On How Decoherence of Vorticity Flux by Stochastic Magnetic Fields Quenches Zonal Flow Generation

Chang-Chun Chen¹, Patrick Diamond¹, Rameswar Singh¹, and Steven Tobias²

¹University of California San Diego, USA ²University of Leeds, UK ³Kavli Institute for Theoretical Physics, Santa Barbra, CA, USA

This work is supported by the U.S. Department of Energy under award number DE-FG02-04ER54738

US-EU Transport Task Force Workshop 2021, April 21st 2021

Outline

- Introduction Resonant Magnetic Perturbation plays an important role in momentum transport in edge plasma evolution.
- Model & Calculation
- Results

 - a. Suppression of PV diffusivity and the shear-eddy tilting feedback loop. b. Power threshold increment for L-H transition.
 - c. Intrinsic Rotation in presence of stochastic fields.
 - d. Mixing length in presence of stochastic fields.
- Conclusions

Why we study stochastic fields in fusion device?

Chang-Chun Samantha Chen

Decoherence of Vorticity Flux by Stochastic Magnetic Fields

Stochastic field effect is important for boundary control

Key Questions:

How RMPs influence the Reynolds stress and hence suppress the zonal flow? How stochastic fields increase the power threshold of L-H transition?

We examine the physics of stochastic fields interaction with zonal flow near the edge.

Chang-Chun Samantha Chen

Decoherence of Vorticity Flux by Stochastic Magnetic Fields

Boundary Control: Resonant Magnetic Perturbation (RMP)

Suppress (by inducing magnetic perturbation)

Trade off: RMPs controls gradients and mitigates ELM, but raise the **power threshold**.

US-EU TTF April 21st 2021

Key Physics

Experimental Results with RMP for L-H Transition — fluctuations

(D. Kriete et al, PoP **27** 062507 (2020))

(D. Kriete et al, PoP **27** 062507 (2020))

DIII-D Experimental results: RMPs lower the Reynolds stress and increase the power threshold of L-H transition.

Chang-Chun Samantha Chen

Decoherence of Vorticity Flux by Stochastic Magnetic Fields

- Cartesian coordinate: strong mean field B_0 is in z direction (3D). 1.
- Rechester & Rosenbluth (1978): waves, instabilities, and transport are 2. studied in the presence of external excited, static, stochastic fields.
- **3.** $\underline{k} \cdot \underline{B} = 0$ (or $k_{\parallel} = 0$) resonant at rational surface in third direction —

 $\omega \to \omega \pm v_A k_z$, and Kubo number: $K u_{mag} = \frac{l_{ac} |\mathbf{B}|}{\Delta_{\perp} B_0}$).

4. Four-field equations —

Well beyond HM model

(a) Potential vorticity equation

(b) Induction equation -A, J

(c) Pressure equation $-\mathbf{p}$

(d) Parallel flow equation $-\mathbf{u}_{z}$

We use mean field approximation:

 $\zeta = \langle \zeta \rangle + \widetilde{\zeta},$ Perturbations produced by turbulences where $\langle \rangle = \frac{1}{L} \int dx \frac{1}{T} \int dt$ ensemble average over the zonal scales

We define rms of normalized stochastic field $b \equiv \sqrt{(\overline{B_{st}}/B_0)^2}$

Model

n-vorticity
$$-\nabla^2 \psi \equiv \zeta$$

Magnetic islands overlapping forms stochastic

When does stochastic field effect becomes significant?

We consider timescales:

Alfvén wave propagate along stochastic fields \rightarrow characteristic velocity emerges from the calculation of $\nabla \cdot J = 0$

Decoherence of Vorticity Flux by Stochastic Magnetic Fields

Dimensionless Parameters

Two dimensionless Parameters:

1.

$$\begin{cases} l_{ac} \simeq Rq \\ \epsilon \equiv L_n/R \sim 10^{-2} \\ \beta \simeq 10^{-2 \sim -3} \\ \rho_* \equiv \frac{\rho_s}{L_n} \simeq 10^{-2 \sim -3} \end{cases}$$

$$\Delta \omega < Dk_{\perp}^2$$

$$b^{2} \equiv (\frac{\delta B_{r}}{B_{0}})^{2} > \sqrt{\beta}\rho_{*}^{2}\frac{\epsilon}{q} \sim 10^{-8}$$

Criterion for stochastic fields

How `stochastic' is magnetic field?

