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Outline
• Introduction 

Critical question: How resilient is barriers in stochastic magnetic field?  
What is FOM for resilience? 

• Model & Calculation 

• Results 
a. Suppression of PV diffusivity and the shear-eddy tilting feedback loop. 
b. Power threshold increment for L-H transition.  
c. From single barrier to BLY (BALMFORTH, LLEWELLYN SMITH, and YOUNG 1998): 
timescale, induced by stochastic fields, that might modify the mixing length for the 
barrier.  

• Conclusions
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Why we study staircase in fusion device?
Staircase-like structure in Fusion Plasma:

Single Barrier formation

Shear Flow

Quench Turbulence

Edge-Localized Mode (ELM)

• ELMs are quasi-periodic relaxation events occurring at edge pedestal in 
H-mode plasma.  

• ELMs can damage wall components of a fusion device. 

Staircases 

Barriers
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Single barrier
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Stochastic field effect is important for boundary control

Trade off: RMP controls gradients and mitigates ELM, but raise 
the power threshold.  

Peeling-ballooning mode

Edge gradient  ↑

Edge-Localized Mode (ELM)

ELM Burst

Shear Flow
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More convective

How stochastic fields influence the shear flow, and the barrier formation?

How resilient is the barrier under the influence disordered field? 

Boundary Control: Resonant Magnetic Perturbation (RMP) 

Suppress (by inducing magnetic perturbation)
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Model

I¥
1. Cartesian coordinate: strong mean field   is in   direction (3D). 
2. Rechester & Rosenbluth (1978): waves, instabilities, and transport are 

studied in the presence of an ensemble of prescribed, static, stochastic 
fields. 

3.    (or  ) resonant at rational surface in third direction — 

 , and Kubo number:  ). 

4. Four-field equations —

B0 z

k ⋅ B = 0 k∥ = 0

ω → ω ± vAkz Kumag =
lac | B̃ |
Δ⊥B0

We use mean field approximation:

ζ = ⟨ζ⟩ + ζ̃, Perturbations produced by turbulences

where ⟨ ⟩ =
1
L ∫ dx

1
T ∫ dt

ensemble average over the zonal scales 

 We define rms of normalized stochastic field b ≡ (Bst /B0)2

Mean magnetic field  B0

 Bst,x

 Bst,y

 z

 x

 y

Magnetic islands overlapping forms stochastic 

vortices

(a) Potential vorticity equation—vorticity   

(b) Induction equation —   

(c) Pressure equation —   

(d) Parallel flow equation —  

−∇2ψ ≡ ζ
A, J

p
uz

Well beyond  
HM model
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Experimental Results with RMP 
for L-H Transition — fluctuations

(D. Kriete et al, PoP 27 062507 (2020)) (D. Kriete et al, PoP 27 062507 (2020)) (L. Schmitz et al, NF 59 126010 (2019) )

DIII-D

Key Physics

Key Questions:
What is the effect of stochastic fields ( ) on the Reynolds 
stress and the power threshold for the L-H transition?

b2

 6
KITP Staircase21, Feb. 18th 2021Single Barrier in Stochastic FieldsChang-Chun Samantha Chen



When does stochastic field effect becomes significant?

ω
Dk2

⊥ΔωvA |Δk∥ |kθΔx
∂
∂x

uy

Stochastic 
field induced  

scattering
Alfvénic 

Dispersion
Shear flow 

rate
Stochastic field decoherence 

beats self-decoherence.

Non-linear 
drift-wave 

decorrelation

We consider timescales:
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D ≡ vADM = vA ∑
k

πδ(kz)b2
k ∝ B2

st

Magnetic 
diffusivity

Alfvén wave propagate along stochastic fields 
  characteristic velocity emerges from the calculation of    → ∇ ⋅ J = 0

Auto-correlation 
length  lac

(Independent of  )B0



Decoherence of eddy tilting feedback

d
dt

kx = −
∂(ω0 + uyky)

∂x
= − ky

∂uy

∂x

shear flow
Gives an non-zero  

  
⟨kxky⟩

→⟨ũxũy⟩ ∝ ⟨kxky⟩

Snell’s law:

⟨ũxũy⟩ ≃ ∑
k

| ϕ̃ k |2

B2
0

(k2
y

∂uy

∂x
τc)

Self-feedback loop:

Shear flow reinforce the self-tilting.

The   shear generates the   correlation and 
hence support the non-zero Reynolds stress.

E × B ⟨kxky⟩

The Reynold stress modifies the shear via momentum transport.

