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Density limit basics

Discharge terminates when line mtegrated density exceeds a
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Why care ? Fusion power « n?.
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Not a dimensionless number
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Still begging the origin ot /, scaling !?

Recent experiments and theory suggest that density limit
phenomenology emerge from the collapse of edge shear layer

leading to increased turbulence, transport and edge cooling,
et seq. [Hong etal NF 2018, Hajjar et al PoP 2018]
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Recent experlments

e Long range correlations (LRC)
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Experimental verification of the importance of

collisionality for large-scale structure formation in
TJ-K.

Coupling between density and potential decreases
with increasing C — hinders zonal flow drive.

Zonal flow contribution to the total turbulent
spectrum P,./P, ., decreases with collisionality C.



Recent experiments
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o Joint pdf of V, and ¥, for 3 densities asn — n,atr —r,, = — I cm

e Pdf becomes more symmetric asn — n, !

° \7r and 179 are less correlated when n — n
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Theory of shear layer collapse

o Clearly, shear layer collapse, increased turbulence and transport as n — n, !

e Note that f in these experiments too small for conventional Resistive Ballooning Mode
explanation [Drake and Rogers 1998 ].

» What physics governs the shear layer collapse as n — n, ?

e Plasma response calculations for Hasegawa - Wakatani :- [Hajjar, Diamond, Malkov 2018]
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regime.

e Weak zonal flow production for a << 1 — weak regulation of turbulence and enhancement of
particle transport and turbulence.



What about current scaling ?

e How does shear layer collapse scenario connect to Greenwald scaling
7~ 19
n, ~ I

e Key physics: zonal flow drive 1s “screened” by neoclassical dielectric

[Rosenbluth - Hinton 1998].  gmission from
/ polarization interaction
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- Poloidal gyro-radius p, emerges as screening length !

- Effective ZF inertia | as Ip T —ZF strength increases with Ip

e But edge region 1s most likely in Plateau regime.[T Long et al NF 2019]

e Need revisit RH screening calculation !



R-H response 1n different collisionality regimes
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- No [, scaling 1n P-S regime. Effective inertial mmimum in P-S. @

- The often quoted factor (1 + 2q2) applies to mass flow and NOT E X B
flow.




Modulational growth and zonal noise increases with /,

e Edge region 1s most likely in Plateau regime.

e Laplace transformed gyrokinetic quasi neutrality: &(p) V2¢(p) = 4zp(p) yields zonal vorticity equation
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- Modulational growth stronger in adiabatic regime than that in hydro regime.

5 More on ZCC and
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- Stronger zonal flow seeding with increasing current !



Z.onal noise crucial to teedback
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With noise: Turbulence energy

* Both zonal and turbulence co-exist at any growth rate: - No threshold in growth
rate for zonal flow excitation.

e Zonal flow energy is related to turbulence energy as E, = pe?/ (yd - 08) T with [,

* Turbulence energy never hits the modulational instability threshold, absent noise!

e Turbulence energy ¥ and zonal flow energy *:- Noise feeds energy into zonal flow!



Vorticity gradient increases with

/

P

* Vorticity gradient reduces growth rate and has strong feedback on turbulence. [Heinonen &

Diamond 2020]
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* In absence of external source/sink, steady state vorticity gradient:
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- Stronger vorticity gradient with increasing current !

e Particle flux I, remains independent of neoclassical polarization.

_ yet a current dependence through ky ~ — ~ I, possible, ', ~ —.
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= This 1s a favorable trend for Greenwald scaling .
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Conclusions

2.2
Q).
Neoclassical zonal flow screening, with polarization e(p) = l;l 23 and
W= €

screening length p,. = \/ psz + Sfpez ~ L 1/2,09 , 1s a natural mechanism for

emergence of /, scaling of Greenwald density limit. The current scaling due to

neoclassical screening survives in the 1ion plateau regime, characteristics of edge
plasmas. & = 1 for Banana, & < 1 for Plateau and £ = O for P-S regime.

Modulational growth ~ I]? and zonal noise ~ I; . Stronger flow seeding with
Increasing current.

Mean vorticity gradient ~ Ig. Vorticity gradient regulates turbulence.

Large I, favors stronger zonal flow production and stronger feedback on
turbulence.

Finally, a 1d transport modeling including zonal intensity, turbulence intensity
and particle transport with explicit /, 1s needed to nail down emergence of

Greenwald scaling in shear layer collapse. [Future work]