Alfvénic Dispersion

$$v_A/L_{\parallel}$$

(excited by drift-Alfvénic coupling)

Stochastic broadening

 Dk^2

Chang-Chun Samantha Chen

V.S

Decoherence of Vorticity Flux by Stochastic Magnetic Fields

$$\alpha \equiv \frac{b^2}{\rho_*^2 \sqrt{\beta}} \frac{q}{\epsilon} > 1$$

 α quantifies the strength of stochastic dephasing.

2.

Decoherence of eddy tilting feedback

 ω_D (drift wave turbulence frequency) $\equiv \frac{k_y \rho_s C_s}{L_n}$

Self-feedback loop:

The $E \times B$ shear generates the $\langle k_x k_y \rangle$ correlation and hence support the non-zero Reynolds stress.

$$\langle \widetilde{u}_{x}\widetilde{u}_{y} \rangle \simeq \sum_{k} \frac{|\widetilde{\phi}_{k}|^{2}}{B_{0}^{2}} (k_{y}^{2} \frac{\partial u_{y}}{\partial x} \tau_{c})$$

The Reynold stress modifies the shear via momentum transport.

Shear flow reinforce the self-tilting.

Decoherence of eddy tilting feedback

Expectation frequency: $\delta\omega \simeq \frac{v_A^2}{\omega_0} (2k_{\parallel}\underline{b} \cdot \underline{k}_{\perp} + (\underline{b} \cdot \underline{k}_{\perp})^2)$

Stochastic fields (random ensemble of elastic loop elastic loops and resist the tilting of eddies.

 \rightarrow change the cross-phase btw \widetilde{u}_x and \widetilde{u}_y .

Stochastic fields interfere with shear-tilting feedback loop.

Chang-Chun Samantha Chen

Decoherence of Vorticity Flux by Stochastic Magnetic Fields

$$\langle \delta \omega \rangle \simeq \frac{v_A^2}{\omega_0} \langle (\underline{b} \cdot \underline{k}_\perp)^2 \rangle = \frac{1}{2} \frac{v_A^2}{\omega_0} b^2 k_\perp^2$$
Self-feedback loop is broken by b^2 :
$$(\widetilde{u}_x \widetilde{u}_y) \simeq \sum_k \frac{|\widetilde{\phi}_k|^2}{B_0^2} (k_y^2 \frac{\partial u_y}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_\perp^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c}{W_b \omega_b \partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_\perp^2}{\omega_b \partial x} \frac{\partial b^2}{\partial x} \tau_c}{W_b \omega_b \partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_\perp^2}{\omega_b \partial x} \frac{\partial b^2}{\partial x} \tau_c}{W_b \omega_b \partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_\perp^2}{\omega_b \partial x} \frac{\partial b^2}{\partial x} \tau_c}{W_b \omega_b \partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_\perp^2}{\omega_b \partial x} \frac{\partial b^2}{\partial x} \tau_c}{W_b \omega_b \partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_\perp^2}{\omega_b \partial x} \frac{\partial b^2}{\partial x} \tau_c}{W_b \omega_b \partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_\perp^2}{\omega_b \partial x} \frac{\partial b^2}{\partial x} \tau_c}{W_b \omega_b \partial x} \tau_c + \frac{1}{2} k_y \frac{v_A k_\perp^2}{\omega_b \partial x} \frac{\partial b^2}{\partial x} \tau_c}{W_b \omega_b \partial x} \tau_c + \frac{1}{2} k_y \frac{v_A k_\perp^2}{\omega_b \partial x} \frac{\partial b^2}{\partial x} \tau_c}{W_b \omega_b \partial x} \tau_c + \frac{1}{2} k_y \frac{v_A k_\perp^2}{\omega_b \partial x} \frac{\partial b^2}{\partial x} \tau_c}{W_b \omega_b \partial x} \tau_c + \frac{1}{2} k_y \frac{v_A k_\perp^2}{\omega_b \partial x} \frac{\partial b^2}{\partial x} \tau_c}{W_b \omega_b \partial x} \tau_c}$$

