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Outline

Introduction
Resonant Magnetic Perturbation plays an important role in momentum transport in

edge plasma evolution.
Model & Calculation

Results

a. Suppression of PV diffusivity and the shear-eddy tilting feedback loop.
b. Power threshold increment for L-H transition.

c. Intrinsic Rotation in presence of stochastic fields.

d. Mixing length in presence of stochastic fields.

Conclusions



Why we study stochastic fields in fusion device?
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Pedestal Formation

Edge-Localized Mode (ELM)

®* ELMs are quasi-periodic relaxation events
occurring at edge pedestal in H-mode

More conductive

Pedestal Current (jpeq)

More convective

Suppress (by inducing magnetic perturbation)

plasma. Boundary Control: Resonant Magnetic Perturbation (RMP)
®* ELMs can damage wall components of a

fusion device.



Stochastic field effect is important for boundary control

Shear Flow
v

Trade off: RMPs controls gradients and mitigates ELM, but raise
the power threshold.

How RMPs influence the Reynolds stress and hence suppress the zonal flow?

Boundary Control: Resonant Magnetic Perturbation (RMP)

Suppress (by inducing magnetic perturbation)

How stochastic fields increase the power threshold of L-H transition?

We examine the physics of stochastic fields interaction with zonal flow near the edge.
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Key Physics

Experimental Results with RMP
for L-H Transition — fluctuations
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DIII-D Experimental results: RMPs lower the Reynolds stress and increase

the power threshold of L-H transition.
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3. kB =0(ork; = () resonant at rational surface in third direction —

Model

1. Cartesian coordinate: strong mean field By is in z direction (3D).

2. Rechester & Rosenbluth (1978): waves, instabilities, and transport are
studied in the presence of external excited, static, stochastic fields.

[ |B|

w — o £ vk, and Kubo number: Ku,,,, = ).

4. Four-field equations — (2)

(b)
(c)
(d)

Well beyond

HM model

NY)

nduction equation — A, J

Pressure equation — p

Parallel flow equation — u,

We use mean field approximation:

E=({) + Perturbations produced by turbulences

1 1
where () = —de—Jdt
L T

ensemble average over the zonal scales

We define rms of normalized stochastic field » = \/(B_St/BO)z

Potential vorticity equation—vorticity — Vzl// =

Magnetic islands overlapping forms stochastic

vortices



When does stochastic field effect becomes significant?

We consider timescales:

Stochastic
field induced
scattering

Non-linear
drift-wave
decorrelation

Shear flow
rate

Stochastic field decoherence

beats the self-decoherence.

Q)
2
ox
A A\ E : 2 2
//“\ D — VADM — VA ﬂé(kZ)bk X BSI
NaturallinewidtheAlw /’ ‘ \\ T k T (|ndependent of BO)
I
/ R Magnetic Auto-correlation
_ 7 N diffusivity length [,

Alfvén wave propagate along stochastic fields
— characteristic velocity emerges from the calculation of V - J = 0




Dimensionless Parameters

Two dimensionless Parameters:

e=L,/R~107* ,_ B, € : a=— — > 1
p— —_— A~ o €
5o 1023 b= (5> VPP ~~ 10 P/ P
Py ~ —I)~=3 .« o
pr=-=10 Criterion for stochastic fields o quantifies the strength
effect important to L-H transition. of stochastic dephasing.

How "stochastic’ is magnetic field?

Alfvénic
Dispersion

Stochastic Ku (Magnetic Kubo number)

broadening s

V.S stochastic field scattering length

VA/L” Dkf

perpendicular magnetic fluctuation size ~

(excited by drift-

2.
Alfvénic coupling) (for a b~ given)



Decoherence of eddy tilting feedback

' : Self-feedback loop:
| d dwy + u k ) ou ) The E X B shear generates the (k,k,) correlation and )

Ekx — p ky_a Y hence support the non-zero Reynolds stress.

t X X /\

Gives an non-zero(k k) * (ff ~ ) Z | ¢ k‘ ( T )
K —)<l/txl/ty> X <kxky> shear flow J xy\kbax

@e Reynold stress modifies the shear via momentum transportj

Shear flow reinforce the self-tilting.

