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Introduction

Three projects on plasma turbulence. Unifying
feature: interaction of turbulent microscales
= meso-/macro-scale transport

@ Use machine learning to find reduced
model for particle/momentum transport ,
in drift-wave turbulence k k

@ New model for turbulence spreading and
avalanching

© Study relationship between cross-helicity
and momentum transport in S-plane
MHD
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@ Background: drift wave turbulence
@ Deep learning project

© Spreading project

e Beta-plane MHD project

© Extra slides
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Tokamak physics basics

@ Toroidal fusion device that uses strong
helical magnetic field to confine
plasma Poloidal Plasma

field electric current

@ Key challenge:
(n)(T)7e > 102! keV s/m> (Lawson
criterion) — maximize confinement
time 7 — minimize losses due to
transport Toroidal

field
Resultant helical field

o But: n, T grad|ents % InStabllltIeS —> (Pitch exaggerated)
turbulence — anomalous transport.
How to understand?
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Drift waves

source

@ Drift wave turbulence is useful
paradigm for turbulence due to
gradient instabilities (universal)

o Drift wave: collective oscillations
associated with ion/electron
diamagnetic drifts, which form in
response to temperature/density
gradients vy = 1/(qnB?)Vp x B e o

@ Structure: cell convecting around 7 at /M\ L

il

core minor radius wall

Ve = —c/B?V¢ x B, traveling at vy N a) y
B T 9,00,
force balance q(E + v X B) = Vp/n 2 ] ‘t;‘:(‘;

X

FIG. 1. Drift-wave mechanism showing EXB convection in a
nonuniform, magnetized plasma.
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Drift wave turbulence

source

e 7i coupled tightly to ¢ by fast parallel
“Boltzmann” electron response (from
force balance geeﬁzgzﬂb = TeOzne) y
ne ~ noexp(ed/Te) — fi/ng ~ ep/ Te oo merte

@ Collisions and resonances — phase
shift fix/no ~ edi/ Te(1 — idy) —
instability!

E=-vo No(x)

@ Turbulence results when many drift
modes unstable, nonlin. interaction <

o

P
becomes important W/

No(x)

z

FIG. 1. Drift-wave mechanism showing EXB convection in a
nonuniform, magnetized plasma.
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Zonal flows

[

Special modes with m =n =0, w ~ 0.
Turbulence-driven, sheared poloidal
flows

@ In certain regime, spontaneously build
up via secondary instability (multiscale
interaction)

@ No radial flow — do not cause harmful
transport. “benign” free energy
repository

@ /F shear stretches turbulent eddies —
regulate turbulence

@ Extremely important for confinement
problem: zonal flows induce L-H Figure ZFs also important
transition in geophysical flows
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Hasegawa-Wakatani model

@ Simplest realistic framework for understanding collisional drift
wave/zonal flow system.

@ Coupled dynamics for potential ¢, electron density n
(dimensionless units):

%:a(d)—n)—l—DVzn
dVv?
dt¢ = a(¢—n)+uVie
d 0 R
aEa—l—(zXV(ﬁ)‘V

°o o= kﬁ Te/(nonS;e?) “adiabaticity parameter,” measures
parallel electron response

@ ¢ is stream function for flow v
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Motivation: mean-field Hasegawa-Wakatani

@ Want theory for radial transport

e Averaging over symmetry directions ((---)) yields
0t(n) + OxI" = dissipation
Ot (V2p) — &N = dissipation
Dre + 26(T — 0 M) (Ox(n) + D)) = —ve — YnLE?
where ' = (fiV) (particle flux) and I = (¥, ¥,) (poloidal

momentum flux or “Reynolds stress”).

o ¢ = ((i— V2$)?) is turbulent potential enstrophy. Proxy for
turbulence intensity

@ Seek mean-field closure: T, I as function of (n), (@), ¢, radial

derivatives. Idea: use supervised learning. Can we do better
than simple QLT?
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Feature selection: what do we want our model to look like?