$$D_{PV} = \sum_{k\omega} |\widetilde{u}_{x,k\omega}|^2 \frac{|v_A b^2 l_{ac} k^2}{\bar{\omega}^2 + \left(v_A b^2 l_{ac} k^2\right)^2}$$

This **stochastic dephasing** is insensitive to turbulent modes (e.g. ITG, TEM,...etc.). (Chen et al., PoP **28**, 042301 (2021))

PV transport will be suppressed by stochastic fields via decoherence.

Chang-Chun Samantha Chen

Decoherence of Vorticity Flux by Stochastic Magnetic Fields

 v_A : Low $\beta \equiv P_{thermal}/P_{mag}$, so it is v_A instead of sound speed C_s (small).

$$F_{res} \simeq \sum_{k\omega} \frac{-2k_y}{\bar{\omega}\rho} D_{PV}$$
$$\bar{\omega} \equiv \omega - \langle u_y \rangle k_y$$

Results — Increment of PLH

Stochastic field stress dephasing effect requires: $\Delta \omega \leq k_{\perp}^2 D$ (where $D = D_M v_A$). This gives **dimensionless parameter** (α): $\alpha \equiv \frac{b^2}{\sqrt{\beta}\rho_*^2} \frac{q}{\epsilon} > 1$

α quantifies the strength of stochastic dephasing.

We expect stochastic fields to raise L-H transition thresholds.

Chang-Chun Samantha Chen

Macroscopic

Impact

Kim-Diamond Model

(Kim & Diamond, PoP **10**, 1698 (2003))

This reduce model for the L-H transition is useful for testing trends in power threshold increment induced by stochastic fields.

Predator: zonal flow prey: turbulence

Macroscopic Impact

Results — Increment of PLH

$$\alpha \equiv \frac{b^2}{\sqrt{\beta}\rho_*^2} \frac{q}{\epsilon} = 0.$$

The threshold increase due to stochastic dephasing effect is seen in turbulence intensity, zonal flow, and pressure gradient.

(Chen et al., PoP **28**, 042301 (2021))

Chang-Chun Samantha Chen

Decoherence of Vorticity Flux by Stochastic Magnetic Fields

.0, 0.2, 0.4, 0.6, 0.8...., 2.0

Macroscopic Impact

Results — Increment of PLH

Chang-Chun Samantha Chen

Decoherence of Vorticity Flux by Stochastic Magnetic Fields

US-EU TTF April 21st 2021

Intrinsic Rotation and Kinetic Stress

Chang-Chun Samantha Chen

Decoherence of Vorticity Flux by Stochastic Magnetic Fields

intrinsic rotation.

Fate of Spatial structure of zonal flow?

Zonal flow width is related to corrugation length.

We are interested in zonal flow width in presence of stochastic fields.

Chang-Chun Samantha Chen

Decoherence of Vorticity Flux by Stochastic Magnetic Fields

Density corrugation

Poloidal zonal

Zonal flow width

A mixing length model for layering:

- Reduce evolution equations (based on H-W model).
- Energy and Potential entropy (PE) conserved.

