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The speaker

Our speaker, Maya, could not be here today because she is a cat



Solar tachocline

Thin, radially-sheared layer at base
of convection zone. Strongly
turbulent

Believed to be strongly involved in
the solar dynamo — “interface
dynamo” [Parker (1993)]:

1 differential rotation drags
poloidal field lines originating
from core, converts to strong
toroidal field (Ω-effect)

2 small-scale helical motion twists
toroidal field into poloidal field,
completing the loop (α-effect)

Strong stratification in tachocline
=⇒ quasi-2D



β-plane MHD model

2D magnetized incompressible turbulence in presence of
planetary vorticity (Coriolis force) gradient:
2Ω = (0, 0, f + βy)

Serves as model for tachocline

∂t∇2ψ + β∂xψ = {ψ,∇2ψ} − {A,∇2A}+ ν∇4φ+ f̃

∂tA = {ψ,A}+ η∇2A + g̃

v = (∂yψ,−∂xψ, 0), B = (∂yA,−∂xA, 0)

{a, b} = ∂xa∂yb − ∂ya∂xb
In this work, g̃ = 0



Effect of (weak) mean field

Tobias et al. (2007) assessed
impact of weak mean field
b0x̂ on zonal flow formation

Above a critical b0,
turbulence is “Alfvénized.”
Reynolds-Maxwell stress
〈∂xψ∂yψ〉 − 〈∂xA∂yA〉 ∼∑

k(|vk|2 − |Bk|2) small
=⇒ no ZF

η large enough =⇒
quenches magnetic
turbulence =⇒ critical b0
can be quite large



Cross-helicity

Previous analytical studies have neglected the effect of
cross-helicity 〈v · B〉 = −〈A∇2ψ〉. Often frozen at zero for
simplicity, invoking usual conservation law

However, Coriolis term explicitly breaks conservation:

∂t〈A∇2ψ〉 = −β〈vyA〉+ dissipation

In this work: seek to elucidate the role of cross-helicity in this
system. What is role in transport, ZF formation?



Stationary value

As a start, can obtain stationary CH value from a simple
calculation à la Zeldovich. Neglecting forcing:

1

2
∂t〈A2〉 = b0〈A∂xψ〉 − η〈(∇A)2〉

=⇒ 〈A∂xψ〉∞ =
η

b0
〈b̃2〉

∂t〈A∇2ψ〉 = −β〈A∂xψ〉+ (η + ν)〈∇2ψ∇2A〉

=⇒ 〈A∇2ψ〉∞ '
β〈b̃2〉`b`v
b0(1 + Pm)

where Pm ≡ ν
η

Note appearance of “magnetic Rhines” scale kMR =
√

β
b0

, defines

crossover of Rossby and Alfvén frequencies



Simulation results

Simulate β-plane
system with fixed
b0 = 2, η = ν = 0.01,
ε = 0.01, kf = 32 at
various β

Transition to Rossby
turb. begins around
kMR = kf (β = b0k

2
f )

Good agreement with
Zeldovich with ` = `f
(breaks down for large
β as `b < `f )

Transition presaged
by increasing mean
CH — suggests CH
plays a role?!
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Spectra I

Zeldovich calculation only yields large-scale mean — says
nothing about transport. We need to look at spectra

For tractability, assume Pm = 1, use weak wave turbulence
theory: resonant interactions between linear Rossby-Alfvén

modes ω± = 1
2(−ωβ ±

√
ω2
β + 4ω2

A) with ωβ = −kxβ/k2

Applicable when linear frequency is large compared to
nonlinear scrambling rate

To assess affect of β, assume large b0, after a long time turn
on β adiabatically



Spectra II

WWT spectral equations for arbitrary number of scalar fields φα (in eigenbasis)
can be derived straightforwardly:

∂tC
αα′
k =

∑
k′+k′′=k

∑
βγ

[
|Mαβγ

k,k′,k′′ |
2Cββk′ Cγγk′′ δ(ωαk − ωβk′ − ω

γ
k′′)δαα′

+ Mαβγ
k,k′,k′′M

βαγ
k′,k,−k′′C

αα′
k Cγγk′′

(
πδ(ωαk − ωβk′ − ω

γ
k′′)− iP 1

ωαk − ω
β
k′ − ω

γ
k′′

)

+ Mα′βγ∗
k,k′,k′′M

βα′γ∗
k′,k,−k′′C

αα′
k Cγγk′′

(
πδ(ωα

′
k − ωβk′ − ω

γ
k′′) + iP 1

ωα
′

k − ω
β
k′ − ω

γ
k′′

)]
.

where 〈φαk φα
′

k′ 〉 = Cαα
′
δ(k + k′)e−i(ωα

k −ω
α′
k )t , Mαβγ

kk′k′′ are symmetrized
nonlinear coupling coefficients. PV integrals vanish in case of real coupling
coefficients and a single field, recover Sagdeev-Galeev result.



Spectra III

Can compute exact WWT collision integrals for general b0, β
in principle by changing bases. In practice, very complicated

Instead, compute correction to stationary spectrum to first
order in β (in spirit of MF electrodynamics)

Elsässer basis convenient: write z± = v ± b,
〈z±k · z±k′〉 = E±k δ(k + k′), 〈z+k · z−k′〉 = Pkδ(k + k′)

In 2D MHD, asymptotic WWT spectra with no CH are flat
E+

k = E−k = C ,Pk = 0 [Tronko et al. (2013)]

How does finite β alter this spectrum?



Spectra IV

First-order result is (to leading order in 1/kmax—ultraviolet
cut-off)

E±k ' C

(
1± πβ

8b0kmax

k2y
k2x
δ(kx)

)
.

Elsässer imbalance equivalent to finite cross-helicity, so
leading-order effect of β is to induce CH at large parallel
lengthscales.

∆CH ∼ β〈E 〉/(∆k2x b0)— looks consistent (up to O(1)
factors) with Zeldovich calculation

But: Elsässer alignment Pk = 0 remains stable
=⇒ |vk|2 ' |bk|2. No impact on Maxwell-Reynolds
competition



What we’ve learned so far

Cross helicity is non-conserved in β-plane MHD

In presence of mean magnetic field, attains a finite stationary
value

At first order, effect of β on spectrum is to induce finite shift
in cross-helicity at large parallel lengthscales

May play role in transition from Alfvénic to Rossby turbulence



Next steps

Need to go to second order in β to assess role of shift in
transport, transition from Alfvénic to Rossby turbulence
Also: our result is problematically singular as kx → 0. Reflects
fact that ω → 0, WWT breaks down
Resolution: need to include strong turbulence/resonance
broadening effects. Replace πδ(∆ω)− iP/∆ω → 1/(iω + γ)
Use EDQNM damping rate γ = γNL + γA with nonlinear
scrambling effect

γNL ∝
(∫ k

0
dk ′ k ′2Ek ′

)1/2

and Alfvén effect

γA ∝ k

(∫ k

0
dk ′ EM

k ′

)1/2

.

Small scale RMS b-field relaxes triplet correlations in one
Alfvén time [Pouquet (1978)]



Thank you for your attention!

Figure APS-DPP audience member paying close attention to talk on tur-
bulence theory.