@ Assume a local model: local mean fields (in space and time)
suffice to specify the local fluxes

@ HW invariant under uniform shifts n — n+ ng and
¢ — ¢+ ¢og = eliminate dependence on (n), (¢)

@ Invariant under poloidal boosts

{(;5 —>¢+VOX

y —y—wt

— eliminates dependence on ZF speed V|, = —0x(®).

e Confine ourselves to adiabatic regime so i ~ ¢ = &
reasonably suffices to specify intensity

@ Anticipate that hyperviscosity necessary to regularize ZF, so
need derivatives up to VJ



Deep learning project
000®0000000000

Methods

@ Thus choose minimal set of inputs
N, U, U U" e (N=(n),U= V}ﬁ)
@ 32 simulations of 2D HW, with
o = 2, various initial conditions for

(
5 Many simulations
L& (BOUT++)

mean density, flow s ﬂ -
postprocess
@ Postprocess to compute inputs, I, [ R zonaly avoragedaa |
M. Key: locality means each point lna.nfeemaw
in space, time treated on equal .
footing — lots of data per Locamean g X + Loca
- flux
simulation €
@ Train neural ngtwork t.o output Figure Schematic of deep
fluxes as functions of inputs learning method

@ Exploit/enforce 3 reflection
symmetries via data augmentation
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Neural networks 101

o Bottom line: simply a proven
form of nonparametric,
multivariate regression

@ Use simplest form (multilayer
perceptron)

@ Inputs x repeatedly transformed
n+1 n n
A7 Z (W 4 1y
where o is a nonlinear function

(“activation™)

e Weights W(,_7)’ biases_' b are Figure Diagram of MLP, shame-
“trained” using sophisticated lessly stolen from the internet
algorithm to minimize loss
function which measures
deviation from labeled samples
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Particle flux results

DNN learns a model roughly of the form (for small gradients)
[~ —DpeN' + Dyel’

Diffusive term oc N’ is well-known, tends relax driving gradient.
Second (non-diffusive) term not well-known, driven by vorticity
gradient!

Deep learning

Figure Particle flux at constant ¢ as function of density and vorticity gra-
dients
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Derivation of nondiffusive term

a — oo calculation reproduces nondiffusive term. Need include
frequency shift due to ZF! (quasilinear treatment, i.e. flux assumed
due to coherent unstable drift waves)

_ ky / / -2
wk—1+k2(N+U)+O(a )
2

k
— Y l / 2n gy -2
7k_a(1+k2)3(N + U)(k“N' = U)+ O(a™7)

[=Re)  —ikyficdy
k

—kf@xn(Vk + o) + akywy i

LA uray

|fkf?
1 k}% 2z N L2 -2
=2 T KN = U)o + 0(a7)
k
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Comparison to theory (diffusive term)

Compare DNN result to theory result using spectrum centered at
most unstable k for U’ =0

(E) 1 ( 1 1 >
€k = +
“7T 2m Dk Dk, 1+ K2/AK \1+ (k — V2)2/DK2 | 1+ (k + V2)2/AK
. Deep learning . Theory
3
: £=0.1 7
! =20
= 0 =40 = 0
-1 — =60
-2 — &=80 -2r
-3
4 4L .
—4 —2 3 2 4 474 ) 0 2 4
N

Figure Curves (at fixed U = U' =
U” =0, and various ) of I vs density
gradient from DNN

Figure Corresponding curves from
QLT+ansatz with Ak, = Ak, = 0.8
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Comparison to theory (nondiffusive term)

Deep learning

—4 -2 0 2 4
U

Figure Curves (at fixed N/ = U =
U” = 0, and various €) of T vs U’
from DNN

Theory

e=0.1
=20
— &=40
— £=60
— =80

Figure Corresponding curves from
QLT+ansatz with Ak, = Ak, = 0.8

Good agreement when 0y n, 0xU are small!
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Implications of nondiffusive term

@ Neglected in literature, but
coupling same order of magnitude
(~ 0.5) that of usual N’ term.

