Shear Layer and Staircase Formation in a Stochastic Magnetic Field

Chang-Chun Chen¹, Patrick Diamond¹, Rameswar Singh¹, and Steven Tobias²

> ¹University of California San Diego, USA ²University of Leeds, UK

Working Group of Plasma Application in Layering, KITP Staircase21, Feb. 18th 2021

This work is supported by U.S. Department of Energy under award number DE-FG02-04ER54738.

Outline

Introduction Critical question: How resilient is barriers in stochastic magnetic field? What is FOM for resilience?

- Model & Calculation
- Results
 - a. Suppression of PV diffusivity and the shear-eddy tilting feedback loop.
 - b. Power threshold increment for L-H transition.
 - barrier.
- Conclusions

c. From single barrier to BLY (BALMFORTH, LLEWELLYN SMITH, and YOUNG 1998):

timescale, induced by stochastic fields, that might modify the mixing length for the

Why we study staircase in fusion device?

- H-mode plasma.
- ELMs can damage wall components of a fusion device.

Single Barrier in Stochastic Fields

Stochastic field effect is important for boundary control

How resilient is the barrier under the influence disordered field?

Chang-Chun Samantha Chen

Single Barrier in Stochastic Fields

How stochastic fields influence the shear flow, and the barrier formation?

- Cartesian coordinate: strong mean field B_0 is in z direction (3D). 1.
- Rechester & Rosenbluth (1978): waves, instabilities, and transport are studied in the presence of an ensemble of prescribed, static, stochastic fields.
- **3.** $\underline{k} \cdot \underline{B} = 0$ (or $k_{\parallel} = 0$) resonant at rational surface in third direction —

 $\omega \to \omega \pm v_A k_z$, and Kubo number: $K u_{mag} = \frac{l_{ac} |\mathbf{B}|}{\Delta_1 B_0}$).

4. Four-field equations —

Well beyond HM model

(a) Potential vorticity equation-

(b) Induction equation -A, J

(c) Pressure equation $-\mathbf{p}$

(d) Parallel flow equation $-\mathbf{u}_{z}$

We use mean field approximation:

 $\zeta = \langle \zeta \rangle + \widetilde{\zeta},$ Perturbations produced by turbulences where $\langle \rangle = \frac{1}{L} \int dx \frac{1}{T} \int dt$

ensemble average over the zonal scales

We define rms of normalized stochastic field $b \equiv \sqrt{2}$

Model

-vorticity
$$-\nabla^2 \psi \equiv \zeta$$

Magnetic islands overlapping forms stochastic

Single Barrier in Stochastic Fields

 $(\overline{B_{st}}/B_0)^2$

Key Physics

Experimental Results with RMP for L-H Transition — fluctuations

(D. Kriete et al, PoP **27** 062507 (2020))

(D. Kriete et al, PoP **27** 062507 (2020))

Key Questions:

Chang-Chun Samantha Chen

What is the effect of stochastic fields (b^2) on the Reynolds stress and the power threshold for the L-H transition?

Single Barrier in Stochastic Fields

When does stochastic field effect becomes significant?

We consider timescales:

Alfvén wave propagate along stochastic fields \rightarrow characteristic velocity emerges from the calculation of $\nabla \cdot J = 0$

Chang-Chun Samantha Chen

Single Barrier in Stochastic Fields

Decoherence of eddy tilting feedback

 ω_D (drift wave turbulence frequency) \equiv

Single Barrier in Stochastic Fields

Self-feedback loop:

The $E \times B$ shear generates the $\langle k_x k_y \rangle$ correlation and hence support the non-zero Reynolds stress.

$$\langle \widetilde{u}_{x}\widetilde{u}_{y} \rangle \simeq \sum_{k} \frac{|\widetilde{\phi}_{k}|^{2}}{B_{0}^{2}} (k_{y}^{2} \frac{\partial u_{y}}{\partial x} \tau_{c})$$

The Reynold stress modifies the shear via momentum transport.

Shear flow reinforce the self-tilting.

$$\begin{split} &\left((\omega_D + \delta\omega)^2 - \omega_D(\omega_D + \delta\omega) - (k_{\parallel} + \underline{b} \cdot \underline{k}_{\perp})^2 v_A^2 = 0 \\ & \delta\omega \simeq \frac{v_A^2}{\omega_D} (2k_{\parallel}\underline{b} \cdot \underline{k}_{\perp} + (\underline{b} \cdot \underline{k}_{\perp})^2) \end{split}$$

Decoherence of eddy tilting feedback

Expectation frequency: $\delta\omega \simeq \frac{v_A^2}{\omega_0} (2k_{\parallel}\underline{b} \cdot \underline{k}_{\perp} + (\underline{b} \cdot \underline{k}_{\perp})^2)$

frequency

Stochastic fields (random ensemble of elastic act as elastic loops and resist the tilting of ec \rightarrow change the cross-phase btw \widetilde{u}_r and \widetilde{u}_r .

