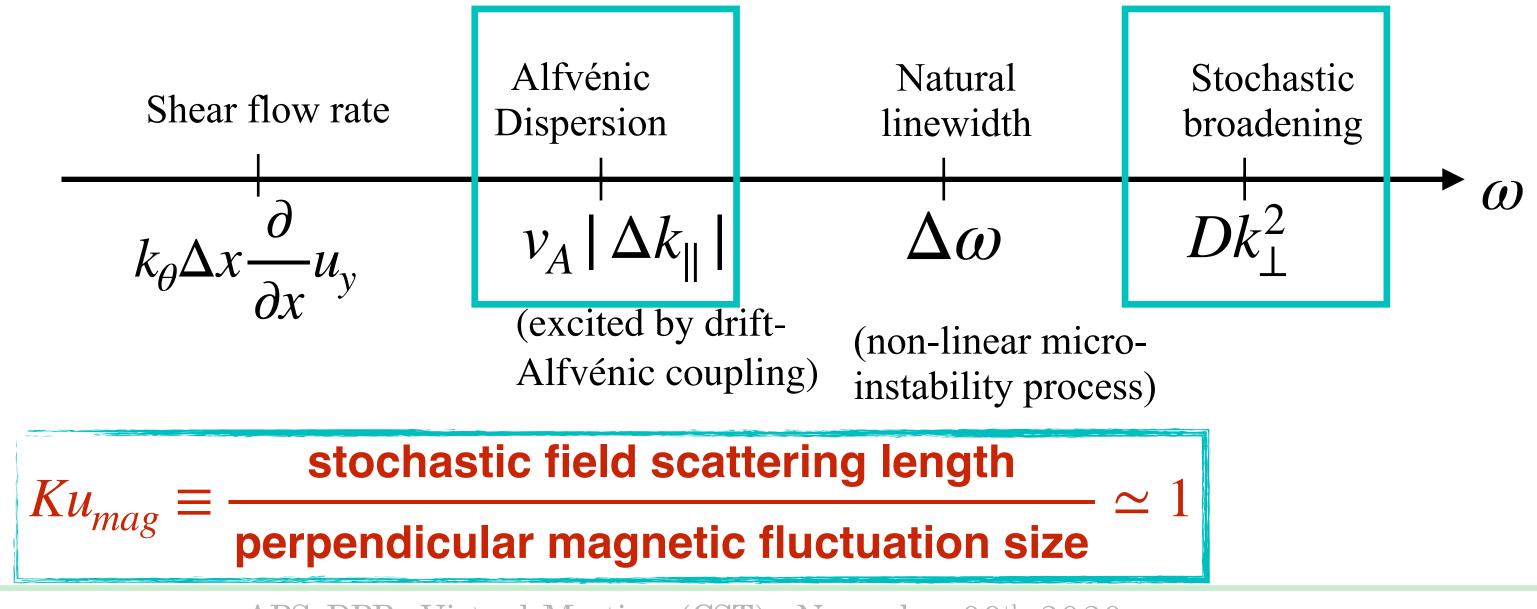
$\ll Dk_{\perp}^2 > \Delta \omega$ gives a dimensionless parameter (α):

$$\begin{cases} l_{ac} \simeq Rq \\ \epsilon \equiv L_n/R \sim 10^{-2} \\ \beta \simeq 10^{-2 \sim -3} \\ \rho_* \equiv \frac{\rho_s}{L_n} \simeq 10^{-2 \sim -3} \end{cases}$$

1.

$$b^2 \equiv (\frac{\delta B_r}{B_0})^2$$

Mow 'stochastic' is this? Magnetic Kubo number? Basic scales:



APS-DPP, Virtual Meeting (CST), November 09th 2020

Decoherence — L-H Transotion

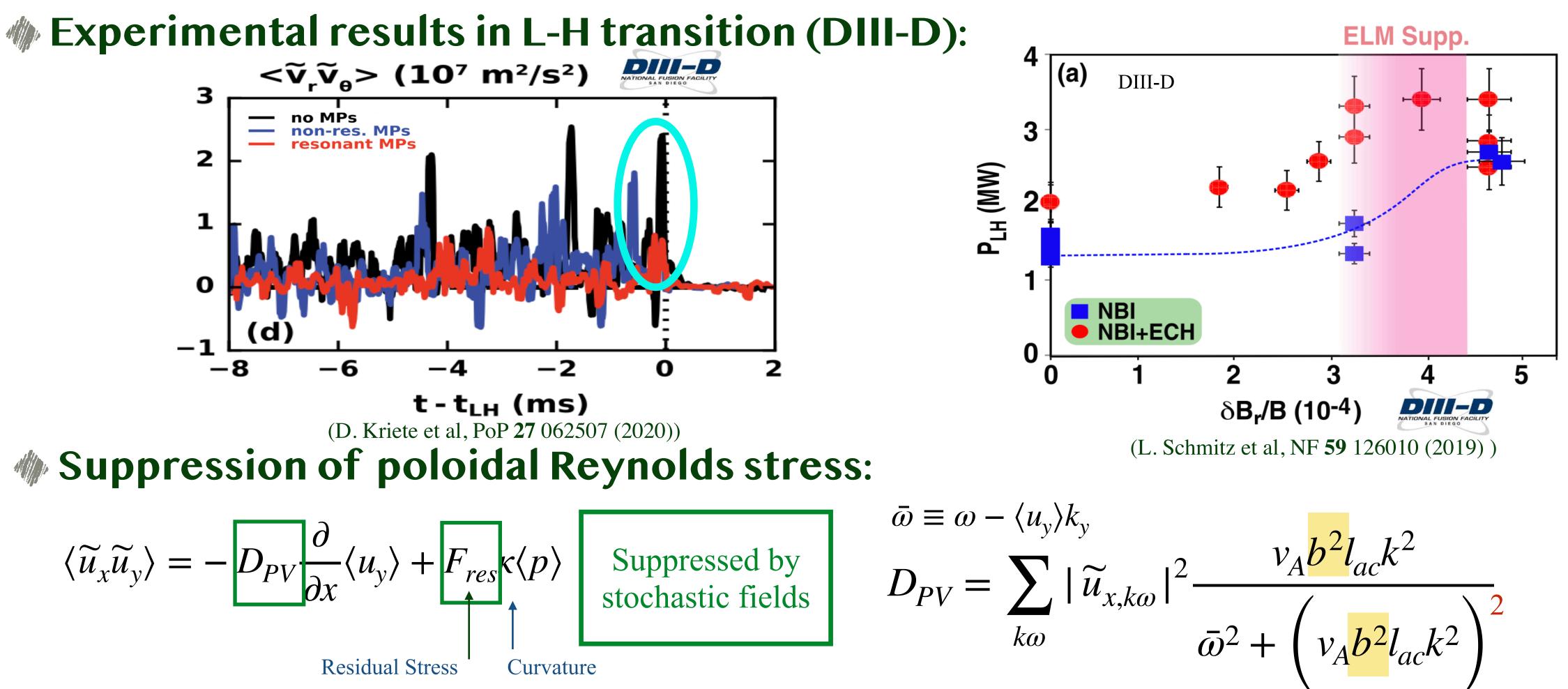
>
$$\sqrt{\beta}\rho_*^2 \frac{\epsilon}{q} \sim 10^{-7}$$

2.
$$\alpha \equiv \frac{b^2}{\rho_*^2 \sqrt{\beta}} \frac{q}{\epsilon} >$$

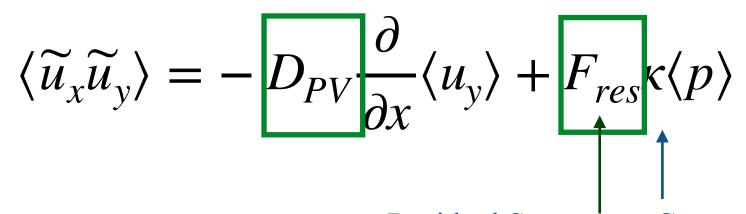
Extended Kim-Diamond Model

Criterion for stochastic fields effect important to L-H transition.