Stronger than coupling to shear! NN x \

@ Consequence: ZF can induce
“staircase” pattern on profile. If

V, = Vosin(gx), U’ term will NN \
contribute x

pinch

k3q3V0(5> Figure Cartoon indicating

Or(n) ~ N EEI cos(gx) how ZF may induce profile

o1+ k%) staircase via  nondiffusive
flux/pinch

@ Previous explanation for staircase is
some form of bistability. This
mechanism is distinct.
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Reynolds stress results

@ Learns model of (Cahn-Hilliard)
form (leading order)

N=e(—x1U + x3U* — x402V)

with x1,x3,Xx2 > 0
e 0:U = 6)2(|'| ~ x1ek?U. Zonal flow 01
generation by negative viscosity
X1
@ Large U stabilized by nonlinearity 03
o U3, small scales by
hyperviscosity x4 (not shown)

Figure Reynolds stress as

_ i _ function of U, at fixed U’, U"
o Agrees with previous theoretical

models for zonal flow generation

@ Recovery of hyperviscous is
sensitive test of method
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Reynolds stress: gradient corrections

@ How does Reynolds stress
depend on N, U’'? Not easy

to calculate T
0.08 — -
@ Learned dependence —r2 >
. 007 — ¢ =15 S
well-described by overall ver o N2

0.06

suppression factor ol Z 0
f~1/(14+0.04(N'+4U")?), W [

i.e. gradients generally 003 i

reduce Reynolds stress A

Zo

@ Found to be crucial for
stability of learned model.
Kinks tend to form in flow in
its absence

Figure Reynolds stress dependence on
gradients at fixed ¢, U, U”
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Numerical solution of reduced 1-D model

-N(t=0)
u
1 4 m |r
. Choose analytical expressions to match

deep learning results, solve using
implicit scheme
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Conclusions

@ ML recovers CH theory for ZF generation, while finding
nontrivial gradient corrections

@ Highlights rarely-discussed coupling of profile to flow, which
induces profile layering

@ Were confined to single adiabatic o, N’ < 3. Otherwise,
vortex interactions — 1D model doesn't make sense

@ Test of concept for more complex applications. Geometry?
3D? T, B coupling?

@ May need to relax some assumptions: multiple intensities?
Spatial and/or temporal nonlocality?

e Tradeoff b/t complexity and interpretability

@ Spreading???
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Introduction

@ Turbulence spreading = radial self-propagation of turbulence.
Important in DWT

@ Nonlinear coupling of microscales to mesoscopic envelope
scale. Closure of E x B with envelope:

o ) )
atgk ~ — Z(k.k/xz)2|d)k/|2f\’(k, k/)lk — aDX(/k)a/k—kk : D/k
k/

Dy = Z k)//2|¢k’|2R(ka k,)
k/
@ Decouples flux-gradient relation: local turbulence intensity
now depends on global properties of the profiles

@ Fluctuations in linearly stable regions!
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Depiction of spreading

A
N'.g 10° 4
3 |
\Y ]
_,E‘ 10° E |
= - |
8 107 [ 1
=
8 100 ]
& 3 —I
o E
2 10° L
-9 . § Linearly unstable
2 £
107 L l
0.1 02 03 04 05 06 07 08 09

r

Figure Spatiotemporal evolution of flux-surface-averaged turbulence inten-
sity in toroidal GK simulation. Linearly unstable region is 0.42 < r < 0.76.
From [Wang et al., 2006]
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Avalanches

@ Fast, intermittent transport events.
Can account for a large percentage

of total flux! o
. - - 1
o Initially localized fluctuation o4
i i S oo
c?scades. through .nelghbormg cells z o
via gradient coupling. Cell 3 0.0001 X
microscales couple with mesoscopic 1605 fopyy  — ¥
1e-06 } MW - o, Q‘
avalanche scale P B Yoo
0.01 0.1 1 10

