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Introduction Local mixing and transport

“Standard Model” of DW - ZF turbulence:

Theory Extension

Disparate profile scale L, Ly, Lp and correlation scale Ar¢ e Turbulence Spreading

= local mixing, local gradient: Q = —V'T ]
= D = p«Dg. Dg = Cspx, px = pj/a. e Avalanching
Core idea is replacing the local Fick’s law Q = —VT
e Breaking of gyro-Bohm D ~ pIDg,0 < 1 with a delocalize flux-gradient relation [1, 2, 3]
e “Nonlocal phenomena” Q=-— /dr'K(rf VT (1)

How do turbulence and transport front propagate?

where K(r — r") is the nonlocal kernel.
Local but fast propagate? (Explicitly) non-local? ( )

We show that, <q~52> evolution is explicitly non-local. And such non-locality can affect turbulence spreading.

Explicitly Nonlocal VS, Heuristic Model
(%) = / (r=r Y@ ()dr' 4+ vs.  &E = &[(Do€)DE] + Y(X)E — &2
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Spreading Model

KE: 8if + QpEdaf — [Jo, f] = 0, QuasiNeutral: n = ne. ———— Darmet Model: h;

A

Goal: Evolution of ($?)
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Spreading Model From KE to PV

For low frequency turbulence in Tokamak (w < wyp, bounce frequency):

f(F, p, t) OO f(x, a, E, t). o radial, a angle, and E is the energy[4].

Bounce—average

e Mean, adiabatic and non-adiabatic:

Of + QpEduf — [Joh,fl =0 - e
Ni = Ne ie
[ e Fluctuation not response to zonal potential:
where [F, G] = 0aF0yG — 0y FO.G. fie/No = —die(d — ($)a)/Tic

The non-adiabatic distribution function h; and quasi-neutrality equation (Darmet Model [4, 5, 6]):

Auh + QoD — d?f%(¢7<¢>a)<f;>+hf} :a(%wwwm)+aa<¢—<¢>a>aw<f,-> @)

Cad (¢ — (P)a) — CAired = no?/%/o JhVEdE — nofﬁ/o Jhe VEdE 4)

where C; = q/T;, Cag = Ci(1+7)/v/2€0, 7 = Ti/Te. As = p3s02 + 65,02 A minimal K.S. for DW turbulence.

ality
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Spreading Model From KE to PV

KE: 8f + QpEdaf — [Joo, f] = 0, QuasiNeutral: nj = ne ———— Darmet Model: h; 1

Moment

Evolution of Fluctuation T. U= ¢ — A¢
Separate by symmetry

Goal: Evolution of ($2)
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Spreading Model From KE to PV

he = 0 and neglect A.. Taking the derivative of equation (4) w.r.t. time. Separate the results according to
symmetry in angle direction. ¢ = ¢ + ¢[7, 8].

(% LYYV, v) (CA) :%QD&E — iCow — we + %)% — GV()8y(Bgz) (5)
% [CA¢7] =C{VE X 2- (VA))a = Co%02 (Vya), (6)

Defined potential-vorticity quantity: U = Ce<1~> - C,ZJ). Then:
Eq.(5) = (% +V-V+V;. v) U= %QDaﬁ, + CV(N 8 (Agy) (7)

where (¢, a) = X = (r,y), Qp is a typical (constant) ion precession velocity. Equation above is similar to
the H-M eq. Potential vorticity U is a conserved macro-quantity, here broken by the linear terms.
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Spreading Model PV to (¢?)

Potential vorticity conservation equation: 1 /\ \
0 J— 3 ~

(dt +V V+Vs. V) 7§QDGVT;+C,\/( a Ad)z

Fig 1: Effect of convolution with G

According to the definition, there is <¢~52> _ }m;/ G(X17X/1)G(X2, XIQ) <U(X’1)O(X/2)> XmldXIQ

Terms like <\7,»161\U/2> can be closed by two-point

Ce + Cik2 . . g
o i ) ) quasilinear approximation,
ide / G )X =60 (8)
— 1)~ i 1)~ i
where Green’s function: <U1U2)/<» T {REV)VM (x1)e"" 0, + REV)VK' (x1)e™" 0y,
5 P/ w r w y
N YA R —2 @) kyva g @) ikyva ¢ 0,0
G(x,x) = ¢ A~ S, (9) +Ry, Vi, (X2)€™"20r, + RV, (x2)€™72 0y, <U1U2>
o w Y
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Spreading Model

KE: 8f + QpEdaf — [Joo, f] = 0, QuasiNeutral: nj = ne —————— Darmet Model ﬂ

) @ e e Moment
Evolution of Fluctuation T. U= ¢ — Ag¢
[ Separate by symmetry
2

-p correlation [9]

Evolution of PE: (U(1)0(2))

(0()a02) + U2)a:0(1)) ;

’

.

Goal: Evolution of (¢2) < - 2
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PV to (¢?)

KE: f + QpEdaf — [Jo¢, f] = 0, QuasiNeutral: n; = n. —————> Darmet Model ﬂ

i B 3 — Moment
Evolution of Fluctuation T, U= ¢ — Ag¢
[ Separate by symmetry
2

-p correlation

) = = - Evolution of PE: (U(1)U(2))
(U(1)ou(2) + U(2)0.U(1))
2-p quasilinear method

Goal: Evolution of ($2)

Green'’s function
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Spreading Model PV to (¢?)

