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Outline
• Introduction 

Resonant Magnetic Perturbation plays an important role in momentum transport in 
edge plasma evolution.  

• Model & Calculation 

• Results 
a. Suppression of PV diffusivity and the shear-eddy tilting feedback loop. 
b. Power threshold increment for L-H transition.  
c. Intrinsic Rotation in presence of stochastic fields. 
d. Mixing length in presence of stochastic fields. 

• Conclusions
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Why we study stochastic fields in fusion device?

Pedestal Formation

Shear Flow

Quench Turbulence

Edge-Localized Mode (ELM)

• ELMs are quasi-periodic relaxation events 
occurring at edge pedestal in H-mode 
plasma.  

• ELMs can damage wall components of a 
fusion device. 

Peeling-ballooning mode

Edge gradient  ↑

Edge-Localized Mode (ELM)

ELM Burst
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Boundary Control: Resonant Magnetic Perturbation (RMP) 

Suppress (by inducing magnetic perturbation)
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Stochastic field effect is important for boundary control

Edge-Localized Mode (ELM)

ELM Burst

Shear Flow

How RMPs influence the Reynolds stress and hence suppress the zonal flow? 
How stochastic fields increase the power threshold of L-H transition?

Trade off: RMPs controls gradients and mitigates ELM, but raise 
the power threshold.  

Boundary Control: Resonant Magnetic Perturbation (RMP) 

Suppress (by inducing magnetic perturbation)

We examine the physics of stochastic fields interaction with zonal flow near the edge.

Key Questions:
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Experimental Results with RMP 
for L-H Transition — fluctuations

(D. Kriete et al, PoP 27 062507 (2020)) (D. Kriete et al, PoP 27 062507 (2020)) (L. Schmitz et al, NF 59 126010 (2019) )

DIII-D

Key Physics

DIII-D Experimental results: RMPs lower the Reynolds stress and increase 
the power threshold of L-H transition.
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Model

I¥
1. Cartesian coordinate: strong mean field   is in   direction (3D). 
2. Rechester & Rosenbluth (1978): waves, instabilities, and transport are 

studied in the presence of external excited, static, stochastic fields. 
3.    (or  ) resonant at rational surface in third direction — 

 , and Kubo number:  ). 

4. Four-field equations —

B0 z

k ⋅ B = 0 k∥ = 0

ω → ω ± vAkz Kumag =
lac | B̃ |
Δ⊥B0

We use mean field approximation:

ζ = ⟨ζ⟩ + ζ̃, Perturbations produced by turbulences

where ⟨ ⟩ =
1
L ∫ dx

1
T ∫ dt

ensemble average over the zonal scales 

We define rms of normalized stochastic field b ≡ (Bst /B0)2

Mean magnetic field  B0

 Bst,x

 Bst,y

 z

 x

 y

Magnetic islands overlapping forms stochastic 

vortices

(a) Potential vorticity equation—vorticity   

(b) Induction equation —   

(c) Pressure equation —   

(d) Parallel flow equation —  

−∇2ψ ≡ ζ
A, J

p
uz

Well beyond  
HM model
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When does stochastic field effect becomes significant?

ω
Dk2

⊥Δω
kθΔx

∂
∂x

uy

Stochastic 
field induced  

scattering

Shear flow 
rate Stochastic field decoherence 

beats the self-decoherence.

Non-linear 
drift-wave 

decorrelation

We consider timescales:

D ≡ vADM = vA ∑
k

πδ(kz)b2
k ∝ B2

st

Magnetic 
diffusivity

Alfvén wave propagate along stochastic fields 
  characteristic velocity emerges from the calculation of    → ∇ ⋅ J = 0

Auto-correlation 
length  lac

(Independent of  )B0
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Kumag (Magnetic Kubo number)

≡
stochastic field scattering length

perpendicular magnetic fluctuation size
≲ 1,

lac ≃ Rq
ϵ ≡ Ln/R ∼ 10−2

β ≃ 10−2∼−3

ρ* ≡
ρs

Ln
≃ 10−2∼−3

Dk2
⊥vA/L∥

Stochastic 
broadening

Alfvénic 
Dispersion

(excited by drift-
Alfvénic coupling) 

v.s 

Dimensionless Parameters

How `stochastic’ is magnetic field?