@ Associated with profile relaxation, Ll

S0C Figure Heat flux spectrum
@ Closely related to spreading: both from GK simulation showing

result in fast, mesoscopic turb front ~ 1/f scaling

propagation. Unified model?
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Fisher model

@ Conventional wisdom for spreading is Fisher-type equation for
turbulence intensity:

2
81-1 = "yo/ — ’)/,,/I + 8X(D016XI)
S~~~ N———
local lin. local nonlin.  nonlin. diffusion of turb. energy
growth/decay  coupling to
dissipation

@ For v9 > 0, dynamics characterized by traveling fronts
connecting unstable “laminar root” / = 0 and saturated

Do

“turbulent root” | = o /v, with speed ¢ = G
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Depiction of Fisher evolution

Turbulence spreading with constanty and ¥,
T T T

Figure Evolution of traveling turbulence front in Fisher model. From
[Giircan and Diamond, 2006]
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Problems with Fisher

@ Weak spreading into stable zone
(few Ac). Dubiously consistent
with experiment? o o

o
(=4
Y

o If unstable, why didn’t noise
already excite the whole system to

n_[10"°m?9
SRS
>: P
Y
>>
55
S
/n [%]

turbulence? 9 go
@ Unless Ax?v,; < Dy, physical %2 2%
fronts require bistability a la g 5
[Pomeau' 1986] " 2'5mai:%ipraclia'sslm]4'0 2'5ma]%?ra\dia'ss[m]4'0 "
¢ S.rOWlIJTg ,\l;I(ID:dy O;; eIVIdence for Figure Experiment by
istable M turbulence e.g. Nazikian et al 2005 clearly
[Biskamp and Walter, 1985, showing fluctuations in stable
Drake et al., 1995, zone

Barnes et al., 2011,
van Wyk et al., 2016]
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Bistable model

Propose phenomenological model of form

Otl = 31l +v2l% — 313 + 0 (D(1)0x 1)

take D(I) = Dol
New physics: nonlinear turbulence drive o< /2. Can sustain
sufficiently large fluctuations even when linearly damped

Bistable in weak damping regime

Estimate 1 ~ ewy, Y2,3 ™~ W, Dy ~ xcB



Spreading project
00000000e00000000

Model analysis |

Ol = 1l + 2% — 3313 + 0, (D(1)dy1)

o Qualitatively similar to Fisher
EXCEPT in weak damping case
71 < 0 and 73 > 4|13 i)

@ Can then transform to
Zel'dovich/Nagumo equation

0el = (1) + 0x(DID, 1)
F() =1 — a)(1—1)

where a = I_ /I, v = 1273, D =

I, Do, I+ = (v2 £ /73 — 4Im3)/273



Spreading project
000000000e0000000

Model analysis |l

@ Unlike Fisher, traveling fronts admitted in weak damping case!
e Propagation speed ¢ ~ /D~ (depends on «), characteristic

scale £ ~ /D /~

@ “Maxwell construction” for speed

o] 1
c/ D(/(z))/’(z)2dz:/ D(Nf(1)dl

—o0 0
z=Xx—ct
@ Thus turbulence spreads if a < a*, recedes if & > o*. Also

corresponds to (meta)stability of fixed points (Lyapunov
functional)
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Penetration into stable zone

o Fisher model: evanescent penetration, depth ¢ ~ ps

@ Our model: new front with reduced speed/amplitude forms in
second region if weakly damped (i.e. 74 is small enough that
a < ar)

@ Hence: can have ballistic propagation even in stable zone!
Much stronger penetration, delocalization
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Penetration into stable zone I

10* " " " ‘ 0.9
(@) (b)
08 __ 501 i
N\ s orr 1T %7 N
% 10°r 5 — - s14 R
. < 0.6}
Linearly
unstable 05k Z T
10°® . . \ . 041/ / _ unstable
03 04 05 06 07 038 50 100 150 200
rla t [Ro/Vrol

Figure Spreading into stable zone in GK simulation with magnetic shear
[Yi et al., 2014]. Ballistic propagation???