Experimental Results in L-H Transition



Suppression of poloidal Reynolds stress:



Reynolds stress will be suppressed as stochastic fields via PV diffusivity and residual stress.

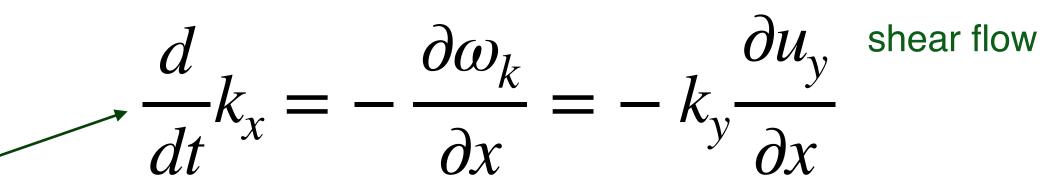
This stochastic dephasing is insensitive to turbulent mode (e.g. ITG, TEM,...etc.).

APS-DPP, Virtual Meeting (CST), November 09th 2020

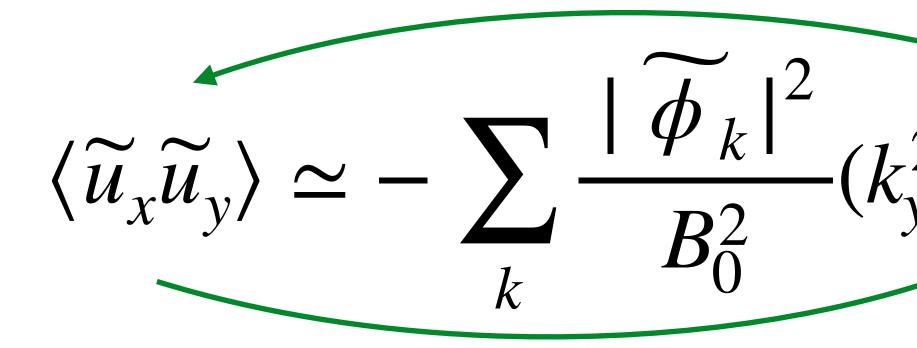
Decoherence of eddy tilting feedback – the physics

Snell's law:

Leads to non-zero $\langle k_x k_y \rangle$ $\rightarrow \langle \widetilde{u}_x \widetilde{u}_y \rangle \propto \langle k_x k_y \rangle$



Self-feedback of Reynolds stress:



Now, the dispersion relation with drift-Alfvén coupling is:

$$\omega^2 - \omega_D \omega - k_{\parallel}^2 v_A^2 = 0 \qquad k_{\parallel} = k_{\parallel}^{(0)}$$

 $(\omega_D + \delta \omega)^2 - \omega_D(\omega_D + \delta \omega) - (k_{\parallel} + \underline{b} \cdot \underline{k}_{\perp})^2 v_A^2 = 0$

APS-DPP, Virtual Meeting (CST), November 09th 2020

The $E \times B$ shear generates the $\langle k_x k_y \rangle$ correlation and hence support the non-zero Reynolds stress.

The Reynold stress modifies the shear via momentum transport.

> The shear flow reenforce the self-tilting.

