On How Decoherence of Vorticity Flux by Stochastic Magnetic Fields Quenches Zonal Flow Generation

Chang-Chun Chen^{1,3}, Patrick Diamond^{1,3}, Rameswar Singh¹, and Steven Tobias^{2,3}

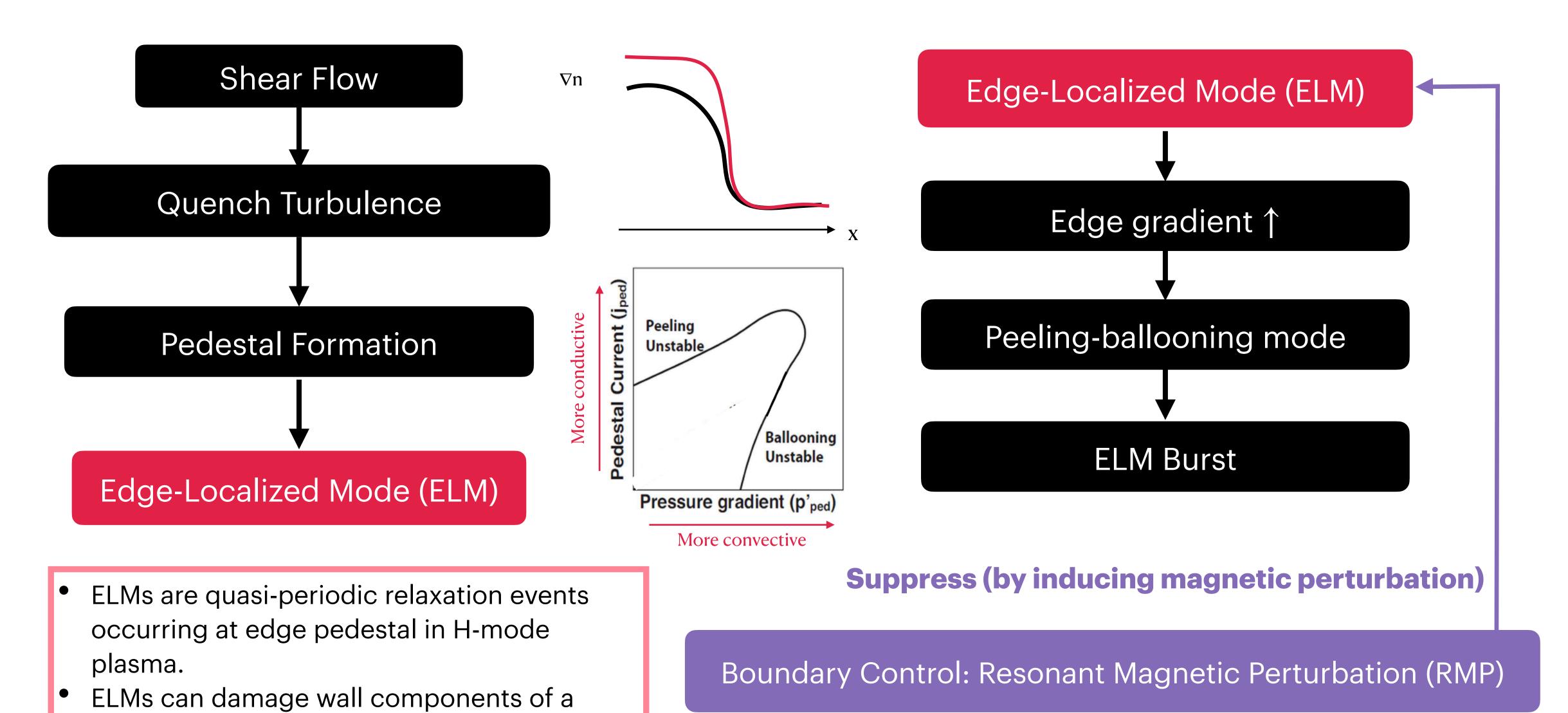
¹University of California San Diego, USA ²University of Leeds, UK ³Kavli Institute for Theoretical Physics, Santa Barbra, CA, USA