Spreading project
000000000000e0000

Avalanche threshold |

@ In contrast to Fisher, sufficiently large localized puff of
turbulence will grow into front and spread. Suggestive of an
avalanche triggered by initial seed

@ How to determine threshold?

1

0.8

0.6

~

0.4

0.2

0

-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10

Two puffs differing only in spatial size are initialized; one grows
and spreads, other collapses
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Avalanche threshold [l

@ Obviously puff amplitude must exceed
lp =caorelse yer = (I —a)(1-1) <0

o Consider “cap” of puff (part exceeding
I =a)

@ Size threshold governed by
competition between diffusion of
turbulence out of cap and total
nonlinear growth in cap

@ Sets scale /D/~. Can derive
Lmin ~ (/0 - a)71/2
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Avalanche threshold: analytical vs. simulation

Figure Numerical result for threshold at o = 0.3 for three types of initial
condition (Gaussian (/1), Lorentzian (1), parabola (5)), compared with
analytical estimate
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Bistable model: conclusions

@ Bistable model rectifies issues with Fisher, is supported by
evidence for subcritical turbulence

@ Provides simple framework for understanding avalanching:
local, intermittent exceedance of nonlinear instability by
turbulent puffs. Threshold weak near marginal — triggered by
noise?

o Key testable predictions: ballistic spreading into weakly
linearly damped regions, power-law threshold for spreading of
puffs
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on experiments

[Van Compernolle et al., 2015] created
avalanches in experiment by locally perturbing
plasma with source, measuring spatiotemporal
response

Suggest testing avalanche threshold in similar
manner. How intense/large must source be?

[Inagaki et al., 2013]: purported hysteresis
between fluctuation intensity and driving
gradient (no TB present)

But if bistable, why does intensity relax after
source turned off?

Suggest more experiments a la Inagaki to
investigate bistability

‘‘‘‘‘‘‘

(a) 2080kHz p=066 ,
- e -
L {;:;_z A" i

PR I |
{(b) ME(;H 2MwW ' ! -
— |

-

1/4)
4
© 4 o
T
—

w
o

ECH
turn-oft
LEcH

turn-on oJ

e

N
o

q./n, (keVm/s)

1 L 1 n
28 3 32
V,T, (keV)

Figure Hysteresis be-
tween intensity and
gradient, flux and gra-
dient
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Solar tachocline

@ Thin, radially-sheared layer at base
of convection zone. Strongly
turbulent

@ Believed to be strongly involved in
the solar dynamo

o Home to Q-effect: shear drags jachocine
poloidal field lines originating from
core, converts to strong toroidal
field “zone ¥

@ Momentum transport crucial to \
problem of why tachocline exists. Core
Friction or anti-friction?

[Spiegel and Zahn, 1992,
Gough and Mclntyre, 1998]
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[-plane MHD model

@ Strong stratification in tachocline = quasi-2D

@ 2D magnetized incompressible turbulence in presence of
planetary vorticity (Coriolis force) gradient:
2Q = (0,0, f + By)

0V + O = {1, V) — {A, VAL + vV + F
O:A = {1, A} + nV2A

o v=(0,¢,—0x1,0), B=(0,A, —0«A,0)
e {a,b} = 0xad,b — 0yadb
e Note similarity to HW: /3 plays the role of 0y (n)
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Effect of (weak) mean field

@ Tobias et al. (2007) assessed
impact of weak mean field
bgx on zonal flow formation

. 0
@ Above a critical by, (1)01 k
- “ 7 - ”" 1 -
turbulence is “Alfvénized. 10-2k
Reynolds-Maxwell stress = 10-3§
N e B « B
105 F+ +
vk — [By?) small
— no ZF 104 10-3 102 10-1
Bo
N |arge enough — FiG. 5—Scaling law for the transition between forward cascades (diamonds)

and inverse cascades (plus signs). The line is given by BY/y = constant.

quenches magnetic
turbulence = critical by
can be quite large
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Cross-helicity

@ Previous analytical studies have neglected the effect of
cross-helicity (v - B) = —(AV?21). Often frozen at zero for
simplicity, invoking usual conservation law

@ However, Coriolis term explicitly breaks conservation:
Ot (AV?) = —B(v, A) + dissipation

@ In this work: seek to elucidate the role of cross-helicity in this
system. What is role in momentum transport?