Drift-wave frequency

$$\frac{k}{2} \cdot \frac{k}{2}$$

$$\omega = \omega_D + \delta \omega$$

Frequency shift induced by b^2

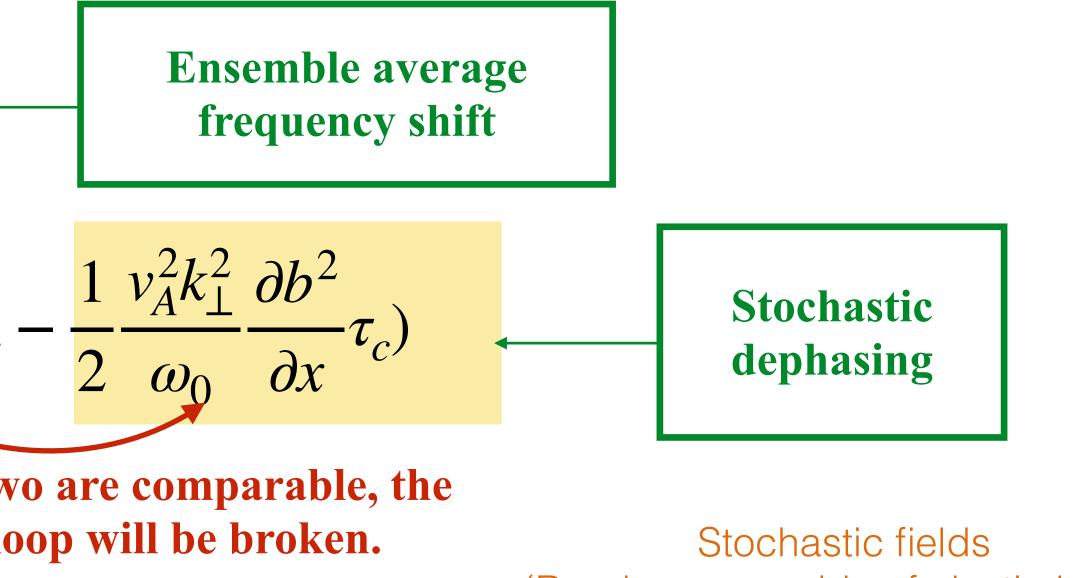
Decoherence of eddy tilting feedback – the physics

Stochastic fields dephase the self-feedback loop of Reynolds stress:

Expectation of frequency in stochastic fields: $\langle \omega \rangle = \langle \omega_0 \rangle + \langle \delta \omega \rangle$.

$$\langle \omega \rangle \simeq \omega_{D} + \frac{1}{2} \frac{v_{A}^{2}}{\omega_{0}} b^{2} k_{\perp}^{2} \leftarrow \langle \widetilde{u}_{x} \widetilde{u}_{y} \rangle \simeq -\sum_{k} \frac{|\widetilde{\phi}_{k}|^{2}}{B_{0}^{2}} (k_{y}^{2} \frac{\partial u_{y}}{\partial x} \tau_{c})$$
When these two feedback locations of the set of th

APS-DPP, Virtual Meeting (CST), November 09th 2020



(Random ensemble of elastic loops)

oops and resist the tilting of eddies.

with shear-tilting feedback loop.