Stochastic Fields Effect - ~
0

(wp + 6w)* — wpwp + 6w) — (ky + b - k )*vi =
4 0 ) 1
kj=k”+b-k,

Dispersion relation with drift-

Alfvéen coupling

0 — wpw — k”vA 0 +

_ — Vi ,
W = Wp + 0w 6w ~—Q2kyb -k +(b-k ))

k,psC

L

n

wp, (drift wave turbulence frequency) =




Decoherence of eddy tilting feedback

Expectation frequency:

/ vﬁ ‘ ) s p2 1 v2 h
<3w ~—Qkyb -k +(b-k l)2> (Sw) ~ —2((b -k DY) = A b%k?
\ 2y 0 2 W
\_ J \_ 0 0 )

W = wp, + 6w m Self-feedback loop is broken by b?:

~ 5 ) Il A k —
1 12 A > ou 1 viki ob?
() = wp A bzki» * (i) = ‘ ¢1;\ (i —=1,+ Sk ==——=7)
2 wp ou, 1 v2k2 b ~  B; 0x 2 7 wp Ox
N\ Y = —k, x 2w o g Stochastic dephasing

\_ Ensemble average /

frequency shift

Shear flow O

Stochastic fields (random ensemble of elastic loops) act as - > -
elastic loops and resist the tilting of eddies. O S ‘.
eddies C ) ® O \ ’)

—change the cross-phase btw u, and u,.
O
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Results—Suppression of PV diffusivity

0 .
The ensemble average Reynolds force a—(uxuy):
X
~ 0 0 0 Sy
i~ 0~~~ v ppressed by
PV flux = <Mx5> N O <l/tx1/ty> o O (&) + ? Ox (P) stochastic fields
T PV diffusivityT Resldual Stress  Curvature
: ~ 0 o P 0VE«p
Taylor Identity: (ir,0) = ——(i) Mean vorticity ({) =—== (E'x B shear)
X

mag °

2
w? + (VAbzlack2> instead of sound speed C, (small). @ = @ — (uy)k,

—2k
127 1.2 .
~ ' lack Fres = Z 3 DPV’kw
Dpv|= 2 1Tz " ' O
PV x,kw vi:Low =P, /P SO 1t 1S V4 v
kw

This stochastic dephasing is insensitive to turbulent modes (e.g. ITG, TEM,...etc.).
(Chen et al.,PoP 28, 042301 (2021))

PV transport will be suppressed by stochastic fields via decoherence.
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Macroscopic

Results — Increment of PiH

Stochastic field stress dephasing effect requires: Aw < ka (where D = D;,v,).

Impact

b* ¢
This gives dimensionless parameter (x): *= N EY > 1
« quantifies the strength of stochastic dephasing.
1.4} | rbulence 4 Kim-Diamond Model
|~ R ) : Zonal flow |
ac = 14 1.2 Pressure 4 (Kim & Diamond, PoP 10, 1698 (2003))
e =L,/R~ 1077 ' of ' ' :
P s "~ This reduce model for the L-H
p=——=10 0.8F transition is useful for testing trends
- gyro-radius 0.6 __ ?n power threshold ir.mcr.ement
Px = density scale length o a : induced by stochastic fields.
= % ~ 10723 39 __ Predator: zonal flow
: " T prey: turbulence
q(stafetyfactor)ERB’ 00 et N
’ 0.0 0.5 1.0 1.5 2.0

Input power

We expect stochastic fields to raise L-H transition thresholds.



Macroscopic
Impact

Turbulence Intensity

1.6
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Input power

The threshold increase due to stochastic dephasing effect is seen in

Zonal flow energy vzg?
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Input power

Pressure Gradient

Results — Increment of P.H

Input power

turbulence intensity, zonal flow, and pressure gradient.
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Results — Increment of Pru
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Intrinsic Rotation and Kinetic Stress

From parallel acceleration:

Influence intrinsic rotation
®* The sound speed is the relevant speed (acoustic dynamics).