This work is supported by the U.S. Department of Energy under award number DE-FG02-04ER54738

Outline

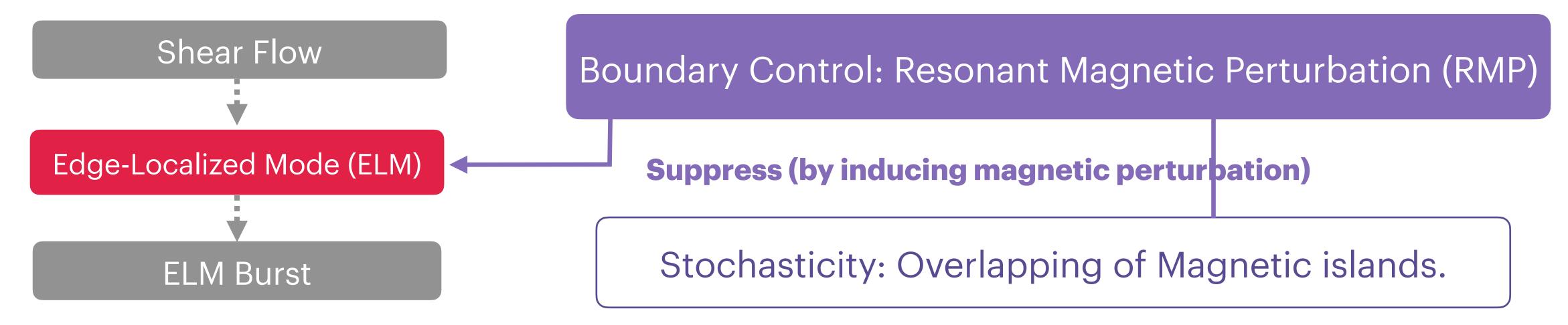
- Introduction
 - Resonant Magnetic Perturbation plays an important role in momentum transport in edge plasma evolution.
- Model & Calculation
- Results
 - a. Suppression of PV diffusivity and the shear-eddy tilting feedback loop.
 - b. Power threshold increment for L-H transition.
 - c. Intrinsic Rotation in presence of stochastic fields.
- Conclusions
- Future Work: Mixing length in presence of stochastic fields.

Why we study stochastic fields in fusion device?



fusion device.

Stochastic field effect is important for boundary control



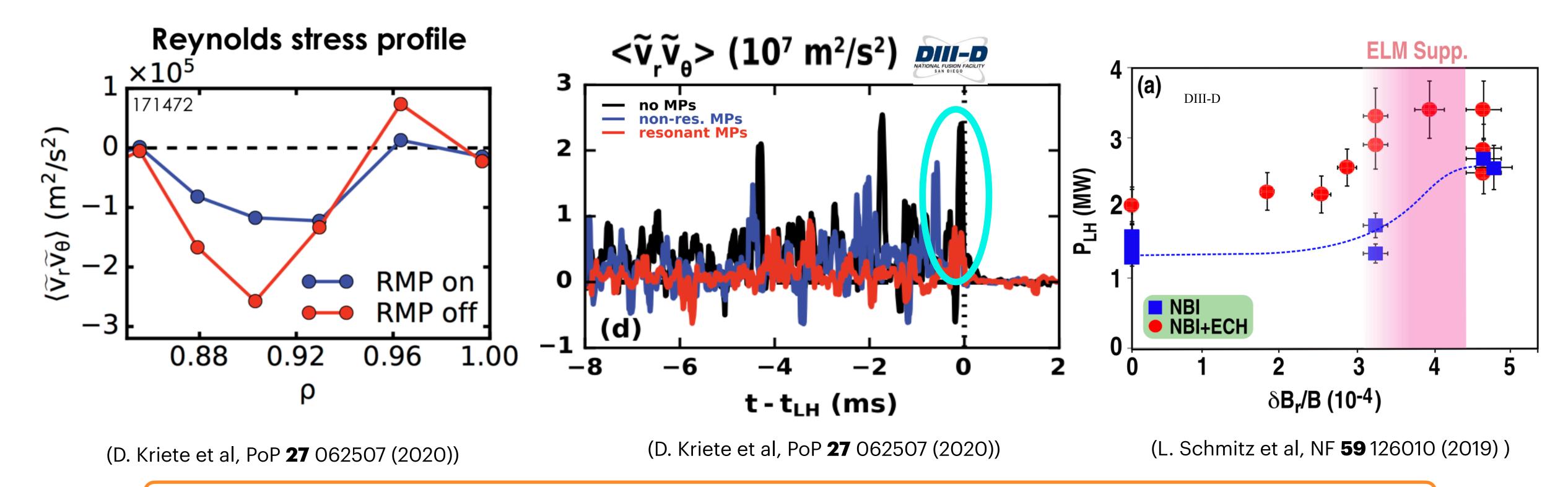
Trade off: RMPs controls gradients and mitigates ELM, but raise the **power threshold**.

