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Introduction

Three projects on plasma turbulence. Unifying
feature: interaction of turbulent microscales
=⇒ meso-/macro-scale transport

1 Use machine learning to find reduced
model for particle/momentum transport
in drift-wave turbulence

2 New model for turbulence spreading and
avalanching

3 Study relationship between cross-helicity
and momentum transport in β-plane
MHD
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Background: drift wave turbulence
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Tokamak physics basics

Toroidal fusion device that uses strong
helical magnetic field to confine
plasma

Key challenge:
〈n〉〈T 〉τE > 1021 keV s/m3 (Lawson
criterion) → maximize confinement
time τE → minimize losses due to
transport

But: n,T gradients → instabilities →
turbulence → anomalous transport.
How to understand?
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Drift waves

Drift wave turbulence is useful
paradigm for turbulence due to
gradient instabilities (universal)

Drift wave: collective oscillations
associated with ion/electron
diamagnetic drifts, which form in
response to temperature/density
gradients vd = 1/(qnB2)∇p × B

Structure: cell convecting around ñ at
vE = −c/B2∇φ̃× B, traveling at vd

force balance q(E + v⊥ × B) = ∇p/n
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Drift wave turbulence

ñ coupled tightly to φ̃ by fast parallel
“Boltzmann” electron response (from
force balance nee∂z φ̃ = Te∂zne)
ne ' n0 exp(eφ̃/Te)→ ñ/n0 ' eφ̃/Te

Collisions and resonances → phase
shift ñk/n0 ' eφ̃k/Te(1− iδk)→
instability!

Turbulence results when many drift
modes unstable, nonlin. interaction
becomes important
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Zonal flows

Special modes with m = n = 0, ω ' 0.
Turbulence-driven, sheared poloidal
flows

In certain regime, spontaneously build
up via secondary instability (multiscale
interaction)

No radial flow → do not cause harmful
transport. “benign” free energy
repository

ZF shear stretches turbulent eddies →
regulate turbulence

Extremely important for confinement
problem: zonal flows induce L-H
transition

Figure ZFs also important
in geophysical flows
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Hasegawa-Wakatani model

Simplest realistic framework for understanding collisional drift
wave/zonal flow system.

Coupled dynamics for potential φ, electron density n
(dimensionless units):

dn

dt
= α(φ− n) + D∇2n

d∇2φ

dt
= α(φ− n) + µ∇4φ

d

dt
≡ ∂

∂t
+ (ẑ ×∇φ) · ∇

α ≡ k2
‖Te/(n0ηΩie

2) “adiabaticity parameter,” measures
parallel electron response

φ is stream function for flow v
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Deep learning project
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Motivation: mean-field Hasegawa-Wakatani

Want theory for radial transport

Averaging over symmetry directions (〈· · · 〉) yields

∂t〈n〉+ ∂x Γ = dissipation

∂t〈∇2φ〉 − ∂2
x Π = dissipation

∂tε+ 2ε(Γ− ∂x Π)(∂x〈n〉+ ∂3
x 〈φ〉) = −γε− γNLε

2

where Γ = 〈ñṽx〉 (particle flux) and Π = 〈ṽx ṽy 〉 (poloidal
momentum flux or “Reynolds stress”).

ε = 〈(ñ −∇2φ̃)2〉 is turbulent potential enstrophy. Proxy for
turbulence intensity

Seek mean-field closure: Γ, Π as function of 〈n〉, 〈φ〉, ε, radial
derivatives. Idea: use supervised learning. Can we do better
than simple QLT?



Background: drift wave turbulence Deep learning project Spreading project Beta-plane MHD project Extra slides

Feature selection: what do we want our model to look like?