Results – Increment of PLH

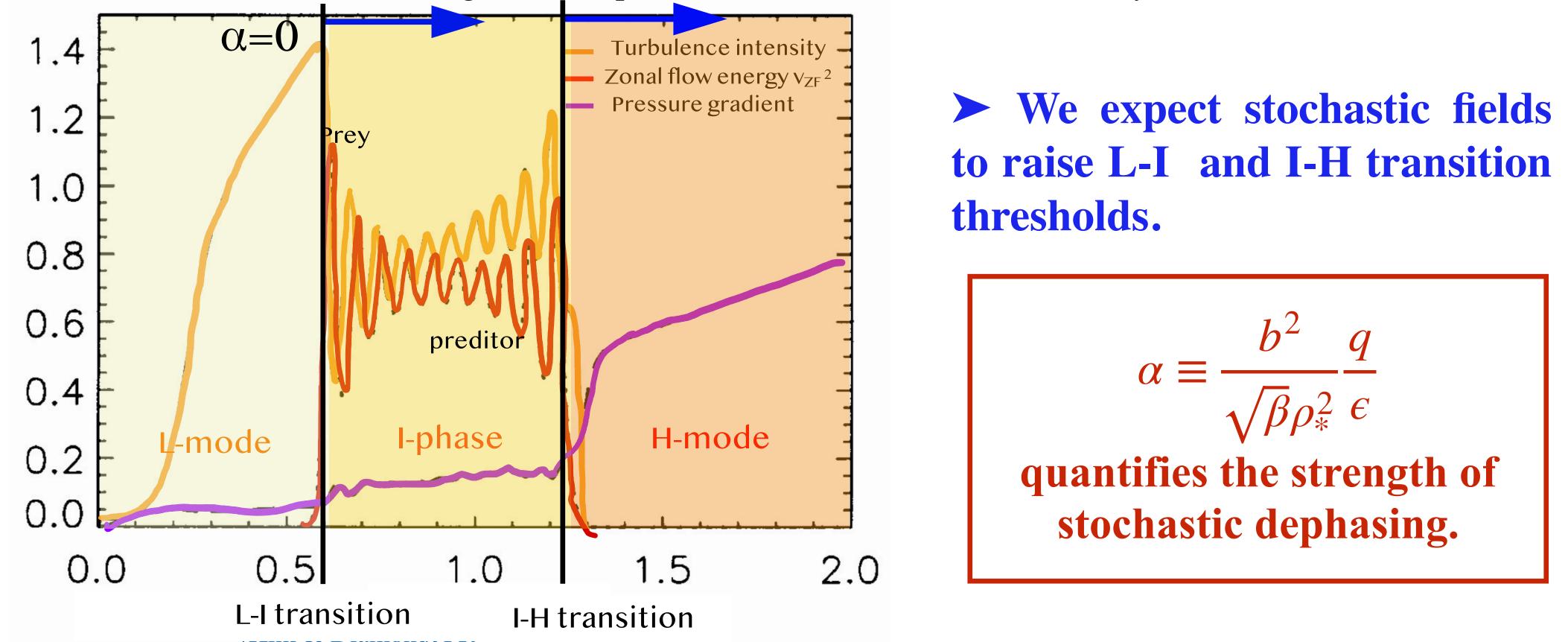
Macroscopic Impact

Extended Kim-Diamond Model (Simple reduced model):

Stochastic fields broadening effect requires: $\Delta \omega \leq k_{\perp}^2 D$. This gives dimensionless parameter (α):

1D Theory of power threshold: M. A. Malkov et al. (PoP 22, 032506 (2015)).

Kim-Diamond model is useful for testing trends in power threshold increment induced by stochastic fields.