Key Questions:

How RMPs influence the Reynolds stress and hence suppress the zonal flow? How stochastic fields increase the power threshold of L-H transition?

We examine the physics of stochastic fields interaction with zonal flow near the edge.

Experimental Results with RMP for L-H Transition — fluctuations



Experiments in KSTAR demonstrate similar results (see S.M. Yang's talk on Jun 06 11:30 am).

DIII-D Experimental results: RMPs lower the Reynolds stress and increase the power threshold of L-H transition.

Chang-Chun Samantha Chen

Model

(Chen et al., PoP 28, 042301 (2021))

- **1.** Cartesian coordinate: strong mean field B_0 is in z direction (3D).
- 2. Rechester & Rosenbluth (1978): waves, instabilities, and transport are studied in the presence of external excited, static, stochastic fields.
- 3. $\underline{k} \cdot \underline{B} = 0$ (or $k_{\parallel} = 0$) resonant at rational surface in third direction —

$$\omega \to \omega \pm v_A k_z$$
, and Kubo number: $Ku_{mag} = \frac{l_{ac} |\mathbf{B}|}{\Delta_{\perp} B_0}$).

4. Four-field equations —

Well beyond

- (a) Potential vorticity equation—vorticity $\nabla^2 \psi \equiv \zeta$
- (b) Induction equation ${f A},\,{f J}$
- (c) Pressure equation p
- (d) Parallel flow equation $\mathbf{u}_{\mathbf{z}}$

HM model

We use mean field approximation:

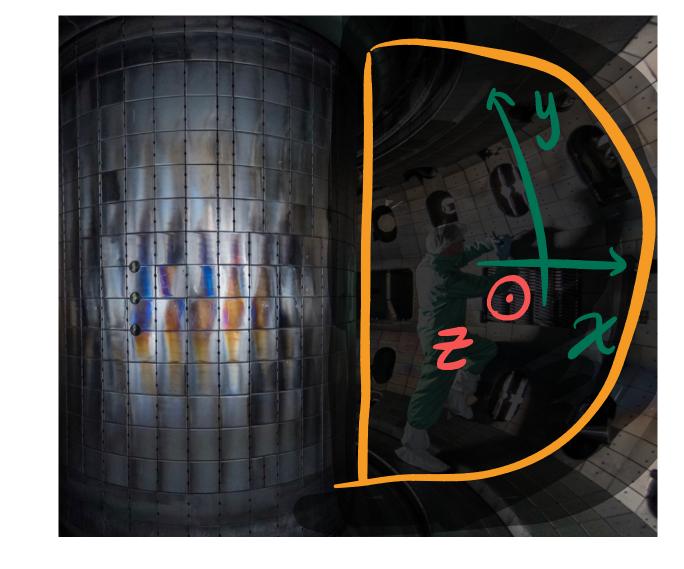
$$\zeta = \langle \zeta \rangle + \widetilde{\zeta}, \quad \text{Perturbations produced by turbulences}$$