Assume a local model: local mean fields (in space and time)
suffice to specify the local fluxes

HW invariant under uniform shifts n→ n + n0 and
φ→ φ+ φ0 =⇒ eliminate dependence on 〈n〉, 〈φ〉
Invariant under poloidal boosts{

φ → φ+ v0x

y → y − v0t

→ eliminates dependence on ZF speed Vy = −∂x〈φ〉.
Confine ourselves to adiabatic regime so ñ ∼ φ̃ =⇒ ε
reasonably suffices to specify intensity

Anticipate that hyperviscosity necessary to regularize ZF, so
need derivatives up to V ′′′y
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Methods

Thus choose minimal set of inputs
N ′,U,U ′,U ′′, ε (N = 〈n〉,U = V ′y )

32 simulations of 2D HW, with
α = 2, various initial conditions for
mean density, flow

Postprocess to compute inputs, Γ,
Π. Key: locality means each point
in space, time treated on equal
footing → lots of data per
simulation

Train neural network to output
fluxes as functions of inputs

Exploit/enforce 3 reflection
symmetries via data augmentation

Figure Schematic of deep
learning method
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Neural networks 101

Bottom line: simply a proven
form of nonparametric,
multivariate regression

Use simplest form (multilayer
perceptron)

Inputs x repeatedly transformed

x
(n+1)
j = σ(W

(n)
ij x

(n)
i + bj )

where σ is a nonlinear function
(“activation”)

Weights W(n), biases b are
“trained” using sophisticated
algorithm to minimize loss
function which measures
deviation from labeled samples

Figure Diagram of MLP, shame-
lessly stolen from the internet
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Particle flux results

DNN learns a model roughly of the form (for small gradients)

Γ ' −DnεN
′ + DUεU

′

Diffusive term ∝ N ′ is well-known, tends relax driving gradient.
Second (non-diffusive) term not well-known, driven by vorticity
gradient!

Figure Particle flux at constant ε as function of density and vorticity gra-
dients
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Derivation of nondiffusive term

α→∞ calculation reproduces nondiffusive term. Need include
frequency shift due to ZF! (quasilinear treatment, i.e. flux assumed
due to coherent unstable drift waves)

ωk =
ky

1 + k2
(N ′ + U ′) + O(α−2)

γk =
k2

y

α(1 + k2)3
(N ′ + U ′)(k2N ′ − U ′) + O(α−2)

Γ = Re
∑
k

−iky ñkφ̃
∗
k

=
∑
k

−k2
y ∂xn(γk + α) + αkyωr ,k

ω2
r ,k + (γk + α)2

|φ̃k|2

=
1

α

∑
k

−
k2

y

1 + k2

(
k2N ′ − U ′

)
|φ̃k|2 + O(α−2)
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Comparison to theory (diffusive term)

Compare DNN result to theory result using spectrum centered at
most unstable k for U ′ = 0

εk =
〈ε〉

2π2∆kx ∆ky

1

1 + k2
x /∆k2

x

(
1

1 + (ky −
√

2)2/∆k2
y

+
1

1 + (ky +
√

2)2/∆k2
y

)
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Figure Curves (at fixed U = U ′ =
U ′′ = 0, and various ε) of Γ vs density
gradient from DNN
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Figure Corresponding curves from
QLT+ansatz with ∆kx = ∆ky = 0.8
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Comparison to theory (nondiffusive term)
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Figure Curves (at fixed N ′ = U =
U ′′ = 0, and various ε) of Γ vs U’
from DNN
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Figure Corresponding curves from
QLT+ansatz with ∆kx = ∆ky = 0.8

Good agreement when ∂xn, ∂xU are small!
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Implications of nondiffusive term

Neglected in literature, but
coupling same order of magnitude
(∼ 0.5) that of usual N ′ term.
Stronger than coupling to shear!

Consequence: ZF can induce
“staircase” pattern on profile. If
Vy = V0 sin(qx), U ′ term will
contribute

∂t〈n〉 ∼ −
k2

y q
3V0〈ε〉

α(1 + k2)3
cos(qx)

Previous explanation for staircase is
some form of bistability. This
mechanism is distinct.

Figure Cartoon indicating
how ZF may induce profile
staircase via nondiffusive
flux/pinch
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Reynolds stress results

Learns model of (Cahn-Hilliard)
form (leading order)

Π = ε(−χ1U + χ3U
3 − χ4∂

2
xU)

with χ1, χ3, χ4 > 0

∂tU = ∂2
x Π ∼ χ1εk

2U. Zonal flow
generation by negative viscosity
εχ1

Large U stabilized by nonlinearity
∝ U3, small scales by
hyperviscosity χ4 (not shown)

Agrees with previous theoretical
models for zonal flow generation

Recovery of hyperviscous is
sensitive test of method

Figure Reynolds stress as
function of U, at fixed U ′,U ′′
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Reynolds stress: gradient corrections