Stochastic Fields Effect

 k∥ = k(0)
∥ + b ⋅ k⊥

 ω = ωD + δω

ω2 − ωDω − k2
∥v2

A = 0
Dispersion relation with drift-Alfvén coupling

(ωD + δω)2 − ωD(ωD + δω) − (k∥ + b ⋅ k⊥)2v2
A = 0

δω ≃
v2

A

ωD
(2k∥b ⋅ k⊥ + (b ⋅ k⊥)2)

ωD (drift wave turbulence frequency) ≡
kyρsCs

Ln
 8

KITP Staircase21, Feb. 18th 2021Single Barrier in Stochastic FieldsChang-Chun Samantha Chen



Decoherence of eddy tilting feedback

Stochastic fields interfere with shear-tilting feedback loop.

⟨ω⟩ ≃ ωD +
1
2

v2
A

ωD
b2k2

⊥

δω ≃
v2

A

ω0
(2k∥b ⋅ k⊥ + (b ⋅ k⊥)2)

Expectation frequency:

⟨δω⟩ ≃
v2

A

ω0
⟨(b ⋅ k⊥)2⟩ =

1
2

v2
A

ω0
b2k2

⊥

ω = ωD + δω
Self-feedback loop is broken by  :b2

⟨ũxũy⟩ ≃ ∑
k

| ϕ̃ k |2

B2
0

(k2
y

∂uy

∂x
τc +

1
2

ky
v2

Ak2
⊥

ωD

∂b2

∂x
τc)

Snell’s law:

d
dt

kx = −
∂ωk

∂x

= − ky
∂uy

∂x
−

1
2

v2
Ak2

⊥

ωD

∂b2

∂x
Ensemble average 

frequency shift

Stochastic dephasing

Stochastic fields (random ensemble of elastic loops) 
act as elastic loops and resist the tilting of eddies. 
 change the cross-phase btw   and  . → ũx ũy

eddies

Shear flow
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Results—Suppression of PV diffusivity

PV transport will be suppressed by stochastic fields via decoherence.

This stochastic dephasing is insensitive to turbulent modes (e.g. ITG, TEM,…etc.).

The ensemble average Reynolds force  :
∂
∂x

⟨ũxũy⟩
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ω̄ ≡ ω − ⟨uy⟩ky

Fres ≃ ∑
kω

−2ky

ω̄ρ
DPV,kω : Low   , so it is  

instead of sound speed   (small).
vA β ≡ Pthermal /Pmag vA

Cs

DPV = ∑
kω

| ũx,kω |2 vAb2lack2

ω̄2 + (vAb2lack2)
2

⟨ũxζ̃⟩
⏟
PV flux

=
∂
∂x

⟨ũxũy⟩ (Reynolds force)
⟨ζ̃⟩ =

∂vE×B

∂x
(E × B shear)

∂
∂x

⟨ũxũy⟩ = − DPV
∂
∂x

⟨ζ⟩ + Fresκ
∂
∂x

⟨p⟩ Suppressed by 
stochastic fields

Residual Stress CurvaturePV diffusivity

Taylor Identity:
Mean vorticity

⟨ũxζ̃⟩ =



Similar Simulation Results for β-plane MHD

St
oc

ha
st
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 d

ep
ha

si
ng

2D MHD

1. Coupling to resisto-elastic waves, 
which is   dependent.B2

st
2. Increase of the magnetic drag. 

More details: 
   
Reynolds stress will undergo 
decoherence at levels of field intensities 
well below that of Alfvénization (where 
Maxwell stress balances the Reynolds 
stress).  

ackn: Steven M. Tobias

(Chen & Diamond, ApJ 892, 24 (2020))

∂
∂t

⟨ux⟩ = ⟨Γ⟩ −
1

ημ0ρ
⟨B2

st, y⟩⟨ux⟩ + ν∇2⟨ux⟩

PV flux Magnetic drag
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Stochastic fields reduce the Reynolds stress at a   smaller than that for Alfvénization.B0



Results — Increment of PLH

We expect stochastic fields to raise L-I  and I-H transition thresholds. 

Aimar
Turbulence 
Zonal flow 
Pressure 

L-mode

Input power

H-modeI-phase

   quantifies the strength of stochastic dephasing.α ≡
b2

βρ2
*

q
ϵ

Macroscopic 
Impact 

Stochastic field stress dephasing effect requires:  . Δω ≤ k2
⊥D (where D = DMvA)

α ≡
b2

βρ2
*

q
ϵ

> 1

Kim-Diamond Model
(Kim & Diamond, PoP 10, 1698 (2003)) 

This reduce model for the L-H 
transition is useful for testing trends 
in power threshold increment 
induced by stochastic fields. 