Beta-plane MHD project
00000@0000000

Stationary value

As a start, can obtain stationary CH value from a simple
calculation a la Zeldovich. Neglecting forcing:

SR = bolAD) — n((VAP)

:wmwngw>

Oe(AVZY) = —B{Ad) + (1 + v)(VYV2A)

BBty
= bo(1+ Pm)

— | (AVZ)) o

where Pm =%

Note appearance of “magnetic Rhines” scale kyr =
crossover of Rossby and Alfvén frequencies



Simulation results

Simulate B-plane
system with fixed

by = 2,

n=v= 1074,

e =0.01, kr =32 at
various 3

Transition to Rossby
turb. begins around
kwr = ke (B = bok?)
Good agreement with
Zeldovich with ¢ = #¢
(breaks down for large
B as £y < Lf)

Transition presaged
by increasing mean
CH — suggests CH
plays a role?

energy

107!

1072

1073

1071

Beta-plane MHD project

000000e000000

® )
g \
e \
e N\ .
= \
X
%
x x
x
x
107! 10° 10!
B/(bok3)

0.6

@
S

o  (+Pm)bok}

x  zmf
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Weak turbulence theory

@ Need spectra to determine transport. Seek closure of spectral
equations that treats cross-helicity on equal footing with
energy spectra

@ Simplest approach: weak turbulence theory
[Sagdeev and Galeev, 1969]. Treat nonlinear terms as triplet
interactions between resonant linear modes

@ Downside: dubious for small k. or weak field

@ Two eigenmodes in this system (Rossby-Alfvén)
wg £ 4 /4w§\ + w%
2

with wg = —,ka/kz, wa = kybg

W+ =
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Spectra |

@ Can write down spectral equations for correlators Cfa',* but
very complicated. Hard to make progress

@ Perturbation theory for small 5 doesn't work. 3 changes
topology of resonant surfaces

@ However, Rossby-Alfvén cross-correlator naturally oscillates at

wy —w- = Q= /4w +wj — time average is zero!

@ We have

_ 1 - ~ L
K Re(Gl e ™) = 0 (WE\(|Vk|2 — |b[?) 4+ wpwa Re (¥ - b—k>)

2 ppe_ B .
= ||%|* — |bk|® = — Re(vg - b_

|| — |bx| bol2 (Vi - b_x)
Time-averaged, stationary cross-helicity spectrum entirely
determines momentum transport!

. ’
Hof o) = G alt ke it
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Spectra Il

@ Buildup of cross-helicity during
transition thus linked to breakdown
of Alfvénization condition reus Bo3x10°
| = | Bi[? —

Ibil? + 55 :ReH

IS

w

o Equivalently:

Ok kK

<atb>k k ’ 5 10 15 20 25 30

kx

spectra
N

-

= Fluctuations kinetic for
Figure Time-averaged, k-

t > {mr, magnetic for £ < lyr averaged spectra from simu-
[Diamond et al., 2007] lation, confirming calculation.
@ Also have estimate (for 5 < bok,?): Note that spectra don't agree

at k, = 0 because Q2 — 0
2 72
<‘72>_<2>_/B <b>
b%kf,1 1+ Pm
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Conclusion

@ Cross helicity is non-conserved in S-plane MHD. In presence
of mean magnetic field, attains a finite stationary value

@ In weak turbulence theory, stationary cross-helicity spectrum
equivalent to Maxwell-Reynolds stress — determines
momentum transport

@ Have confirmed both of these calculations in simulation

H= % could be very large for weak bp, large Rm.