How does Reynolds stress
depend on N ′,U ′? Not easy
to calculate

Learned dependence
well-described by overall
suppression factor
f ' 1/(1 + 0.04(N ′+ 4U ′)2),
i.e. gradients generally
reduce Reynolds stress

Found to be crucial for
stability of learned model.
Kinks tend to form in flow in
its absence

Figure Reynolds stress dependence on
gradients at fixed ε,U,U ′′
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Numerical solution of reduced 1-D model
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deep learning results, solve using

implicit scheme
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Conclusions

ML recovers CH theory for ZF generation, while finding
nontrivial gradient corrections

Highlights rarely-discussed coupling of profile to flow, which
induces profile layering

Were confined to single adiabatic α, N ′ . 3. Otherwise,
vortex interactions → 1D model doesn’t make sense

Test of concept for more complex applications. Geometry?
3D? T , B coupling?

May need to relax some assumptions: multiple intensities?
Spatial and/or temporal nonlocality?

Tradeoff b/t complexity and interpretability

Spreading???



Background: drift wave turbulence Deep learning project Spreading project Beta-plane MHD project Extra slides

Spreading project
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Introduction

Turbulence spreading = radial self-propagation of turbulence.
Important in DWT

Nonlinear coupling of microscales to mesoscopic envelope
scale. Closure of E × B with envelope:

∂tεk ∼ −
∑
k′

(k·k′×ẑ)2|φ̃k′ |2R(k, k′)Ik →
∂

∂x
Dx (Ik)

∂

∂x
Ik−kk : DIk

Dx =
∑
k′

k ′2y |φk′ |2R(k, k′)

Decouples flux-gradient relation: local turbulence intensity
now depends on global properties of the profiles

Fluctuations in linearly stable regions!
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Depiction of spreading

Figure Spatiotemporal evolution of flux-surface-averaged turbulence inten-
sity in toroidal GK simulation. Linearly unstable region is 0.42 < r < 0.76.
From [Wang et al., 2006]
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Avalanches

Fast, intermittent transport events.
Can account for a large percentage
of total flux!

Initially localized fluctuation
cascades through neighboring cells
via gradient coupling. Cell
microscales couple with mesoscopic
avalanche scale

Associated with profile relaxation,
SOC

Closely related to spreading: both
result in fast, mesoscopic turb front
propagation. Unified model?

Figure Heat flux spectrum
from GK simulation showing
1/f scaling
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Fisher model

Conventional wisdom for spreading is Fisher-type equation for
turbulence intensity:

∂t I = γ0I︸︷︷︸
local lin.

growth/decay

− γnl I
2︸︷︷︸

local nonlin.
coupling to
dissipation

+ ∂x (D0I∂x I )︸ ︷︷ ︸
nonlin. diffusion of turb. energy

For γ0 > 0, dynamics characterized by traveling fronts
connecting unstable “laminar root” I = 0 and saturated

“turbulent root” I = γ0/γnl with speed c =
√

D0γ2
0

2γnl
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Depiction of Fisher evolution

Figure Evolution of traveling turbulence front in Fisher model. From
[Gürcan and Diamond, 2006]
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Problems with Fisher

Weak spreading into stable zone
(few ∆c ). Dubiously consistent
with experiment?

If unstable, why didn’t noise
already excite the whole system to
turbulence?

Unless ∆x2γnl � D0, physical
fronts require bistability à la
[Pomeau, 1986]

Growing body of evidence for
bistable MF turbulence e.g.
[Biskamp and Walter, 1985,
Drake et al., 1995,
Barnes et al., 2011,
van Wyk et al., 2016]

Figure Experiment by
Nazikian et al 2005 clearly
showing fluctuations in stable
zone
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Bistable model

Propose phenomenological model of form

∂t I = γ1I + γ2I
2 − γ3I

3 + ∂x (D(I )∂x I )

take D(I ) = D0I

New physics: nonlinear turbulence drive ∝ I 2. Can sustain
sufficiently large fluctuations even when linearly damped

Bistable in weak damping regime

Estimate γ1 ∼ εω∗, γ2,3 ∼ ω∗, D0 ∼ χGB
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Model analysis I

∂t I = γ1I + γ2I
2 − γ3I

3 + ∂x (D(I )∂x I )

Qualitatively similar to Fisher
EXCEPT in weak damping case
γ1 < 0 and γ2

2 > 4|γ1|γ3

Can then transform to
Zel’dovich/Nagumo equation

∂t I = f (I ) + ∂x (DI∂x I )

f (I ) ≡ γI (I − α)(1− I )

where α ≡ I−/I+, γ ≡ I 2
+γ3, D ≡

I+D0, I± ≡ (γ2 ±
√
γ2

2 − 4|γ1|γ3)/2γ3

α 1
I

f (I)
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Model analysis II

Unlike Fisher, traveling fronts admitted in weak damping case!