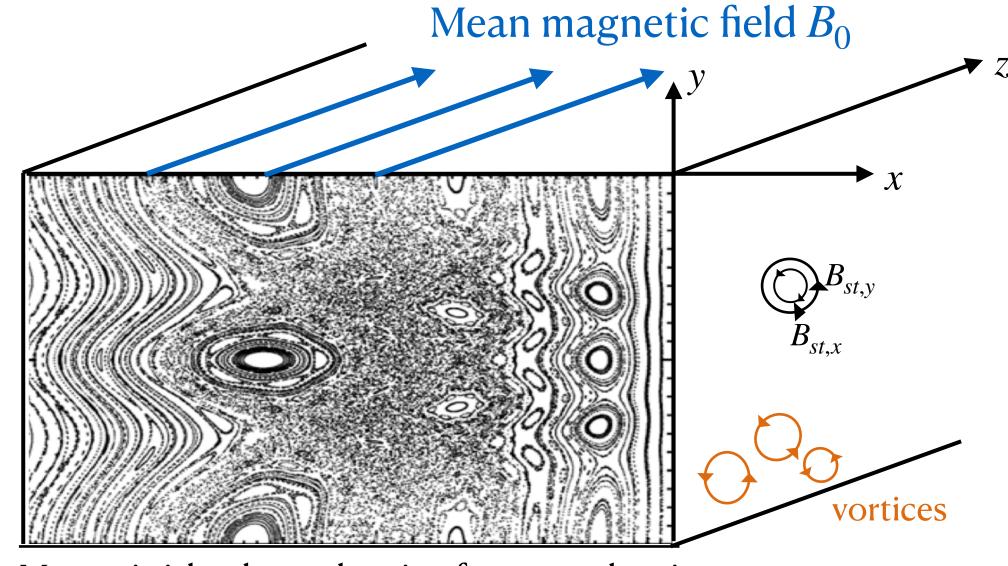
$$where \; \langle \; \rangle = \frac{1}{L} \int dx \frac{1}{T} \int dt \qquad \langle \zeta \rangle = \frac{\partial v_{E \times B}}{\partial x} \quad (E \times B \text{ shear})$$

ensemble average over the zonal scales

We define rms of normalized stochastic field $b \equiv \sqrt{(\overline{B_{st}}/B_0)^2}$

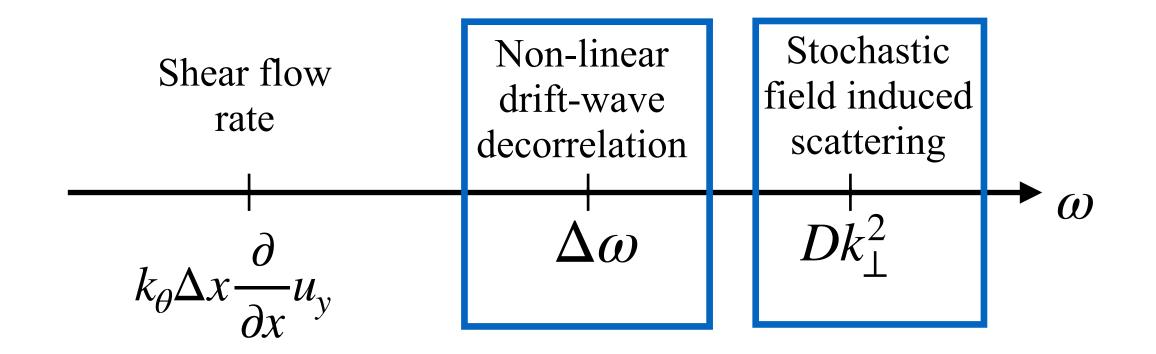
(See also works done by M. Leconte et al.)



