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Preview

Turbulent transport impacts
confinement. How to predict?

In this talk: use deep supervised
learning to find simple model

As test of concept: apply to
well-trodden ground
(Hasegawa-Wakatani), and
compare to analytics

Recover existing theory, while
finding some new features Figure Artist’s conception of

machine learning applied to
the tokamak



Introduction Methods Results Discussion Extra slides

Hasegawa-Wakatani

Simplest realistic framework for understanding collisional drift
wave turbulence

dn

dt
= α(φ̃− ñ) + D∇2n

d∇2φ

dt
= α(φ̃− ñ) + µ∇4φ

d

dt
≡ ∂

∂t
+ (ẑ ×∇φ) · ∇

α ≡ k2‖Te/(n0ηΩie
2) “adiabaticity parameter,” measures

parallel electron response
Want theory for radial transport (1D reduction)
Averaging over symmetry directions (〈· · · 〉) yields

∂t〈n〉+ ∂xΓ = dissipation

∂t〈∇2φ〉 − ∂2xΠ = dissipation

where Γ = 〈ñṽx〉 (particle flux) and Π = 〈ṽx ṽy 〉 (poloidal
momentum flux or Reynolds stress)
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Feature selection

Seek a model that predicts local Γ,Π as function of local
zonal averages. How to choose parameters?

Exact symmetries useful: invariant under uniform shifts
n→ n + n0 and φ→ φ+ φ0, Galilean boosts in y{

φ → φ+ v0x

y → y − v0t

Thus cannot depend on 〈n〉, 〈φ〉, ∂x〈φ〉
Choose minimal set of parameters
N ′ = ∂x〈n〉,U = −∂2x 〈φ〉,U ′,U ′′, ε = 〈(ñ −∇φ̃)2〉
Close model by coupling with intensity evolution

∂tε+ 2ε(Γ− ∂xΠ)(N ′ + U ′) = −γε− γNLε2
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Deep learning

Now use deep supervised learning
to fit fluxes to choice of params

Locality → good scaling. Each
point in space and time treated on
equal footing!

Exploit 3 reflection symmetries
x → −x , y → −y and
φ→ −φ, n→ −n, x → −x and
φ→ −φ, n→ −n, y → −y for
data augmentation. Symmetries
enforce, e.g. Γ→ −Γ under
N ′ → −N ′ in absence of flow

Each simulation thus yields 4NtNx

data points

Figure Schematic of deep
learning method
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Deep neural networks 101

Method of approximating
arbitrary nonlinear functions.
We use simplest form:
“multi-layer perceptron.”

Inputs x repeatedly transformed
in each layer:

x
(n+1)
j = σ(W

(n)
ij x

(n)
i + b

(n)
j )

where σ is a nonlinear function
(“activation”)

Weights W(n), biases b are
“trained” using SGD

Bottom line: simply a proven
choice of multivariate, fully
nonlinear, nonparametric
regression

Figure Diagram of MLP, shame-
lessly stolen from the internet
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Particle flux

DNN learns a model roughly of the form (for small gradients)

Γ ' −DnεN
′ + DUεU

′.

Large gradients: fluxes saturate. Diffusive term ∝ N ′ well-known,
tends relax driving gradient. Second (non-diffusive) term is not so
well-known, driven by vorticity gradient!

Figure Particle flux at constant ε as function of density and vorticity gra-
dients
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Derivation of nondiffusive term

Analytic treatment in α→∞ limit reproduces nondiffusive term. Need
include frequency shift due to convection of mean vorticity. In QLT:

ωk =
ky

1 + k2
(N ′ + U ′) + O(α−2)

γk =
k2
y

α(1 + k2)3
(N ′ + U ′)(k2N ′ − U ′) + O(α−2)

Γ = Re
∑
k

−iky ñkφ̃∗k

=
∑
k

−k2
y ∂xn(γk + α) + αkyωr ,k

ω2
r ,k + (γk + α)2

|φ̃k|2

=
1

α

∑
k

− k2
y

1 + k2

(
k2N ′ − U ′

)
|φ̃k|2 + O(α−2)

Using ansatz spectrum in this expression yields good agreement with
DNN



Introduction Methods Results Discussion Extra slides

Implications of nondiffusive term

Neglected in literature, but
coupling same order of magnitude
(∼ 0.5) that of usual N ′ term. Γ
dependence on shear U
comparatively weak!