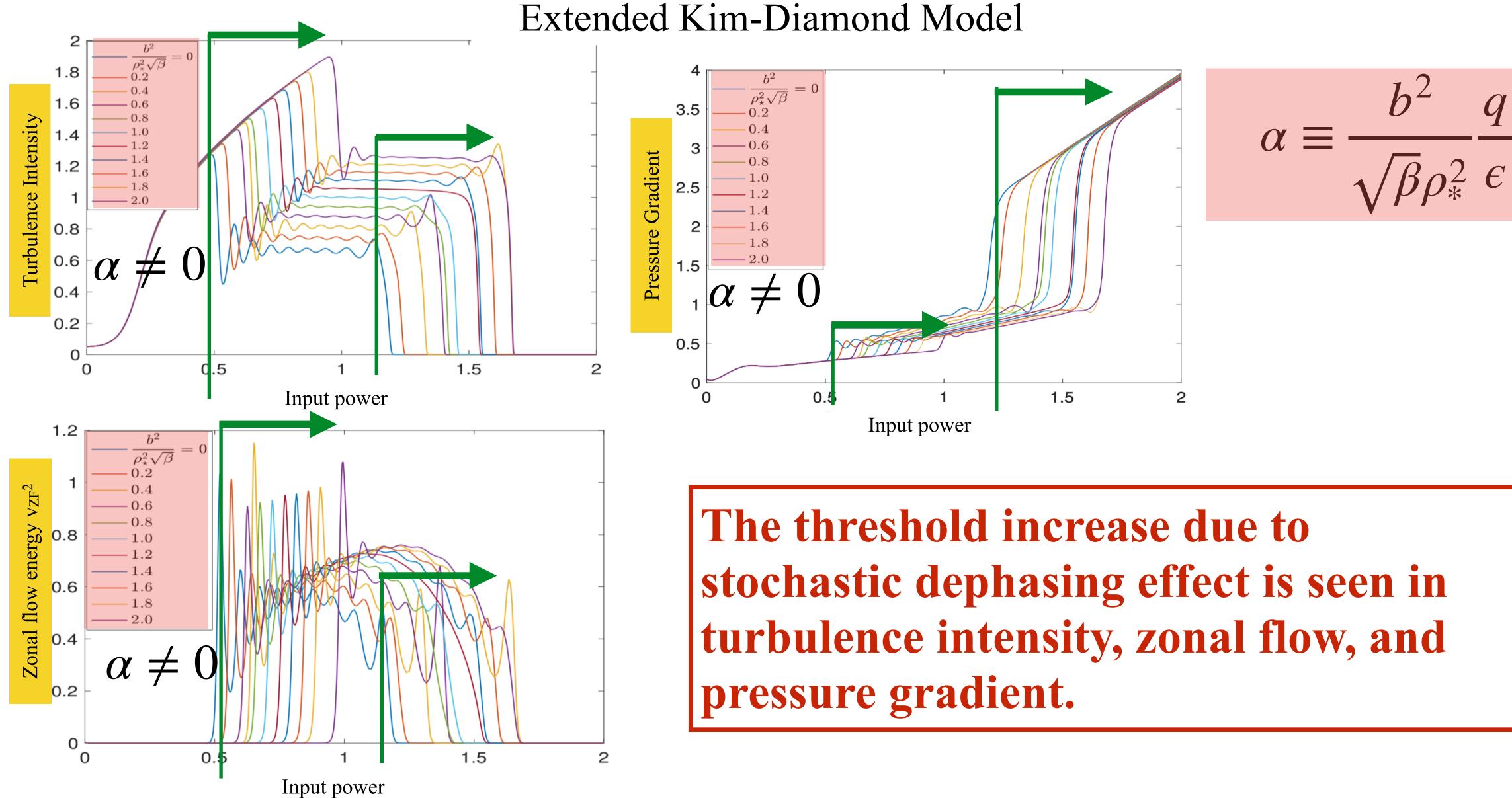


APS-DPP, Virtual Meeting (CST), November 09th 2020

1

 $\alpha \equiv \frac{-}{\sqrt{\beta}\rho_*^2} \frac{-}{\epsilon}$

9

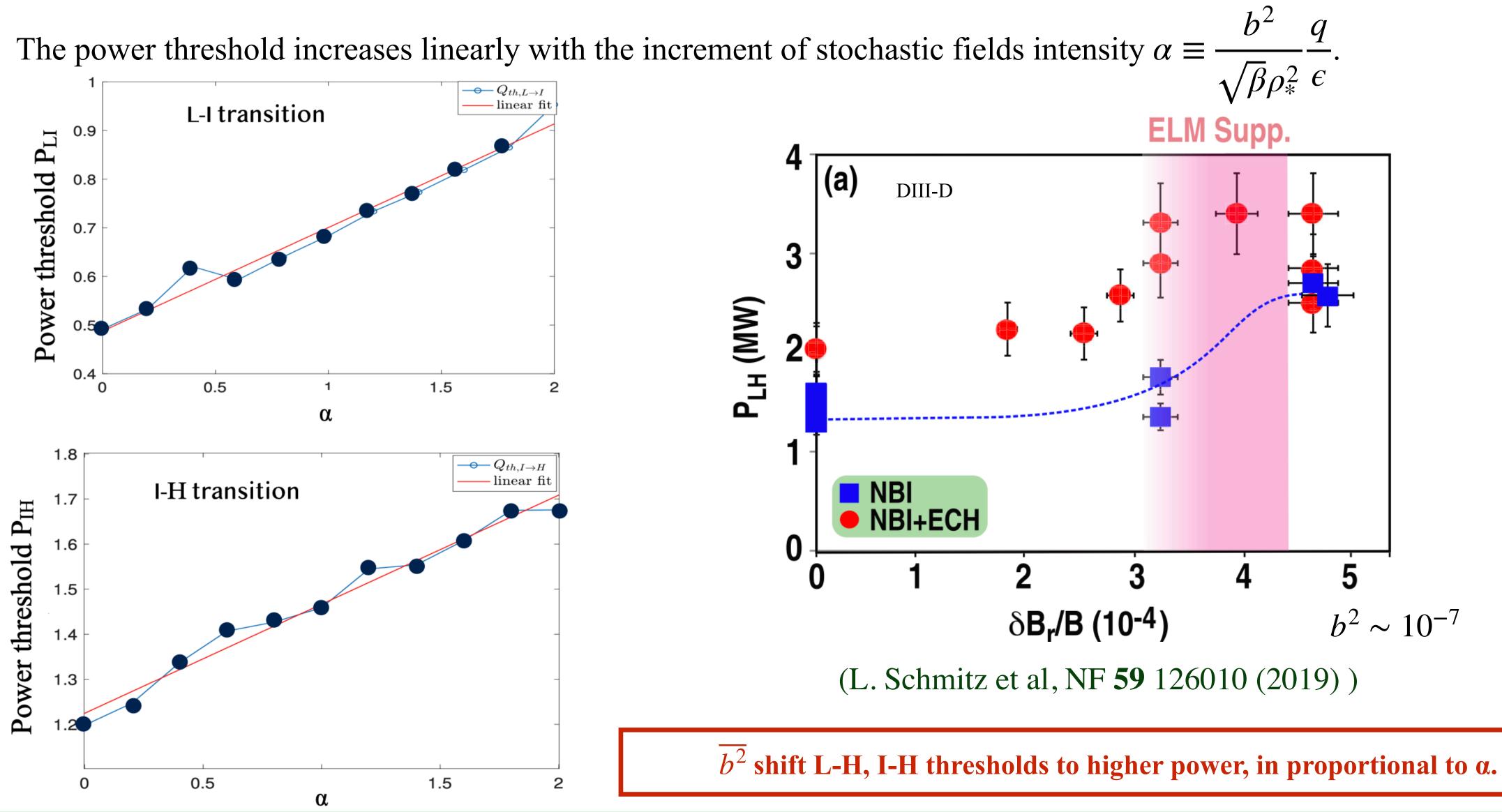


Results

10

Results— Transitions in DIII-D

Increment of Power threshold:

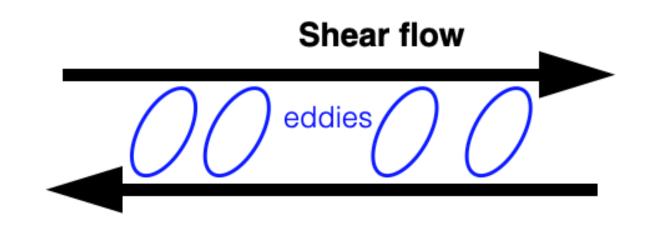


APS-DPP, Virtual Meeting (CST), November 09th 2020

11

What we have learned:

Dephasing effect caused by stochastic fields quenches Reynolds stress.