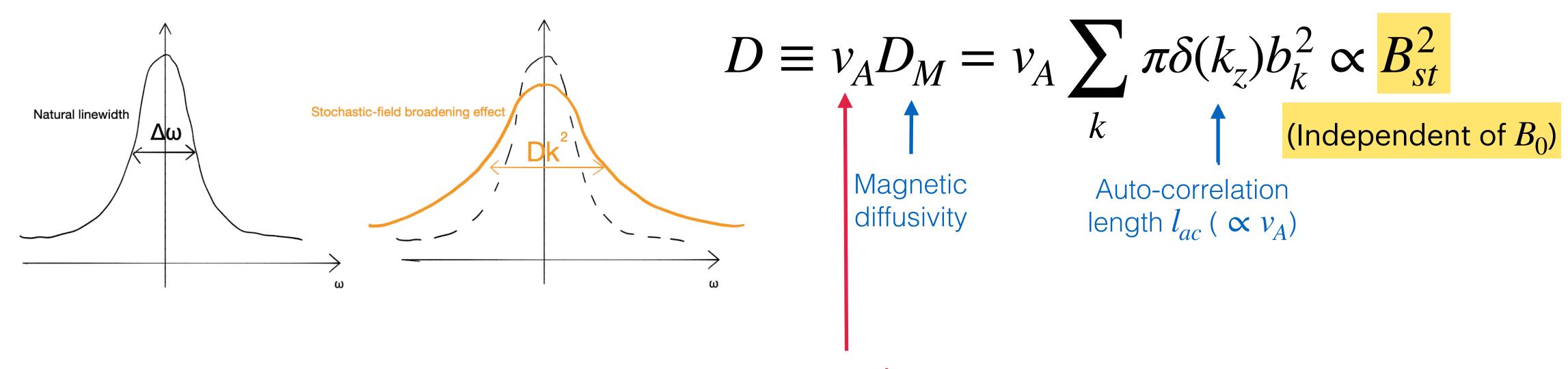


When does stochastic field effect becomes significant?

We consider timescales: (Chen et al., PoP 28, 042301 (2021))



Stochastic field decoherence beats the self-decoherence.



Perturbations propagate ultimately in \bot (along stochastic fields) \to characteristic velocity (v_A) emerges from the calculation of $\nabla \cdot \underline{J} = 0$

Derivation of Magnetic Diffusivity

$$\begin{aligned} \text{Vorticity equation:} & (\frac{\partial}{\partial t} - \mathbf{u} \cdot \nabla) \, \nabla^2 \phi - v_A (\cdot \, \nabla_{\parallel} + b_{st,\perp} \cdot \nabla_{\perp}) J_{\parallel} = 0 \\ \begin{cases} 0^{\text{th}} \, \text{order:} \, v_A \frac{\partial}{\partial z} J_{0,z} = 0 \\ 1^{\text{St}} \, \text{order:} \, (\frac{\partial}{\partial t} - \langle u_y \rangle \frac{\partial}{\partial y}) \, \nabla^2 \widetilde{\phi} - v_A (\nabla_{\parallel} + b_{st,\perp} \cdot \nabla_{\perp}) \widetilde{J}_{\parallel} = 0 \end{cases} \end{aligned}$$

Curly bracket :
$$\{\ \} = \int_{-\infty}^{+\infty} d\tau$$

Curly bracket:
$$\{ \} = \int_{-\infty}^{+\infty} d\tau$$

$$\{ \frac{i}{-b_{st,\perp}k_{\perp}} \} = \int_{-\infty}^{+\infty} d\tau \{ e^{ib_{st,\perp}k_{\perp}\int_{0}^{\tau} d\tau'} \} = \int_{-\infty}^{+\infty} d\tau e^{-\underline{k}_{i}\underline{\underline{D}}_{M,ij}\underline{k}_{j}\tau}$$

$$\int\limits_{0}^{+\infty} d\tau = \int\limits_{0}^{+\infty} \frac{dl}{|v_A|} \qquad \text{Characteristic velocity of } b_{st,\perp} \text{ (parallel wave packet transit timescale)}$$

$$D \equiv v_A D_M = v_A \sum_k \frac{B_{st,k}^2}{B_0^2} \pi \delta(k_z) \propto y_A \frac{1}{y_A^2} y_A B_{st}^2$$

Diffusivity D is independent of B_0 .

Dimensionless Parameters

How 'stochastic' is magnetic field?