The evolution equation of potential intensity:

2 (#) = 00 2 oo () 2 () - £ 2 (37| B G0 RO oo

Heat flux drive approximated: (7,T) ~ —($2)8(T) ~ —.($?) (assumed d(T) ~ (T) /Lt > 0).
Neglected the ¢ for simplicity.

o Nonlocal nonlinear diffusion: Nonlocality is weak as shown latter, simplified as 8,(2Do ($2)8,(¢?))

e Nonlocal growth: Distributed pumping of (¢*) from the heat flux (7, T).

Kernel width of G(x,x') o exp(—|x — x| /8,) is several 8,, thus the growth of (¢?) at r is affected by a
region of several §, in width. Preconditions:

1. The curvature of the field = trapped ion orbit and ion-precessional motion.
2. The polarization charge due to trapped ions = redistribution of fluctuating temperature.
2

-2 ky (2)y>1 5\ 1
@] iz (1= coslhoy-)) == 20 <¢ >E3'?

o Nonlinear local damping: Dy, ~ 23, Ry,
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Spreading Model

Heuristic Model[10, 11] VS. Explicitly Nonlocal Model

8E = B [(DoE)AE] +1(X)E — o€ vs. B <<52> — G ®N-lin. Diff. + G ® (%(r) <¢§2>) - % <¢§2>2

7

Stability Separatrix

. _ Unstable region o Stable region
[llustration of quantities: ____ ! _Saturation Level _
. [}
0 )
)
)

e V;, the leading edge propagating speed

P
e Shape of front characterized with distance —
between “Foot”, “Center” and “Head”

e Penetration of leading edge into the stable
region:

e Depth, Ap
e Area, Sp

Foot

How do those nonlocal terms affect spreading ]
front generation and propagation? Wider, Faster and Deeper
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Numerical Results Wider Leading Edge

2 4 4
—o-Center-Head —o-Center-Head —o-Center-Head
—o—Foot-Center 3.5 |-~ Foot-Center 3.5 |~¢—Foot-Center
—o-Foot-Head —o-Foot-Head o -o-Foot-Head
15 3 3
(@) (b) (©)
LG&ND 251 NG&LD 25 NG&ND

Wy, 1 2

05 1 1
| 05 0.5
(b)
08 0 0 0¥
0 0.05 0.1 0 0.05 0.1 0 0.05 0.1
;06 Ope S O
04 Fig 3: Width of the propagating front in different equations with a fixed p; when
0.2 varying dp.
o /o\ 1 2 3
r ° V\/f X 6b
Fig 2: Evolution of (a) with nonlocal diffusion, (b) ° C® (’YL(”)<¢~)2>) is much more effective

with nonlocal growth.
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Numerical Results Faster Propagation

0.3 T T
——0.00392 + 0.9383.
025 -- 0.00194 + 2.446. o
------ 0.00196 + 2.448. o
02| © La&nD e
¢ NG&LD )
Vi, o NG&ND P e 0, — 0, the speed converges to classic
015 s Fisher-KPP front speed v/2yD = 0.01 [11].
01 e 0p > pi, Vo /29D(1 + 6p)
0.05 e Data form NG&ND and NG&LD
: . . . . overlapping indicates that the nonlocal
00 0.02 0.04 006 008 01 growth effect dominates.

61)*
Fig 4: Leading edge propagation speed for different models when

varying &, with p; = 0.01. Data points with lighter colors indicate
where 8, < p; and are excluded from the fit lines.
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Numerical Results Deeper Penetration Into Stable Region

2 0.3
——0.078 + 4.285,, ——0.0138 + 0.1416;.
-~ 0.00597 + 8.23. () o 0.25 |- - 0.00266 + 1.246,.| (D) e
15k 0.0188 + 8.156;, A I S 0.00329 + 1.238;. L
o LG&ND P 0ok|© LaanD e
A © NG&LD /n’ S ) o NG&LD el
v 4 | L= NGaND v 15| L2_NG&ND L
e
0.1 o7
0.5 ) ‘/0"
0.05f W
0 : : : : 0k : : : :
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
Jb* Jb*

Fig 5: Front penetration A, (a) and effective penetration S, (b) against 8. for different equations. Simple
linear relation can fit both A, and S,, when 6y, > p.. Data points in lighter colors are excluded from the fits.

Symmetric

Ay, Sy o< b, D((¢*) x 1 =S =1 — bps

Domain

where dp. = 0p/Lr.
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Conclusions and Discussions

KE & QuasiNeutrality — Darmet Model —— T. U= ¢ — A¢ — (U(1)0(2)) w
n

0(3) = [00 (8) 0. (8] + G0 () (7)) - 5 (37)" (reensfoncto

Conclusions Discussions and Future Plans

1. 8t<<z~>2) is explicitly nonlocal. e The utility of PV (potential vorticity).

2. Explicit non-local growth is the principal new effect. e Near macro-marginality = Explicit nonlocality 7.
3. Potential vorticity U = A(j; — A conservation. e Pedestal = 6, /Lt 1.

4. Inverting PV to ¢ = Green’s Function: e Energetic particle-driven turbulence= 4y, 1.

G(x,x') o< \/Ae— VA=
= Jp, sets range of nonlocality, which is modest.

5 Vi~ (’yD)l/Q(l +0p), Ap X s

) Yan & P H Diamond Physics of Turbulence Spreadir

e Including zonal flows.

e Jamming...
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Questions and Answers

Thanks!
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