Propagation speed c ∼ √Dγ (depends on α), characteristic
scale ` ∼

√
D/γ

“Maxwell construction” for speed

c

∫ ∞
−∞

D(I (z))I ′(z)2 dz =

∫ 1

0
D(I )f (I ) dI

z = x − ct

Thus turbulence spreads if α < α∗, recedes if α > α∗. Also
corresponds to (meta)stability of fixed points (Lyapunov
functional)
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Penetration into stable zone

Fisher model: evanescent penetration, depth ` ∼ ρs

Our model: new front with reduced speed/amplitude forms in
second region if weakly damped (i.e. γd is small enough that
α < α∗)

Hence: can have ballistic propagation even in stable zone!
Much stronger penetration, delocalization

x

0

I
+
'

I
+

I

1
>0

1
<0

x

0

I
+
'

I
+

I

1
>0

1
<0



Background: drift wave turbulence Deep learning project Spreading project Beta-plane MHD project Extra slides

Penetration into stable zone II

Figure Spreading into stable zone in GK simulation with magnetic shear
[Yi et al., 2014]. Ballistic propagation???
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Avalanche threshold I

In contrast to Fisher, sufficiently large localized puff of
turbulence will grow into front and spread. Suggestive of an
avalanche triggered by initial seed

How to determine threshold?
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1

Two puffs differing only in spatial size are initialized; one grows
and spreads, other collapses
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Avalanche threshold II

Obviously puff amplitude must exceed
I0 = α or else γeff = (I −α)(1− I ) < 0

Consider “cap” of puff (part exceeding
I = α)

Size threshold governed by
competition between diffusion of
turbulence out of cap and total
nonlinear growth in cap

Sets scale
√
D/γ. Can derive

Lmin ∼ (I0 − α)−1/2

x

I

I=

I=I
0

x0-x0

cap
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Avalanche threshold: analytical vs. simulation
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Figure Numerical result for threshold at α = 0.3 for three types of initial
condition (Gaussian (I1), Lorentzian (I2), parabola (I3)), compared with
analytical estimate
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Bistable model: conclusions

Bistable model rectifies issues with Fisher, is supported by
evidence for subcritical turbulence

Provides simple framework for understanding avalanching:
local, intermittent exceedance of nonlinear instability by
turbulent puffs. Threshold weak near marginal → triggered by
noise?

Key testable predictions: ballistic spreading into weakly
linearly damped regions, power-law threshold for spreading of
puffs
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Note on experiments

[Van Compernolle et al., 2015] created
avalanches in experiment by locally perturbing
plasma with source, measuring spatiotemporal
response

Suggest testing avalanche threshold in similar
manner. How intense/large must source be?

[Inagaki et al., 2013]: purported hysteresis
between fluctuation intensity and driving
gradient (no TB present)

But if bistable, why does intensity relax after
source turned off?

Suggest more experiments à la Inagaki to
investigate bistability

Figure Hysteresis be-
tween intensity and
gradient, flux and gra-
dient
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Beta-plane MHD project



Background: drift wave turbulence Deep learning project Spreading project Beta-plane MHD project Extra slides

Solar tachocline

Thin, radially-sheared layer at base
of convection zone. Strongly
turbulent

Believed to be strongly involved in
the solar dynamo

Home to Ω-effect: shear drags
poloidal field lines originating from
core, converts to strong toroidal
field

Momentum transport crucial to
problem of why tachocline exists.
Friction or anti-friction?
[Spiegel and Zahn, 1992,
Gough and McIntyre, 1998]
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β-plane MHD model

Strong stratification in tachocline =⇒ quasi-2D

2D magnetized incompressible turbulence in presence of
planetary vorticity (Coriolis force) gradient:
2Ω = (0, 0, f + βy)