Alfvénic Dispersion

(excited by drift-Alfvénic coupling)

Stochastic broadening

 Ku_{mag} (Magnetic Kubo number)

stochastic field scattering length

perpendicular magnetic fluctuation size

$$=\frac{l_{ac}b}{\Delta_{eddy}}\lesssim 1,$$

(for a b given)

Two dimensionless Parameters:

 $Dk_{\perp}^{2} > \Delta\omega$

$$\begin{cases} l_{ac} \simeq Rq \\ \epsilon \equiv L_n/R \sim 10^{-2} \\ \beta \simeq 10^{-2 \sim -3} \\ \rho_* \equiv \frac{\rho_s}{L_n} \simeq 10^{-2 \sim -3} \end{cases}$$

$$\begin{cases} l_{ac} \simeq Rq & 1. \\ \epsilon \equiv L_n/R \sim 10^{-2} & b^2 \equiv \left(\frac{\delta B_r}{B_0}\right)^2 > \sqrt{\beta} \rho_*^2 \frac{\epsilon}{q} \sim 10^{-8} \\ \beta \simeq 10^{-2 \sim -3} & 1. \end{cases}$$

Criterion for stochastic fields effect important to L-H transition.

Broadening parameter

$$\alpha \equiv \frac{b^2}{\rho_*^2 \sqrt{\beta}} \frac{q}{\epsilon} > 1$$

$$\alpha = 1$$
:

stochastic broadening = natural linewidth

Decoherence of eddy tilting feedback

Snell's law:

$$\frac{d}{dt}k_x = -\frac{\partial(\omega_0 + u_y k_y)}{\partial x} = -k_y \frac{\partial u_y}{\partial x}$$

Gives an non-zero $\langle k_x k_y \rangle$

$$\rightarrow \langle \widetilde{u}_x \widetilde{u}_y \rangle \propto \langle k_x k_y \rangle$$

shear flow

Self-feedback loop:

The $E \times B$ shear generates the $\langle k_x k_y \rangle$ correlation and hence support the non-zero Reynolds stress.

$$\langle \widetilde{u}_{x}\widetilde{u}_{y}\rangle \simeq \sum_{k} \frac{|\widetilde{\phi}_{k}|^{2}}{B_{0}^{2}} (k_{y}^{2} \frac{\partial u_{y}}{\partial x} \tau_{c})$$

The Reynold stress modifies the shear via momentum transport.

Shear flow reinforce the self-tilting.

Dispersion relation of drift-Alfvén coupling

$$\omega^2 - \omega_D \omega - k_{\parallel}^2 v_A^2 = 0$$

Stochastic Fields Effect

$$k_{\parallel} = k_{\parallel}^{(0)} + \underline{b}_{\perp} \cdot \underline{k}_{\perp}$$

$$\omega = \omega_D + \delta \omega$$

$$\omega_D$$
 (drift wave turbulence frequency) $\equiv \frac{k_y \rho_s C_s}{L_n}$

$$(\omega_D + \delta\omega)^2 - \omega_D(\omega_D + \delta\omega) - (k_{\parallel} + \underline{b} \cdot \underline{k}_{\perp})^2 v_A^2 = 0$$

eigen-frequency shift

$$\delta\omega \simeq \frac{v_A^2}{\omega_D} (2k_{\parallel}\underline{b} \cdot \underline{k}_{\perp} + (\underline{b} \cdot \underline{k}_{\perp})^2)$$

Decoherence of eddy tilting feedback

Expectation frequency:

$$\langle \delta \omega \simeq \frac{v_A^2}{\omega_0} (2k_{\parallel} \underline{b} \cdot \underline{k}_{\perp} + (\underline{b} \cdot \underline{k}_{\perp})^2 \rangle$$