Two dimensionless Parameters:

Criterion for stochastic fields 
effect important to L-H transition.

b2 ≡ (
δBr

B0
)2 > βρ2

*
ϵ
q

∼ 10−8>

1. 
α ≡

b2

ρ2
* β

q
ϵ

> 1
2. 

α quantifies the strength 
of stochastic dephasing.

Δω < Dk2
⊥
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Decoherence of eddy tilting feedback

d
dt

kx = −
∂(ω0 + uyky)

∂x
= − ky

∂uy

∂x

shear flow
Gives an non-zero  

  
⟨kxky⟩

→⟨ũxũy⟩ ∝ ⟨kxky⟩

Snell’s law:

⟨ũxũy⟩ ≃ ∑
k

| ϕ̃ k |2

B2
0

(k2
y

∂uy

∂x
τc)

Self-feedback loop:

Shear flow reinforce the self-tilting.

The   shear generates the   correlation and 
hence support the non-zero Reynolds stress.

E × B ⟨kxky⟩

The Reynold stress modifies the shear via momentum transport.

Stochastic Fields Effect

 k∥ = k(0)
∥ + b ⋅ k⊥

 ω = ωD + δω
ω2 − ωDω − k2

∥v2
A = 0

(ωD + δω)2 − ωD(ωD + δω) − (k∥ + b ⋅ k⊥)2v2
A = 0

δω ≃
v2

A

ωD
(2k∥b ⋅ k⊥ + (b ⋅ k⊥)2)

ωD (drift wave turbulence frequency) ≡
kyρsCs

Ln
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Dispersion relation with drift-
Alfvén coupling
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Decoherence of eddy tilting feedback

Stochastic fields interfere with shear-tilting feedback loop.

⟨ω⟩ ≃ ωD +
1
2

v2
A

ωD
b2k2

⊥

δω ≃
v2

A

ω0
(2k∥b ⋅ k⊥ + (b ⋅ k⊥)2)

Expectation frequency:

⟨δω⟩ ≃
v2

A

ω0
⟨(b ⋅ k⊥)2⟩ =

1
2

v2
A

ω0
b2k2

⊥

ω = ωD + δω Self-feedback loop is broken by  :b2

⟨ũxũy⟩ ≃ ∑
k

| ϕ̃ k |2

B2
0

(k2
y

∂uy

∂x
τc +

1
2

ky
v2

Ak2
⊥

ωD

∂b2

∂x
τc)

Snell’s law:

d
dt

kx = −
∂ωk

∂x

= − ky
∂uy

∂x
−

1
2

v2
Ak2

⊥

ωD

∂b2

∂x
Ensemble average 

frequency shift

Stochastic dephasing

Stochastic fields (random ensemble of elastic loops) act as 
elastic loops and resist the tilting of eddies. 
 change the cross-phase btw   and  . → ũx ũy

eddies

Shear flow
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Results—Suppression of PV diffusivity

PV transport will be suppressed by stochastic fields via decoherence.

This stochastic dephasing is insensitive to turbulent modes (e.g. ITG, TEM,…etc.).

The ensemble average Reynolds force  :
∂
∂x

⟨ũxũy⟩

⟨ũxζ̃⟩ =
∂
∂x

⟨ũxũy⟩ ⟨ζ̃⟩ =
∂vE×B

∂x
(E × B shear)

∂
∂x

⟨ũxũy⟩ = − DPV
∂
∂x

⟨ζ⟩ + Fresκ
∂
∂x

⟨p⟩ Suppressed by 
stochastic fields

Residual Stress CurvaturePV diffusivity

Taylor Identity: Mean vorticity

PV flux = ⟨ũxζ̃⟩ =

ω̄ ≡ ω − ⟨uy⟩ky

Fres ≃ ∑
kω

−2ky

ω̄ρ
DPV,kω

 : Low   , so it is  
instead of sound speed   (small).

vA β ≡ Pthermal /Pmag vA
Cs

DPV = ∑
kω

| ũx,kω |2 vAb2lack2

ω̄2 + (vAb2lack2)
2
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(Chen et al.,PoP 28, 042301 (2021))
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Results — Increment of PLH

Aimar
Turbulence 
Zonal flow 
Pressure 

L-mode

Input power

H-modeI-phase

α quantifies the strength of stochastic dephasing.

