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Motivation

* Almost all theoretical models of zonal flow generation divide cleanly into:

1. Calculation of zonal flow dielectric or 2.Modulational stability calculations, which

screening response, with occasional consider response of a pre-existing gas of
mention of wavy component beat noise drift waves to infinitesimal test shears or
[RH 1998, HR 1999] profile corrugations, but ignore noise
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* What happens when noise meets modulation? Langevin equation with -ve
0
. q .
damping — v, B, = noise

Test shear

e Unstable system + noise gets (ricky. m——1-
A unified theory of zonal modes 1s needed.

 Need spectral closures, which treat incoherent noise emission and coherent

response on equal footing.
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Motivation

There are both zonal flows and density corrugations at the
simplest level of description of DW-ZFT.

Zonal flows result from the inverse cascade of kinetic energy
- this 1s well known. What about the density corrugations?

How are the zonal density and zonal flow correlated ? —
staircase”?

What are the implications of zonal noise on the feedback loop
dynamics?

How does zonal noise affect the dynamics of L-H transition?



Spectral evolution of zonal intensity and density corrugation
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Spectral evolution of zonal cross-correlation

From zonal vorticity and zonal density equation one can obtain NEW!
0 /o7 2 =2 T
— (Vi) — (u+D,) (ViVig) = (I, Vig) + (V.1 V,7)

e —>/onal correlations are determined by correlation of fluxes and profiles. Zonal
correlations are relevant to spatial structure of profile.

e Significant for layering or staircase structure - potential and density are aligned 1n staircase!

¢
Q: When do zonal density and zonal potential align? W\/\
n
From spectral closure calculations, in steady state \j\/\/\

(r) (r) :
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Where 51(,? = 11y, + {1;= non-lin zonal damping rate + non-lin corrugation damping rate

e —>7onal density and potential are correlated (anti-correlated) when the modulational
growth of zonal flow 1s more (less) than modulational damping of corrugations.
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Summary of zonal flow and corrugations interaction
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Zonal shear straining of ! . Stochastic refraction straining |
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' : Drives zonal shear using DW energy
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. Density advection beat | Advection beats due to non-
noise adiabatic electrons.

Non-local forward transfer in k
. +ve diffusivity, turbulent mixing |
' weak for a>>1 |

..............................................................................................................................................................................................................................
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response corrugations
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Feedback loop with nonlinear zonal noise

How does zonal noise affect the feedback loops?
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Turbulence energy € evolves as
Induced diffusion
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Zonal flow energy E, evolves as

3 Modulational growth
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Without noise:

e Threshold in growth rate y > ny,/c for appearance of stable zonal flows. Turbulence
energy increases as y/n below the threshold, until it locks at y,/o, at the threshold.

With noise:

e Both zonal flow and turbulence co-exist at any growth rate: - No threshold in growth rate
for zonal flow excitation.

e Zonal tflow energy i1s related to turbulence energy as E,, = pe?l (yd — 08).

e Turbulence energy never hits the modulational instability threshold, absent noise!
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Noise effect on L - H transition and L-H-L hysteresis
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Conclusions |

We presented a unified theory of zonal mode dynamics. Derived a unified set of

spectral equations, encompassing nonlinear response, polarization and advection
beat noise.

New theoretical results:

e Vorticity flux correlations drive zonal flow noise. Likewise, density flux
correlations drive corrugation noise.

 While effective viscosity for zonal flows can go negative, the zonal diffusivity

remains positive for a¢ > 1. Bi-directional transfer- KE energy to large scale
and internal energy to small scales.

e /. = <r_z Vg > determine the phasing of density corrugations and shear
layers. Z..>0 when modulational growth of zonal shear exceeds the damping
of density corrugations.

ch > 0 ch <0

n
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Conclusions 11

Implications:

e Polarization beat noise and modulational effects are comparable intrinsically (both
driven by Reynolds stress!).

- Expands the range of zonal flow activity relative to that predicted by
modulational instability calculations.

- Increases branching ratio of zonal flow energy to turbulence energy.

e [nteraction of zonal noise and modulation has significant effect on feedback processes
and thus the global characteristics of DW-ZFT.

- Regarding the L-H transition: Noise eliminates the threshold for zonal flow
excitation, and so expands the predicted range of the intermediate phase,
drastically reduces the turbulence overshoot.

- Answers: i1f zonal flows are the L-H trigger, then what triggers the trigger?
— Polarization beat noise triggers the trigger!

- The energy transfer to zonal flow 1s accelerated which lowers the threshold
for L-H transition.
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For experimentalists (Analog+Digital)

e Test the spectral transfer mechanism for corrugations — Bicoherence,
etc.

e The zonal cross-correlation has not been measured and its relation to
staircase structure has not been tested. Do so !

e The improved L-H transition model presented 1n this paper 1s testable.
In particular, the weak overshoot, expanded domain of zonal mode
activity, absence of a modulation instability and the level of residual H
mode turbulence are all more consistent with experimental results than
the results of earlier reduced models. Quantitative study?

N B: Well known that zonal flows appear before the I-phase. = Noise !
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Future directions

e Deeper understanding of zonal flow generation :

- Does shearing occurs in an intermittent and bursty avalanche - like feedback events?
PDFs?

- Does a critical spectral slope self-organize from these interactions?
e Understanding interaction of corrugations with avalanches:

- Corrugations in state of high Z .. sustained as localized transport barriers, staircases etc.
localized by accompanying shear flow?

- Corrugations in state of low Z_. likely to overturn, and drive avalanches, as in running
sandpile?

- Relevant for TEM turbulence. Does the density gradient state consist of standing
corrugations , running avalanches or mixtures thereof ?

e Theory should better understand the effect of noise on staircase, which have been considered
only in context of Mean Field theory.

e Relation between Z.. and the staircase structure: Does the physics of Z.. set the relative
positions of corrugations and shear layer? Is there a single Z_. for staircase state ? Or a band ?
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