Ensemble average of eigen-frequency shift

$$\langle \delta \omega \rangle \simeq \frac{v_A^2}{\omega_0} \langle (\underline{b} \cdot \underline{k}_\perp)^2 \rangle = \frac{1}{2} \frac{v_A^2}{\omega_0} b^2 k_\perp^2$$

$$\omega = \omega_D + \delta\omega$$
Snell's law:
$$\left(\omega\right) \simeq \omega_D + \frac{1}{2} \frac{v_A^2}{\omega_D} b^2 k_\perp^2$$

$$= -k_y \frac{\partial u_y}{\partial x} - \frac{1}{2} \frac{v_A^2 k_\perp^2}{\omega_D} \frac{\partial b^2}{\partial x}$$
Self-feedback loop is broken by b^2 :
$$\left(\widetilde{u}_x \widetilde{u}_y\right) \simeq \sum_k \frac{|\widetilde{\phi}_k|^2}{B_0^2} (k_y^2 \frac{\partial u_y}{\partial x} \tau_c + \frac{1}{2} k_y \frac{v_A^2 k_\perp^2}{\omega_D} \frac{\partial b^2}{\partial x} \tau_c)$$

Due to the Ensemble average eigen-frequency shift

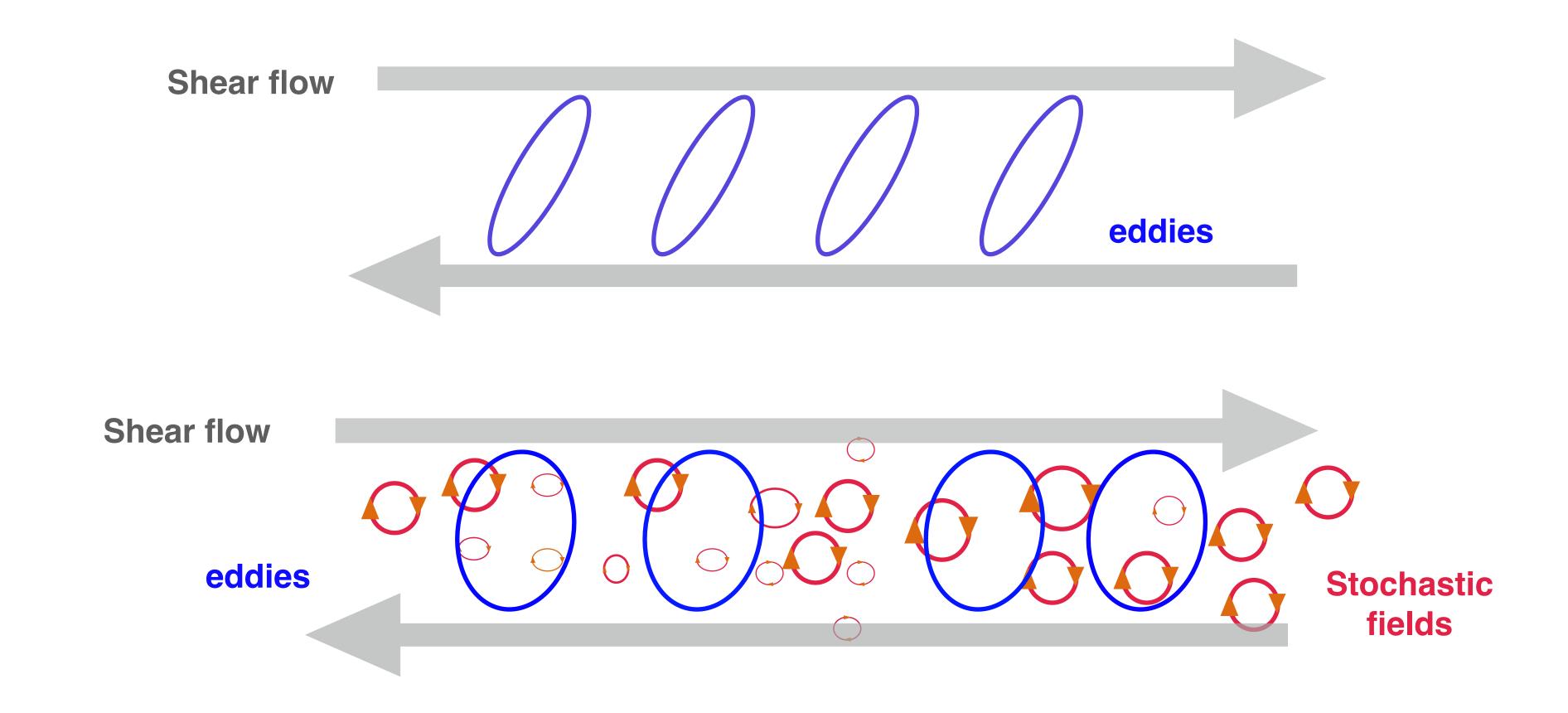
Stochastic dephasing

Stochastic fields (random ensemble of elastic loops) act as elastic loops and resist the tilting of eddies.