Macroscopic 
Impact 

Stochastic field stress dephasing effect requires:  . Δω ≤ k2
⊥D (where D = DMvA)

α ≡
b2

βρ2
*

q
ϵ

> 1

Kim-Diamond Model
(Kim & Diamond, PoP 10, 1698 (2003)) 

This reduce model for the L-H 
transition is useful for testing trends 
in power threshold increment 
induced by stochastic fields. 

Predator: zonal flow 
prey: turbulence 

lac ≃ Rq
ϵ ≡ Ln/R ∼ 10−2

β ≡
Pthermal

Pmag
≃ 10−2∼−3

ρ* ≡
gyro-radius

density scale length
≡

ρs

Ln
≃ 10−2∼−3

q(stafety factor) ≡
rBt

RBp

This gives dimensionless parameter (α):

We expect stochastic fields to raise L-H transition thresholds. 
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Results — Increment of PLH

The threshold increase due to stochastic dephasing effect is seen in 
turbulence intensity, zonal flow, and pressure gradient.

Macroscopic 
Impact 

Input power

Tu
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 α ≠ 0
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l f
lo

w
 e

ne
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y 
v Z

F2

Input power

 α ≠ 0Pr
es

su
re

 G
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en

t

Input power

 α ≠ 0 α ≠ 0

α ≡
b2

βρ2
*

q
ϵ

= 0.0, 0.2, 0.4, 0.6, 0.8...., 2.0

(Chen et al.,PoP 28, 042301 (2021))
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(L. Schmitz et al, NF 59 126010 (2019) )

DIII-D

Results — Increment of PLH

The threshold increase, in proportional to α, due to 
stochastic dephasing effect. This can be seen in 

turbulence intensity, zonal flow, and pressure gradient.

Macroscopic 
Impact 

α ≡
b2

βρ2
*

q
ϵ

Po
w

er
 th

re
sh

ol
d 

P L
I

α

Po
w

er
 th

re
sh

ol
d 

P I
H

α
(Chen et al.,PoP 28, 042301 (2021))
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  is small    (pessimistic) 

α ∝
1
ρ2

*
ρ* → α ↑
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Intrinsic Rotation and Kinetic Stress 
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From parallel acceleration:

∂
∂t

uz + (u ⋅ ∇)uz = −
1
ρ

∂
∂z

p  
∂
∂z

=
∂
∂z

(0)
+ b ⋅ ∇⊥

• The sound speed is the relevant speed (acoustic dynamics). 
Stochastic fields effect is weak ( ). 

•  

CsDM < vADM

Fz,res ∼ ∑
kω

−kz

ωshρ
νturb,kω .

νturb = ∑
kω

| ũx,kω |2 2Csb2lack2

ω2
sh + (2Csb2lack2)2

∂
∂t

⟨uz⟩ +
∂
∂x

⟨ũxũz⟩ = −
1
ρ

∂
∂x

⟨bp̃⟩

Kinetic StressToroidal  
Reynolds Stress

Stochastic fields reduce the toroidal stress and hence slow down the 
intrinsic rotation. 

⟨ũxũz⟩ = − νturb
∂
∂x

⟨uz⟩ + Fz,res
∂
∂x

⟨p⟩

Toroidal  
Residual Stress

Turbulent  
viscosity

Influence intrinsic rotation

  Requires symmetry breaking  Fz,res ⟨kzky⟩ ≠ 0

Stochastic Fields Effect

Pat Diamond’s talk 
this afternoon 
12:30 pm
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Detail calculation 
is needed.

(Chen et al.,PoP 28, 042301 (2021))



Fate of Spatial structure of zonal flow?