Density:
$$\frac{\partial}{\partial t} \langle n \rangle = \frac{\partial}{\partial x} \left(D_n \frac{\partial \langle n \rangle}{\partial x} \right) + D_c \frac{\partial^2}{\partial x^2} \langle n \rangle$$

turb. particle diffusion

Potential Vorticity:
$$\frac{\partial}{\partial t} \langle \zeta \rangle = \frac{\partial}{\partial x} \left((D_n - \chi) \frac{\partial \langle n \rangle}{\partial x} \right) + \chi \frac{\partial^2}{\partial x^2}$$

Turbulent potential Enstrophy: $\frac{\partial}{\partial t}\epsilon = \frac{\partial}{\partial x}$

 $\left(D_{\epsilon}\frac{\partial\epsilon}{\partial x}\right) + \chi[$

PE diffusion

- *n* : density
- ζ : potential vorticity
- ϵ : turbulent PE $\epsilon \equiv (\delta n \delta \zeta)^2/2$
- D_n : turbulent particle diffusivity
- χ : turbulent vorticity
- *P* : production

Density corrugation forms staircase-like structure.

Chang-Chun Samantha Chen

Decoherence of Vorticity Flux by Stochastic Magnetic Fields

Layering Structure—Mixing Length Model

turb. Viscous diffusion

$$\left[\frac{\partial(n-\zeta)}{\partial x}\right]^2 - \epsilon_c^{-1/2}\epsilon^{3/2} + P$$

mean-turb PE Coupling

PE Dissipation

Ashourvan & Diamond, PoP **24**, 012305 (2017)

US-EU TTF April 21st 2021

Scale Selection

The mixing length (l_{mix}) depends on **two scales**:

• Driving scale: l_0 • Rhines scale: $l_{RH} = \frac{\sqrt{\epsilon}}{|\partial_x q|}$

mixing scale: l_{mix}

 l_{mix} (hybrid length scale) sets the scale of zonal flow.

What is the effect of stochastic fields on staircases?

Chang-Chun Samantha Chen

Decoherence of Vorticity Flux by Stochastic Magnetic Fields

$$L = \frac{l_0}{(1 + l_0^2 (\partial_x q)^2 / \epsilon)^{\kappa/2}} = \frac{l_0}{(1 + l_0^2 / l_{RH}^2)^{\kappa/2}}$$

 $\begin{cases} \text{Strong mixing } (l_{RH} > l_0) : \quad l_{mix} \simeq l_0 \text{ (Weak mean PV gradient)} \\ \text{Weak mixing } (l_0 > l_{RH}) : \quad l_{mix} \simeq l_0^{1-\kappa} l_{RH}^{\kappa} \text{ (Strong PV gradient)} \end{cases}$

Very Preliminary

Main effect of diffusivity D_n and χ

For α_{DW} (a measurement of the resistive diffusion rate in the parallel direction) > 1 in H-W regime:

Competition btw
$$\frac{1}{Rq}$$
 v.s. $\frac{\underline{b}_{\perp}}{l_{mix}}$ gives

$$Ku_{mag} =$$

The mixing length is not likely affected by b^2 .

Chang-Chun Samantha Chen

Decoherence of Vorticity Flux by Stochastic Magnetic Fields

Same for χ (or D_{PV} in this case).

Scalar selection and staircase corrugation change requires $Ku_{mag} \ge 1$.

Conclusions

Dephasing effect caused by stochastic fields quenches poloidal Reynolds stress (e.g. $\Delta \omega < Dk_{\perp}^2$). Here, $D = v_A D_M$.

 b^2 shift L-H threshold to higher power, in pro

- The mixing length is not likely affected by b^2 . To change mixing length, we need $Ku_{mag} \ge 1$.

portional to
$$\alpha \equiv \frac{b^2}{\sqrt{\beta}\rho_*^2} \frac{q}{\epsilon}$$

Stochastic fields have weaker effect on reducing toroidal Reynolds stress, since $C_s D_M < v_A D_M$. Need to revisit symmetry breaking $\langle k_v k_z \rangle \neq 0$ calculation (for $F_{z,res}$) in stochastic magnetic field.

Decoherence of Vorticity Flux by Stochastic Magnetic Fields