4 )
1 0 p 9 ©
or © ( ) pazp I dz 0z +tb-V,
\ J
 ~ 0 0
<uxuz> = Vturb_<uz> + Z res_<p>
0x
l Turbulent Toroidal
viscosity Residual Stress

Stochastic Fields Effect

-

(9 J 1o
%) + ) =~ —-(Bp)
ot X pox

Toroidal
Reynolds Stress

2C b7l k*

"~/ 2
v, g = E |, |
W RO 2 4 (20,621, k)

Stochastic fields effect is weak (C.D,, < v,D,,).

—k
F é
° z,res ~ v turb.kw *
ka) a)Shp

F

z,res

Requires symmetry breaking (kzky) = ()

(Chen et al.,PoP 28, 042301 (2021))

Kinetic Stress

Pat Diamond'’s talk
this afternoon

12:30 pm

Detail calculation
is needed.

15



Fate of Spatial structure of zonal flow?
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Shear Flow
v
Edge-Localized Mode (ELM)

Density corrugation Zonal flow width

Zonal flow width is related to corrugation length.

We are interested in zonal flow width in presence of stochastic fields.
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Layering Structure—Mixing Length Model

A mixing length model for layering:

® Reduce evolution equations (based on H-W model).

® Energy and Potential entropy (PE) conserved.

Density: %(n) = 9 (D o ) + Dca—z(n)

ox \ " ox 0x?
turb. particle diffusion
0 0 o(n) 0° 0° : : :

Potential Vorticity: —(¢&) = —|( (D, — + y—C) + u,——

y ar@ ™ <( n = X) ™ ) )(M(C) Mcax2<é“> X

residual stress turb. Viscous diffusion
0 0 de o(n — ) Ashourvan & Diamond, PoP 24, 012305 (2017)
Turbulent potential Enstrophy: —e = —( D.— | + 4[ 1> —e 2> 4 P
r ot o0x 0x o0x
n : density PE diffusion megg;g];?gPE PE Dissipation

 : potential vorticity

e : turbulent PE € = (6n - 60)?/2
D, : turbulent particle diffusivity

y : turbulent vorticity
P : production

Density corrugation forms staircase-like structure.
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The mixing length ([,

IX

Scale Selection

) depends on two scales:

e Driving scale: [,

o Rhines scale: [ =

=D

Ve

0,9
ly ly

mixing scale: [ . = =
5 T+ (0,92 ey (1 + 13,2

m

{Strong mixing (I, > 1) : [ .. ~ I, (Weak mean PV gradient)

Weak mixing (I, > ley) : 1. =~ ;7% (Strong PV gradient)

[ .. (hybrid length scale) sets the scale of zonal flow.
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Very
Preliminary

For apy (a measurement of the resistive diffusion rate in the parallel direction) > 1 in H-W regime:

Competition btw — v.s. —— gives Kl = bRq/l

Gensity diffusivity: \
2
D lmlx
B
Apw
Resistive diffusion rate: +
k|| Vthe
Apw =
\_ v
1 b
Rq lmlx

Stochastic Fields Effect

Kp=k-bp=—=+b, -k =2+~
\ q q mlx)

mix

The mixing length is not likely affected by b?.

Main effect of diffusivity D_and y

4 )
D ~ liguxev / Vthe
(=~ )2 + ( )?
k mlx J

Same for y (or Dpy, in this case).

K umag(lmix)

Scalar selection and staircase corrugation change requires Ku,,,, > 1.
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Conclusions

Dephasing effect caused by stochastic fields  shearfiow

guenches poloidal Reynolds stress (e.g. Aw < Dki). @ ' @ ‘
Here, D = v,D,,. >

b* g
Vhpi €

Stochastic fields have weaker effect on reducing toroidal Reynolds stress, since C.D;, < v,D,,.

b? shift L-H threshold to higher power, in proportional to a =

Need to revisit symmetry breaking (kykz) # () calculation (for F - res) IN stochastic magnetic field.

The mixing length is not likely affected by b>.
To change mixing length, we need Kumag > 1.
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