Should study this case numerically! Flux of magnetic
potential?

@ CH spectrum related to turbulent emf, but need 3D to study
dynamo
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Final remarks: where does ML fit in with the other

projects?

@ Had hoped to use machine learning approach to study
interactions between spreading and ZF (spreading breaks up
ZF, ZF limits spreading?).

e But: diffusive mean field model
(U (i — V2$)?) = (e, Dxe, ... ) didn’t work. Spreading not
important in adiabatic HW? Spreading not described by local
model?

@ Given similarities between beta-plane MHD and HW, might
consider applying ML

@ Issues: no adiabaticity, need to specify forcing, 1D model only
makes sense when kyr is large

e Final outlook: would like to apply ML methodology to other
systems. 2D HW with generic a;, 3D HW lowest-hanging
fruits. Other systems with special spatial DOF?
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Sketch of Hasegawa-Wakatani derivation

@ Assume cold ions T; = 0, use ion/electron continuity + E x B
and ion polarization drifts + Ohm'’s law for parallel electron
current + quasineutrality

OiNg + Vo -V, =0

. c A c dV¢  puc _,
force balance: v; = BVgZ)xz woB dt +WCiBV (Vo)

VE polarization viscosity

Ve = VE + Ve | (ignore pol. drift due to mass ratio)

1
nJevH = _V||¢+ gvnpea Pe = Ne Te — solve for JH
e

@ Sub above into continuity, use quasineutrality ne ~ n;
(Ap < 0)
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Compare to zonally averaged 2D DNS

OMean vorticity at kK = 2

Mean turbulent PE at k = 2 “Mean density at kK = 2

3
10
70
2 , 200
60 _
. 5
50 400
0 -
v - 10_ ON -k
-1 600 30 600
-5
. 20
-2 800 800
" 10 ~10
1000 0 1000

0 10 20 30 40 50 0 10 20 30 40 50

1000 .
0 10 20 30 40 50

1D resembles simplified version of DNS One key dlfFerence 3 field

model equivalent to taking stationary “best-fit" spectrum. Some
system memory lost
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Reynolds stress: intensity scaling

10°

@ Whereas learned I is
essentially o ¢, I scaling
with ¢ is nontrivial

=
107!

@ Learned exponent is 1 for
small intensity, close to zero
for large intensity

. . . .. 10" 10! 10?
o Jibes with intuition from -

strong turbulence theory Figure Reynolds stress dependence on
gradients at fixed ¢, U, U”
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Drift-wave /zonal flow system

o Drift-wave turbulence features
complex interaction between mean

Profile

2
. . @
density profile, ZF, and turbulence ¢ 0
. & % S
@ Dynamics controlled by suppresses i)
cross-correlations between Zonal Flow | ™) [Tiroulence
fluctuating quantities (turbulent Drives

fluxes) , .
Difficul lcul . Figure Feedback loop illus-
e Dithicult o calculate, requires trating interaction of mean

successive, often dubious fields in DW turbulence
approximations to make progress
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Reynolds stress: hyperviscosity

Hyperviscous term, crucial for stability, has small coefficient.
Sensitive test of method

0.03
0.10 0.02
0.05 0.01
0.00
= 0.00 =

—0.01

—0.05
—0.02

—0.10
—0.03

—0.4 —0.2 0.0 0.2 0.4 —0.4 —0.2 0.0 0.2 0.4
J u”

Figure U” level curves of Reynolds Figure ¢ level curves of Reynolds
stress as function of U, at fixed stress as function of U”, at fixed
e, U, N u,uv,nN"”
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Cousin models

@ Compare to bistable models for subcritical transition to fluid
turbulence [Barkley et al., 2015, Pomeau, 2015].

Compare to [Gil and Sornette, 1996] model for sandpile
avalanches

0:S = 7 (|0xh|/ge — 1) S + BS? — S*+0x(DsS0,.5)
Och = Ox(DpSOxh).