Consequence: ZF can induce
“staircase” pattern on profile. If
Vy = V0 sin(qx), U ′ term will
contribute

∂t〈n〉 ∼ −
k2y q

3V0〈ε〉
α(1 + k2)3

cos(qx)

Previous explanation for staircase is
some form of bistability. This
mechanism is distinct

Figure Cartoon indicating
how ZF may induce profile
staircase via nondiffusive
flux/pinch
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Reynolds stress

Learns model of Cahn-Hilliard form

Π ∼ ε(−χ1U + χ3U
3 − χ4U

′′)

with χ1, χ3, χ4 > 0

∂tU = ∂2xΠ ∼ χ1εk
2U. Zonal flow

generation by negative viscosity
εχ1

Large U stabilized by nonlinearity
∝ U3, small scales by
hyperviscosity χ4 (not shown)

Figure Reynolds stress as
function of U, at fixed U ′,U ′′
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Reynolds stress: gradient corrections

How does Reynolds stress
depend on N ′,U ′? Not easy
to calculate

Learned dependence
well-described by overall
suppression factor
f ' 1/(1 + 0.04(N ′ + 4U ′)2),
i.e. gradients generally
reduce Reynolds stress

Found to be crucial for
stability of learned model.
Kinks tend to form in flow in
its absence

Figure Reynolds stress dependence on
gradients at fixed ε,U,U ′′
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Reduced 1-D model

Now have 3 coupled, one-dimensional mean field equations
describing nonlinear turbulent dynamics. Construct expressions for
Γ,Π capturing NN behavior, and numerically solve
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Conclusions

Have verified, directly from simulation, analytic models for
spontaneous ZF. CH is “best” local 1D model

Identified significant vorticity-gradient-driven particle flux
which may induce layering. Shearing effects weak

Also find higher-order corrections which are harder to
anticipate analytically (e.g. effect of shear on Γ, gradients on
Π)

Note: 1D reduction breaks down for strong turbulence due to
vortex interactions, α . 1 due to breakdown of ZF

In future: generalize, apply to more complicated systems?
But: need sufficient data. Potentially serious issue for
application to GK, experiment
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Compare to zonally averaged 2D DNS

1D resembles simplified version of DNS. One key difference: 3-field
model equivalent to taking stationary “best-fit” spectrum. Some
system memory lost
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Particle flux dependence on shear

Shear U is usually invoked as
directly involved in suppression of
turbulent transport

We find that direct dependence on
U is comparatively weak

Suppression is . 10% for typical
values of U

Conclusion: for HW particle
transport in 2D model, shear
gradient more important than shear
itself!
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Figure U level curves of parti-
cle flux as function of N ′, at
fixed U ′U ′′, ε
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Reynolds stress: intensity scaling

Whereas learned Γ is
essentially ∝ ε, Π scaling
with ε is nontrivial

Learned exponent is 1 for
small intensity, close to zero
for large intensity

Jibes with intuition from
strong turbulence theory Figure Reynolds stress dependence on

gradients at fixed ε,U,U ′′
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Comparison to theory (diffusive term)

Compare DNN result to theory result using spectrum centered at
most unstable k for U ′ = 0

εk =
〈ε〉

2π2∆kx∆ky

1

1 + k2
x /∆k2

x

(
1

1 + (ky −
√

2)2/∆k2
y

+
1

1 + (ky +
√

2)2/∆k2
y

)
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Figure Curves (at fixed U = U ′ =
U ′′ = 0, and various ε) of Γ vs density
gradient from DNN
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Figure Corresponding curves from
QLT+ansatz with ∆kx = ∆ky = 0.8
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Comparison to theory (nondiffusive term)
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Figure Curves (at fixed N ′ = U =
U ′′ = 0, and various ε) of Γ vs U’
from DNN
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Figure Corresponding curves from
QLT+ansatz with ∆kx = ∆ky = 0.8

Good agreement when N ′,U ′ are small!
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Reynolds stress: hyperviscosity

Hyperviscous term, crucial for stability, has small coefficient.
Sensitive test of method
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Figure U ′′ level curves of Reynolds
stress as function of U, at fixed
ε,U ′,N ′

Figure ε level curves of Reynolds
stress as function of U ′′, at fixed
U,U ′,N ′′



Introduction Methods Results Discussion Extra slides

Ideas for future

No 1D reduction. Replace zonal average with 2D window
average

Relax locality assumption. Can include time derivatives as
inputs, or extend to fully non-Markovian and/or spatially
nonlocal models. Tradeoff is more predictive power at the
expense of simplicity/interpretability

This work essentially a second-order moment closure.
Higher-order moments? Turbulence spreading? (interesting to
note: applying this method to PE flux didn’t work!)
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