Edge gradient  ↑

Edge-Localized Mode (ELM)

Shear Flow
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Zonal flow width

Poloidal zonal 

We are interested in zonal flow width in presence of stochastic fields.

Zonal flow width is related to corrugation length.

Density corrugation
x

n

x
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Layering Structure—Mixing Length Model
A mixing length model for layering:

• Reduce evolution equations (based on H-W model). 

• Energy and Potential entropy (PE) conserved.

n : density
ζ : potential vorticity
ϵ : turbulent PE ϵ ≡ (δn − δζ)2/2
Dn : turbulent particle diffusivity
χ : turbulent vorticity
P : production
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Ashourvan & Diamond, PoP 24, 012305 (2017)

Potential Vorticity: ∂
∂t

⟨ζ⟩ =
∂
∂x ((Dn − χ)

∂⟨n⟩
∂x ) + χ

∂2

∂x2
⟨ζ⟩ + μc

∂2

∂x2
⟨ζ⟩

Density: ∂
∂t

⟨n⟩ =
∂
∂x (Dn

∂⟨n⟩
∂x ) + Dc

∂2

∂x2
⟨n⟩

Turbulent potential Enstrophy: ∂
∂t

ϵ =
∂
∂x (Dϵ

∂ϵ
∂x ) + χ[

∂(n − ζ)
∂x

]2 − ϵ−1/2
c ϵ3/2 + P

PE Dissipation

residual stress turb. Viscous diffusion 

turb. particle diffusion 

PE diffusion mean-turb PE 
Coupling

Density corrugation forms staircase-like structure.
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Scale Selection

{
Strong mixing (lRH > l0) : lmix ≃ l0 (Weak mean PV gradient)
Weak mixing (l0 > lRH) : lmix ≃ l1−κ

0 lκ
RH (Strong PV gradient)

• Driving scale:   

• Rhines scale:  

l0

lRH =
ϵ

|∂xq |

mixing scale:  lmix =
l0

(1 + l2
0(∂xq)2/ϵ)κ/2

=
l0

(1 + l2
0 /l2

RH)κ/2

US-EU  TTF April 21st 2021Decoherence of Vorticity Flux by Stochastic Magnetic FieldsChang-Chun Samantha Chen

  (hybrid length scale) sets the scale of zonal flow.lmix

The mixing length ( ) depends on two scales:lmix

What is the effect of stochastic fields on staircases?
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Very  
Preliminary Main effect of diffusivity   and  Dn χ
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For   in H-W regime:αDW (a measurement of the resistive diffusion rate in the parallel direction) > 1

k∥ = k ⋅ ̂b0 ≃
1

Rq
+ b⊥ ⋅ k⊥ ≃

1
Rq

+
b⊥

lmix

Stochastic Fields Effect

Dn ≃
l2
mixϵν/v2

the

( 1
Rq )2 + ( b

lmix
)2

Dn ≃
l2
mixϵ
αDW

αDW =
k2

∥v2
the

ν

Density diffusivity:

Resistive diffusion rate:

 Kumag = Kumag(lmix)Kumag = bRq/lmixCompetition btw    v.s.   gives 
1

Rq
b⊥

lmix

Same for   (or   in this case).χ DPV

The mixing length is not likely affected by  .b2

Scalar selection and staircase corrugation change requires  .Kumag ≥ 1
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Conclusions

• Dephasing effect caused by stochastic f ields 
quenches poloidal Reynolds stress (e.g.  ).  
Here,  . 

Δω < Dk2
⊥

D = vADM
eddies

Shear flow

•   shift L-H threshold to higher power, in proportional to  . 

• Stochastic fields have weaker effect on reducing toroidal Reynolds stress, since  . 
Need to revisit symmetry breaking   calculation (for  ) in stochastic magnetic field. 

• The mixing length is not likely affected by  . 
To change mixing length, we need  . 

b2 α ≡
b2

βρ2
*

q
ϵ

CsDM < vADM
⟨kykz⟩ ≠ 0 Fz,res

b2

Kumag ≥ 1
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