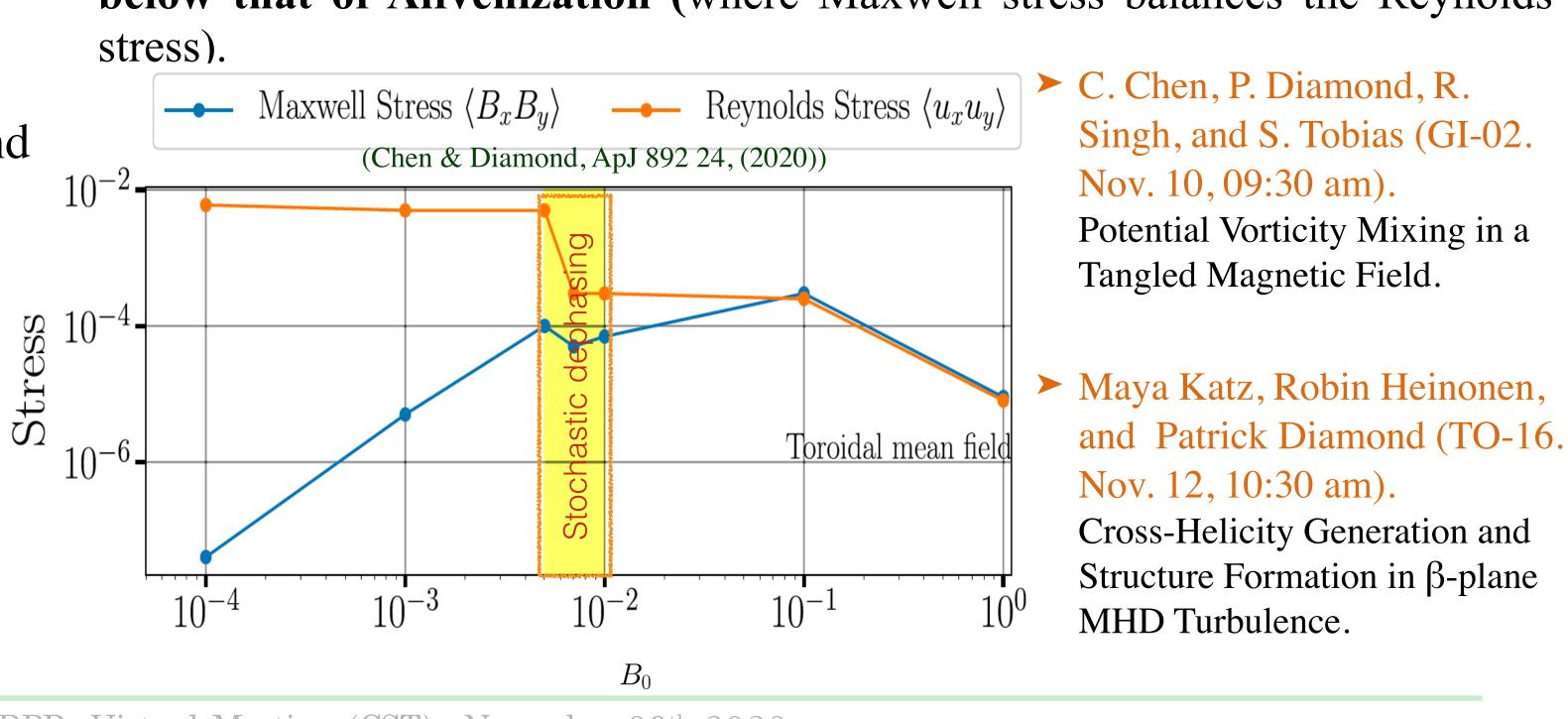


Message for experimentalists:

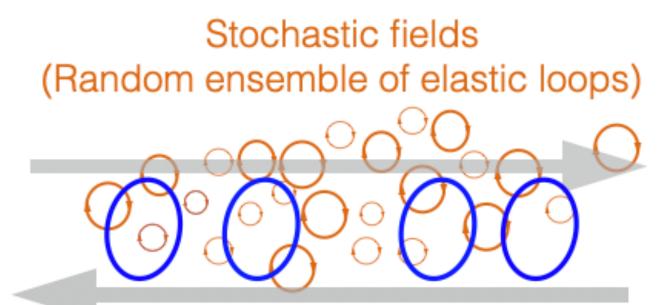
1. Reynolds stress is **dephased by** stochastic fields due to RMP, and power thresholds increases.

2. **Critical parameter** is

$$\alpha \equiv \frac{b^2}{\sqrt{\beta}\rho_*^2} \frac{q}{\epsilon}.$$



Conclusion and Discussion



Related Work:

Reynolds stress will undergo decoherence at levels of field intensities well below that of Alfvénization (where Maxwell stress balances the Reynolds

APS-DPP, Virtual Meeting (CST), November 09th 2020