∂t∇2ψ + β∂xψ = {ψ,∇2ψ} − {A,∇2A}+ ν∇4φ+ f̃

∂tA = {ψ,A}+ η∇2A

v = (∂yψ,−∂xψ, 0), B = (∂yA,−∂xA, 0)

{a, b} = ∂xa∂yb − ∂ya∂xb

Note similarity to HW: β plays the role of ∂x〈n〉
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Effect of (weak) mean field

Tobias et al. (2007) assessed
impact of weak mean field
b0x̂ on zonal flow formation

Above a critical b0,
turbulence is “Alfvénized.”
Reynolds-Maxwell stress
〈∂xψ∂yψ〉 − 〈∂xA∂yA〉 ∼∑

k(|vk|2 − |Bk|2) small
=⇒ no ZF

η large enough =⇒
quenches magnetic
turbulence =⇒ critical b0

can be quite large
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Cross-helicity

Previous analytical studies have neglected the effect of
cross-helicity 〈v · B〉 = −〈A∇2ψ〉. Often frozen at zero for
simplicity, invoking usual conservation law

However, Coriolis term explicitly breaks conservation:

∂t〈A∇2ψ〉 = −β〈vyA〉+ dissipation

In this work: seek to elucidate the role of cross-helicity in this
system. What is role in momentum transport?
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Stationary value

As a start, can obtain stationary CH value from a simple
calculation à la Zeldovich. Neglecting forcing:

1

2
∂t〈A2〉 = b0〈A∂xψ〉 − η〈(∇A)2〉

=⇒ 〈A∂xψ〉∞ =
η

b0
〈b̃2〉

∂t〈A∇2ψ〉 = −β〈A∂xψ〉+ (η + ν)〈∇2ψ∇2A〉

=⇒ 〈A∇2ψ〉∞ '
β〈b̃2〉`b`v

b0(1 + Pm)

where Pm ≡ ν
η

Note appearance of “magnetic Rhines” scale kMR =
√

β
b0

, defines

crossover of Rossby and Alfvén frequencies



Background: drift wave turbulence Deep learning project Spreading project Beta-plane MHD project Extra slides

Simulation results

Simulate β-plane
system with fixed
b0 = 2,
η = ν = 10−4,
ε = 0.01, kf = 32 at
various β

Transition to Rossby
turb. begins around
kMR = kf (β = b0k

2
f )

Good agreement with
Zeldovich with ` = `f

(breaks down for large
β as `b < `f )

Transition presaged
by increasing mean
CH — suggests CH
plays a role?
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Weak turbulence theory

Need spectra to determine transport. Seek closure of spectral
equations that treats cross-helicity on equal footing with
energy spectra

Simplest approach: weak turbulence theory
[Sagdeev and Galeev, 1969]. Treat nonlinear terms as triplet
interactions between resonant linear modes

Downside: dubious for small kx or weak field

Two eigenmodes in this system (Rossby-Alfvén)

ω± =
ωβ ±

√
4ω2

A + ω2
β

2

with ωβ = −βkx/k
2, ωA = kxb0
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Spectra I

Can write down spectral equations for correlators Cαα
′

k ,* but
very complicated. Hard to make progress

Perturbation theory for small β doesn’t work. β changes
topology of resonant surfaces

However, Rossby-Alfvén cross-correlator naturally oscillates at

ω+ − ω− = Ω =
√

4ω2
A + ω2

β → time average is zero!

We have

k2 Re(C+−
k e−iΩt) = − 1

Ω2

(
ω2

A(|ṽk|2 − |b̃k|2) + ωβωA Re〈ṽk · b̃−k〉
)

=⇒ |ṽk|2 − |b̃k|2 =
β

b0k2
Re〈ṽk · b̃−k〉

Time-averaged, stationary cross-helicity spectrum entirely
determines momentum transport!

*〈φαk φ
α′
k′ 〉 = Cαα

′
k δ(k + k′)e

−i(ωαk −ω
α′
k )t
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Spectra II

Buildup of cross-helicity during
transition thus linked to breakdown
of Alfvénization condition
|ṽk|2 = |b̃k|2
Equivalently:

〈∂t ṽ〉k
〈∂t b̃〉k

=
k2
MR

k2
.

