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Key question: how does a stochastic field modify the instability process?

Resistive interchange mode: a good focus

Syntheses of good confinement & optimal power handing

Model

A low-𝒌 resistive interchange mode under a high-𝒌 static stochastic magnetic field
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𝜙 = ത𝜙 + ෨𝜙 𝜈: viscosity 

𝑝1 = ҧ𝑝1 + ෤𝑝1 𝜒: diffusivity

In the beginning, we thought the main physics of this problem came from “random-bending”, i.e., 𝛻∥
0
+ 𝒃 ⋅ 𝛻⊥

2
. But soon 

we found that things are more than that. To keep the quasi-neutrality of plasma, a potential fluctuation ෨𝜙, which indicates the 

existence of small-scale convective cells, is generated by the stochastic magnetic field and low-𝒌 perturbation. This small-scale 

convective cells imply the existence of a turbulent viscosity 𝜈 and a turbulent diffusivity 𝜒. We got this insight from Kadomtsev 

and Pogutse’s study of electron conductivity of the plasma in a stochastic magnetic field. Then the equations become:

Clarification: 𝛻∥ = 𝛻∥
(0)

+ ෩𝒃 ⋅ 𝛻⊥, ෩𝒃 =
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(a) convection cells on small scale

(b) total electrostatic potential in a stochastic magnetic field

By using the method of averaging, we can separate the evolution of the system into those of macro and micro 

scales, for which slow-interchange and fast-interchange approximations apply, respectively. The final equations are:
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Actual system: a single mode + a stochastic magnetic field background + small scale convective cells

Results

• Basically this is a multi-scale problem: ത𝜙, ෨𝜙 and ෩𝒃.

• To main quasi-neutrality, we have to introduce ෨𝜙

and we have a non-trivial ෩𝒃 ෨𝜙 .

• There is a magnetic vorticity damping effect, which 

can enhance the inertia of plasma.

• A criterion when the effect of stochastic magnetic 

field is nonnegligible is given. 

Conclusions

Three new terms, which represent 3rd order magnetic torque (see Rutherford ’73) appear. They are:
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, 3rd order magnetic torque balance 1st order.

andFor , we need to get ෨𝜙. But how?

Magnetic vorticity damping (enhancing the inertia)

Mean Field Theory!!!

From the microscopic vorticity equation, we can find the linear response of ෨𝜙 to ෩𝒃: 
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And by using the simplest non-linear closure, the turbulent viscosity is approximated by
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The effects of ② and ③ are to be determined.