Predator: zonal flow 
prey: turbulence 

lac ≃ Rq
ϵ ≡ Ln/R ∼ 10−2

β ≡
Pthermal

Pmag
≃ 10−2∼−3

ρ* ≡
gyro-radius

density scale length
≡

ρs

Ln
≃ 10−2∼−3

q(stafety factor) ≡
rBt

RBp

This gives dimensionless parameter (α):
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  is small    
(pessimistic) 
ρ* → α ↑



(L. Schmitz et al, NF 59 126010 (2019) )

DIII-D

Results — Increment of PLH

The threshold increase due to stochastic dephasing effect is seen in 
turbulence intensity, zonal flow, and pressure gradient.

Macroscopic 
Impact 

Input power
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Input power

 α ≠ 0

α ≡
b2

βρ2
*

q
ϵ
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(Chen et al., PoP in press (2021)) 
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From Single Barrier to Layering? 
After BLY’s mixing length model (Balmforth et al. JFM 355, 239 (1998)), Ashourvan & 
Diamond, PoP 24, 012305 (2017) proposed a mixing length model for H-W turbulence:

• Reduce evolution 
equations (based 
on H-W model). 

• Energy and 
Potential entropy 
(PE) conserved.

{
Strong mixing (lRH > l0) : lmix ≃ l0 (Weak mean PV gradient)
Weak mixing (l0 > lRH) : lmix ≃ l1−κ

0 lκ
RH (Strong PV gradient) Transport bifurcation

• Forcing scale:   

• Rhines scale:  

l0

lRH =
ϵ

|∂xq |

mixing scale:  lmix =
l0

(1 + l2
0(∂xq)2/ϵ)κ/2

=
l0

(1 + l2
0 /l2

RH)κ/2

The mixing length depends on two scales:

n : density
ζ : potential vorticity
ϵ : turbulent PE

ϵ ≡ (δn − δζ)2/2
Dn : turbulent particle diffusivity
χ : turbulent vorticity
P : production
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Potential Vorticity: ∂
∂t

⟨ζ⟩ =
∂
∂x ((Dn − χ)

∂⟨n⟩
∂x ) + χ

∂2

∂x2
⟨ζ⟩ + μc

∂2

∂x2
⟨ζ⟩

Density: ∂
∂t

⟨n⟩ =
∂
∂x (Dn

∂⟨n⟩
∂x ) + Dc

∂2

∂x2
⟨n⟩

Turbulent potential Enstrophy: ∂
∂t

ϵ =
∂
∂x (Dϵ

∂ϵ
∂x ) + χ[

∂(n − ζ)
∂x

]2 − ϵ−1/2
c ϵ3/2 + P
PE Dissipation

residual stress turb. Viscous diffusion 

turb. particle diffusion 

PE diffusion mean-turb PE 
Coupling



Very 
Preliminary
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Essential physics of Ashourvan & Diamond model (after BLY’s) is contained in   and transport 

coefficient density diffusivity   and turbulent viscosity   (called   previously).

lmix

Dn χ DPV

From Single Barrier to Layering? 

These evolve   and   fields and govern PE exchange with fluctuations.⟨n⟩ ⟨∂xvE×B⟩

For   in H-W regime 

(where  ), we have                           

By replacing   with  , we estimate  . 

Notice that   v.s.   magnetic Kubo number  . 

To reduce   significantly requires  . Same for   as we discussed in previous slides.

αDW (a measurement of the resistive diffusion rate in the parallel direction) > 1

αDW =
k2

∥v2
the

ν
Dn ≃

l2
mixϵ
αDW

k∥ k∥ = k ⋅ ̂b0 ≃
1

Rq
+ b⊥ ⋅ k⊥ ≃

1
Rq

+
b⊥

lmix
Dn ≃

l2
mixϵν/v2

the

( 1
Rq )2 + ( b

lmix
)2

1
Rq

b⊥

lmix
→ Kumag = bRq/lmix

Dn Kumag ≥ 1 χ

 Kumag = Kumag(lmix)



Conclusions
• Stochastic fields can form a fractal, elastic 

network. Strong coupling of flow turbulence to 
the fractal network prevents PV mixing and hence 
zonal flow formation. 

• Dephasing effect caused by stochastic fields 
quenches Reynolds stress (e.g.  ). 
 

Δω < Dk2
⊥

eddies

Shear flow

Alfvénic loops Site-percolation Network

blob
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•   shift L-H threshold to higher power, in proportional to  . 

• Preliminary estimation suggests   required for significant change in mean-
turbulence coupling. 
Hence, a staircase appears resilient in H-W model.  

b2 α ≡
b2

βρ2
*

q
ϵ

Kumag(lmix) ≥ 1