=⇒ Fluctuations kinetic for
` > `MR , magnetic for ` < `MR

[Diamond et al., 2007]

Also have estimate (for β . b0k
2
f ):

〈ṽ2〉 − 〈b̃2〉 ' β2

b2
0k

4
f

〈b̃2〉
1 + Pm

0 5 10 15 20 25 30
kx

0

1

2

3

4

sp
ec
tra

1e−5 β=3×103

|vk|2

|bk|2+ β
b0k2

ReHk

Figure Time-averaged, ky -
averaged spectra from simu-
lation, confirming calculation.
Note that spectra don’t agree
at kx = 0 because Ω→ 0
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Conclusion

Cross helicity is non-conserved in β-plane MHD. In presence
of mean magnetic field, attains a finite stationary value

In weak turbulence theory, stationary cross-helicity spectrum
equivalent to Maxwell-Reynolds stress → determines
momentum transport

Have confirmed both of these calculations in simulation

H = β〈b̃2〉`b`v

b0(1+Pm) could be very large for weak b0, large Rm.
Should study this case numerically! Flux of magnetic
potential?

CH spectrum related to turbulent emf, but need 3D to study
dynamo
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Final remarks: where does ML fit in with the other
projects?

Had hoped to use machine learning approach to study
interactions between spreading and ZF (spreading breaks up
ZF, ZF limits spreading?).

But: diffusive mean field model
〈ṽx (ñ −∇2φ̃)2〉 = f (ε, ∂xε, . . . ) didn’t work. Spreading not
important in adiabatic HW? Spreading not described by local
model?

Given similarities between beta-plane MHD and HW, might
consider applying ML

Issues: no adiabaticity, need to specify forcing, 1D model only
makes sense when kMR is large

Final outlook: would like to apply ML methodology to other
systems. 2D HW with generic α, 3D HW lowest-hanging
fruits. Other systems with special spatial DOF?
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Sketch of Hasegawa-Wakatani derivation

Assume cold ions Ti = 0, use ion/electron continuity + E ×B
and ion polarization drifts + Ohm’s law for parallel electron
current + quasineutrality

∂tnα + vα · ∇nα = 0

force balance: vi = − c

B
∇φ× ẑ︸ ︷︷ ︸
vE

− c

ωciB

d∇φ
dt︸ ︷︷ ︸

polarization

+
µc

ωciB
∇2(∇φ)︸ ︷︷ ︸

viscosity

ve = vE + ve,‖ (ignore pol. drift due to mass ratio)

ηJe,‖ = −∇‖φ+
1

ene
∇‖pe , pe = neTe → solve for J‖

Sub above into continuity, use quasineutrality ne ' ni

(λD � `)
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Compare to zonally averaged 2D DNS

1D resembles simplified version of DNS. One key difference: 3-field
model equivalent to taking stationary “best-fit” spectrum. Some
system memory lost
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Reynolds stress: intensity scaling

Whereas learned Γ is
essentially ∝ ε, Π scaling
with ε is nontrivial

Learned exponent is 1 for
small intensity, close to zero
for large intensity

Jibes with intuition from
strong turbulence theory Figure Reynolds stress dependence on

gradients at fixed ε,U,U ′′
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Drift-wave/zonal flow system

Drift-wave turbulence features
complex interaction between mean
density profile, ZF, and turbulence

Dynamics controlled by
cross-correlations between
fluctuating quantities (turbulent
fluxes)

Difficult to calculate, requires
successive, often dubious
approximations to make progress

Figure Feedback loop illus-
trating interaction of mean
fields in DW turbulence
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Reynolds stress: hyperviscosity

Hyperviscous term, crucial for stability, has small coefficient.
Sensitive test of method

−0.4 −0.2 0.0 0.2 0.4
U

−0.10

−0.05

0.00

0.05

0.10

Π

U ′′ =-2

U ′′ =-1

U ′′ =0

U ′′ =1

U ′′ =2

Figure U ′′ level curves of Reynolds
stress as function of U, at fixed
ε,U ′,N ′

Figure ε level curves of Reynolds
stress as function of U ′′, at fixed
U,U ′,N ′′
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Cousin models

Compare to bistable models for subcritical transition to fluid
turbulence [Barkley et al., 2015, Pomeau, 2015].