Stochastic fields interfere with shear-tilting feedback loop.

$$\langle \delta \omega \rangle \simeq \frac{v_A^2}{\omega_0} \langle (\underline{b} \cdot \underline{k}_{\perp})^2 \rangle = \frac{1}{2} \frac{v_A^2}{\omega_0} b^2 k_{\perp}^2$$
Self-feedback loop is broken by b^2 :
$$\langle \widetilde{u}_x \widetilde{u}_y \rangle \simeq \sum_k \frac{|\widetilde{\phi}_k|^2}{B_0^2} (k_y^2 \frac{\partial u_y}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_{\perp}^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c + \frac{1}{2} k_y$$

Single Barrier in Stochastic Fields

Results—Suppression of PV diffusivity

The ensemble average Reynolds force $\frac{\partial}{\partial x} \langle \widetilde{u}_x \widetilde{u}_y \rangle$:

$$\langle \widetilde{u}_{x}\widetilde{\zeta} \rangle = \frac{\partial}{\partial x} \langle \widetilde{u}_{x}\widetilde{u}_{y} \rangle = - \boxed{D_{PV}} \frac{\partial}{\partial x}$$

PV diffusivity

PV flux

$$D_{PV} = \sum_{k\omega} |\tilde{u}_{x,k\omega}|^2 \frac{v_A b^2 l_{ac} k^2}{\bar{\omega}^2 + \left(v_A b^2 l_{ac} k^2\right)^2} \qquad \begin{bmatrix} v_A \vdots \\ in \end{bmatrix}$$

This stochastic dephasing is insensitive to turbulent modes (e.g. ITG, TEM,...etc.).

PV transport will be suppressed by stochastic fields via decoherence.

Low $\beta \equiv P_{thermal}/P_{mag}$, so it is v_A nstead of sound speed C_s (small). $\bar{\omega} \equiv \omega - \langle u_y \rangle k_y$

Single Barrier in Stochastic Fields

KITP Staircase21, Feb. 18th 2021

More details:

Reynolds stress will undergo decoherence at levels of field intensities well below that of Alfvénization (where

Maxwell stress balances the Reynolds stress).

Stochastic fields reduce the Reynolds stress at a B_0 smaller than that for Alfvénization.

Chang-Chun Samantha Chen

Single Barrier in Stochastic Fields

Macroscopic Impact

Results — Increment of PLH

Stochastic field stress dephasing effect requires: $\Delta \omega \leq k_{\perp}^2 D$ (where $D = D_M v_A$).

This gives **dimensionless parameter** (α): $\alpha \equiv \frac{b^2}{\sqrt{\beta}\rho_*^2} \frac{q}{\epsilon} > 1$

We expect stochastic fields to raise L-I and I-H transition thresholds.

 ρ_* is small $\rightarrow \alpha \uparrow$ (pessimistic)

Kim-Diamond Model

(Kim & Diamond, PoP **10**, 1698 (2003))

This reduce model for the L-H transition is useful for testing trends in power threshold increment induced by stochastic fields.

Predator: zonal flow prey: turbulence

Single Barrier in Stochastic Fields

KITP Staircase21, Feb. 18th 2021

Macroscopic Impact

Results — Increment of PLH

The threshold increase due to stochastic dephasing effect is seen in turbulence intensity, zonal flow, and pressure gradient.

Chang-Chun Samantha Chen

Single Barrier in Stochastic Fields

KITP Staircase21, Feb. 18th 2021

From Single Barrier to Layering?

After BLY's mixing length model (Balmforth et al. JFM **355,** 239 (1998)), Ashourvan & Diamond, PoP 24, 012305 (2017) proposed a mixing length model for H-W turbulence:

Reduce evolution **F** equations (based on H-W model).

Density:
$$\frac{\partial}{\partial t} \langle n \rangle = \frac{\partial}{\partial x} \left(D_n \frac{\partial \langle n \rangle}{\partial x} \right) + turb. particle diffusion$$

• Energy and Potential entropy (PE) conserved.

The mixing length depends on two scales:

• Forcing scale: l_0 • Rhines scale: $l_{RH} = \frac{\sqrt{\epsilon}}{|\partial_r q|}$

Strong mixing $(l_{RH} > l_0)$: $l_{mix} \simeq l_0$ (Weak mean PV gradient) Weak mixing $(l_0 > l_{RH})$: $l_{mix} \simeq l_0^{1-\kappa} l_{RH}^{\kappa}$ (Strong PV gradient)

Very Preliminary From Single Barrier to Layering?

Essential physics of Ashourvan & Diamond model (after BLY's) is contained in l_{mix} and transport coefficient density diffusivity D_n and turbulent viscosity χ (called D_{PV} previously).

(where $\alpha_{DW} = \frac{k_{\parallel}^2 v_{the}^2}{\nu}$), we have D_{i}

By replacing k_{\parallel} with $k_{\parallel} = \underline{k} \cdot \hat{\underline{b}}_0 \simeq \frac{1}{Rq} + \underline{b}_{\perp} \cdot \underline{k}_{\perp}$

Notice that $\frac{1}{Rq}$ v.s. $\frac{b_{\perp}}{l_{mix}} \rightarrow \text{magnetic Kubo num}$

To **reduce** D_n significantly requires $Ku_{mag} \ge 1$. Same for χ as we discussed in previous slides.

These evolve $\langle n \rangle$ and $\langle \partial_x v_{E \times B} \rangle$ fields and govern PE exchange with fluctuations.

For α_{DW} (a measurement of the resistive diffusion rate in the parallel direction) > 1 in H-W regime

Conclusions

- Stochastic fields can form a **fractal, elastic network**. Strong coupling of flow turbulence to the fractal network **prevents** PV mixing and hence zonal flow formation.
- **Dephasing effect** caused by stochastic fields quenches Reynolds stress (e.g. $\Delta \omega < Dk_{\perp}^2$).

- turbulence coupling. Hence, a staircase appears **resilient** in H-W model.

Single Barrier in Stochastic Fields