S« 1, hep

Weak gradient coupling limit D, < D; = our model

Strong gradient coupling limit: / slaved to p. Oyp o< [~ =
linear term is ¢ — v/, where c is a constant which depends on
BCs. Bistable again!
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Penetration into stable zone for Fisher

o Consider spreading of turbulence from
lin. unstable to lin. stable zone

@ Simple model: v =z > 0 for x <0, - —
v1=—74 <0 for x>0 \

@ Allow turbulent front to form in
lefthand region and propagate

@ In Fisher model, penetration is weak:

forms stationary,
exponentially-decaying profile with

A~ \/m ~ A.. Dubiously . \\

consistent with observation




Extra slides
00000000®00000

Avalanche threshold (details)

@ Strategy: assume initial puff is symmetric, has single max Iy
and single lengthscale L

@ Expand intensity curve about max to quadratic order, plug
into dynamical equation, integrate over extent of cap
@ Result: growth if

o D(a)l B 3Daly
L> Lyin = \/f(/o) — %(IO —a)f'(I) - \/’7(/0 —a)((1=-2a)l + )

~1/2

e Power law Lpyin ~ (lo — @)



Evidence for subcriticality

@ [Inagaki et al., 2013]: experiments
demonstrate hysteresis between fluctuation
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‘‘‘‘‘‘‘

. . . : (@ 2080z p0s6 ,
intensity and driving gradient (no TB a0 250 .
present). Suggests bistable S-curve relation? S T b
0.9r -
Turbulence subcritical in presence of strong s : :‘_: —t
. o (-(b) MECH 2mw .
perpendicular flow shear ¥ s~ fecn -
[Carreras et al., 1992, Barnes et al., 2011, g "E"C"'-'*f ‘j
van Wyk et al., 2016] or in the presence of e A

magnetic shear [Biskamp and Walter, 1985,
Drake et al., 1995]

28 3 32
V,T, (keV)

Figure Hysteresis be-
tween intensity and
gradient, flux and gra-
dient

@ Profile corrugations
[Waltz, 1985, Waltz, 2010] and phase space
structures [Lesur and Diamond, 2013] can
drive nonlinear instability
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Closure theory

@ How to go from dynamical equations

1

Ot +iwndy = 5 D Middla i
k' 4k =k

to equations for spectra <¢ﬁ‘gb‘f’k>?

@ Multiplying thru by gbﬁ‘,, yields equation which involves
third-order moments (¢¢¢), third-order moment equation
involves fourth-order moments, etc.

@ “Closure problem”: how to express higher-order moments in
terms of lower-order moments and close system?

o DIA (Kraichnan): (¢ dir) ~ (0 b dier) + . .. where ¢\
coherent to direct beat ¢y ¢x. Equiv. to 1-loop
renormalization
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Spectral equations

Weak turb. spectral equations for arbitrary number of scalar fields ¢* (in
eigenbasis) can be derived straightforwardly:

’
HAET = > Z['Mﬁfik//i%ﬁﬂcmé(wﬁ*fwf,fwznaaa/

K +k/=k B~
e a aa’ e B 1
+ Mkf/”yk// Ml?’,k’,y—k” & C;W 7r5(wk - WE/ - WI’ZH) + ’Pﬁ
Wy — Wy — Wy
o Byx p pBa’ yx aa’ ~yy o B8 Y H 1 I
+ Mk,k',k” Mk’,k,fk” k Ck” 7T(s((")k - Wk/ - wk”) - IP o B ~ .
wk - wk’ - wk”

where (¢g %) = C' §(k + k)e~ (k=i )t, M3, are symmetrized
nonlinear coupling coefficients. PV integrals vanish in case of real coupling
coefficients and a single field, recover Sagdeev-Galeev result.
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MHD snapshots at § = 3000 at t = 400

0.020

0.015

0.010

0.005

0.000

~0.005

~0.010

-0.015

-0.020

Figure V29 Figure A
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