Compare to [Gil and Sornette, 1996] model for sandpile
avalanches

∂tS = γ (|∂xh|/gc − 1)S + βS2 − S3+∂x (DSS∂xS)

∂th = ∂x (DhS∂xh).

S ↔ I , h↔ p

Weak gradient coupling limit Dp � DI ⇒ our model

Strong gradient coupling limit: I slaved to p. ∂xp ∝ I−1 ⇒
linear term is c − γI , where c is a constant which depends on
BCs. Bistable again!
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Penetration into stable zone for Fisher

Consider spreading of turbulence from
lin. unstable to lin. stable zone

Simple model: γ1 = γg > 0 for x < 0,
γ1 = −γd < 0 for x > 0

Allow turbulent front to form in
lefthand region and propagate

In Fisher model, penetration is weak:
forms stationary,
exponentially-decaying profile with
λ ∼

√
D0/γnl ∼ ∆c . Dubiously

consistent with observation

x
0

0
/

nl

I

0
>0

0
<0

x

0

0
/

nl

I

0
<0

0
>0
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Avalanche threshold (details)

Strategy: assume initial puff is symmetric, has single max I0
and single lengthscale L

Expand intensity curve about max to quadratic order, plug
into dynamical equation, integrate over extent of cap

Result: growth if

L > Lmin =

√
D(α)I0

f (I0)− 1
3 (I0 − α)f ′(I0)

=

√
3DαI0

γ(I0 − α)((1− 2α)I0 + α)

Power law Lmin ∼ (I0 − α)−1/2
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Evidence for subcriticality

[Inagaki et al., 2013]: experiments
demonstrate hysteresis between fluctuation
intensity and driving gradient (no TB
present). Suggests bistable S-curve relation?

Turbulence subcritical in presence of strong
perpendicular flow shear
[Carreras et al., 1992, Barnes et al., 2011,
van Wyk et al., 2016] or in the presence of
magnetic shear [Biskamp and Walter, 1985,
Drake et al., 1995]

Profile corrugations
[Waltz, 1985, Waltz, 2010] and phase space
structures [Lesur and Diamond, 2013] can
drive nonlinear instability

Figure Hysteresis be-
tween intensity and
gradient, flux and gra-
dient
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Closure theory

How to go from dynamical equations

∂tφ
α
k + iωkφ

α
k =

1

2

∑
k′+k′′=k

Mαβγ
k,k′,k′′φ

β
k′φ

γ
k′′

to equations for spectra 〈φαkφα
′
−k〉?

Multiplying thru by φα
′

k′ yields equation which involves
third-order moments 〈φφφ〉, third-order moment equation
involves fourth-order moments, etc.

“Closure problem”: how to express higher-order moments in
terms of lower-order moments and close system?

DIA (Kraichnan): 〈φkφk′φk′′〉 ' 〈φ(c)
k φk′φk′′〉+ . . . where φ

(c)
k

coherent to direct beat φk′φk′′ . Equiv. to 1-loop
renormalization
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Spectral equations

Weak turb. spectral equations for arbitrary number of scalar fields φα (in
eigenbasis) can be derived straightforwardly:

∂tC
αα′
k =

∑
k′+k′′=k

∑
βγ

[
|Mαβγ

k,k′,k′′ |
2Cββk′ Cγγk′′ δ(ωαk − ωβk′ − ω

γ
k′′)δαα′

+ Mαβγ
k,k′,k′′M

βαγ
k′,k,−k′′C

αα′
k Cγγk′′

(
πδ(ωαk − ωβk′ − ω

γ
k′′) + iP 1

ωαk − ω
β
k′ − ω

γ
k′′

)

+ Mα′βγ∗
k,k′,k′′M

βα′γ∗
k′,k,−k′′C

αα′
k Cγγk′′

(
πδ(ωα

′
k − ωβk′ − ω

γ
k′′)− iP 1

ωα
′

k − ω
β
k′ − ω

γ
k′′

)]
.

where 〈φαk φα
′

k′ 〉 = Cαα
′
δ(k + k′)e−i(ωαk −ω

α′
k )t , Mαβγ

kk′k′′ are symmetrized
nonlinear coupling coefficients. PV integrals vanish in case of real coupling
coefficients and a single field, recover Sagdeev-Galeev result.
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MHD snapshots at β = 3000 at t = 400

Figure ∇2ψ Figure A
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