 \rightarrow change the cross-phase btw \widetilde{u}_x and \widetilde{u}_y .

(Chen et al., PoP 28, 042301 (2021))

Decoherence of eddy tilting feedback



Stochastic fields interfere with shear-tilting feedback loop.

Results—Suppression of PV diffusivity

The ensemble average Reynolds force $\frac{\partial}{\partial x} \langle \widetilde{u}_x \widetilde{u}_y \rangle$:

PV flux =
$$\langle \widetilde{u}_x \widetilde{\zeta} \rangle = \frac{\partial}{\partial x} \langle \widetilde{u}_x \widetilde{u}_y \rangle = -D_{PV} \frac{\partial}{\partial x} \langle \zeta \rangle + F_{res} \kappa \frac{\partial}{\partial x} \langle p \rangle$$

PV diffusivity

Residual Stress

Curvature

Suppressed by stochastic fields

Taylor Identity:
$$\langle \widetilde{u}_x \widetilde{\zeta} \rangle = \frac{\partial}{\partial x} \langle \widetilde{u}_x \widetilde{u}_y \rangle$$

$$\langle \zeta \rangle = \frac{\partial v_{E \times B}}{\partial x} \quad (E \times B \text{ shear})$$

$$D_{PV} = \sum_{k\omega} |\widetilde{u}_{x,k\omega}|^2 \frac{v_A b^2 l_{ac} k^2}{\bar{\omega}^2 + \left(v_A b^2 l_{ac} k^2\right)^2}$$

PV transport will be suppressed by stochastic fields via decoherence.

$$F_{res} \simeq \sum_{k\omega} \frac{-2k_y}{\bar{\omega}\rho} D_{PV,k\omega}$$
$$\bar{\omega} \equiv \omega - \langle u_y \rangle k_y$$

Zonal flow acceleration =
$$\frac{\partial}{\partial t}\langle u_y\rangle = D_{PV}\frac{\partial}{\partial x}\langle \zeta\rangle - F_{res}k\frac{\partial}{\partial x}\langle p\rangle$$

Zonal flow acceleration is slowed down by the stochastic field.

This stochastic dephasing is insensitive to turbulent modes, e.g. ITG, TEM,...etc.

Results — Increment of PLH

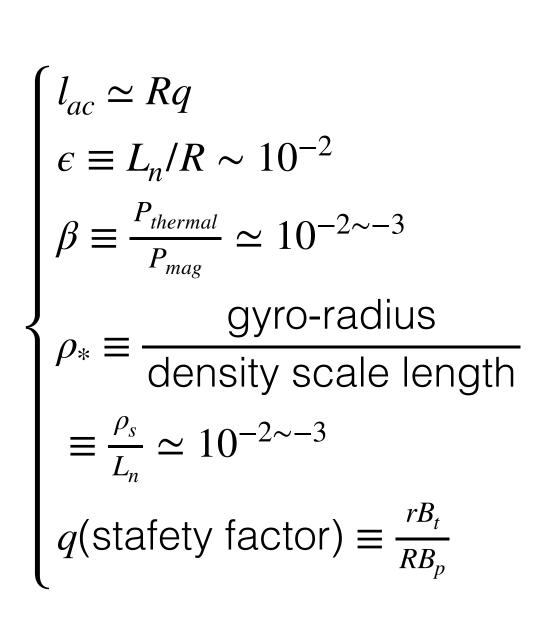
Stochastic field stress dephasing effect requires: $\Delta \omega \leq k_{\perp}^2 D$ (where $D = D_M v_A$).

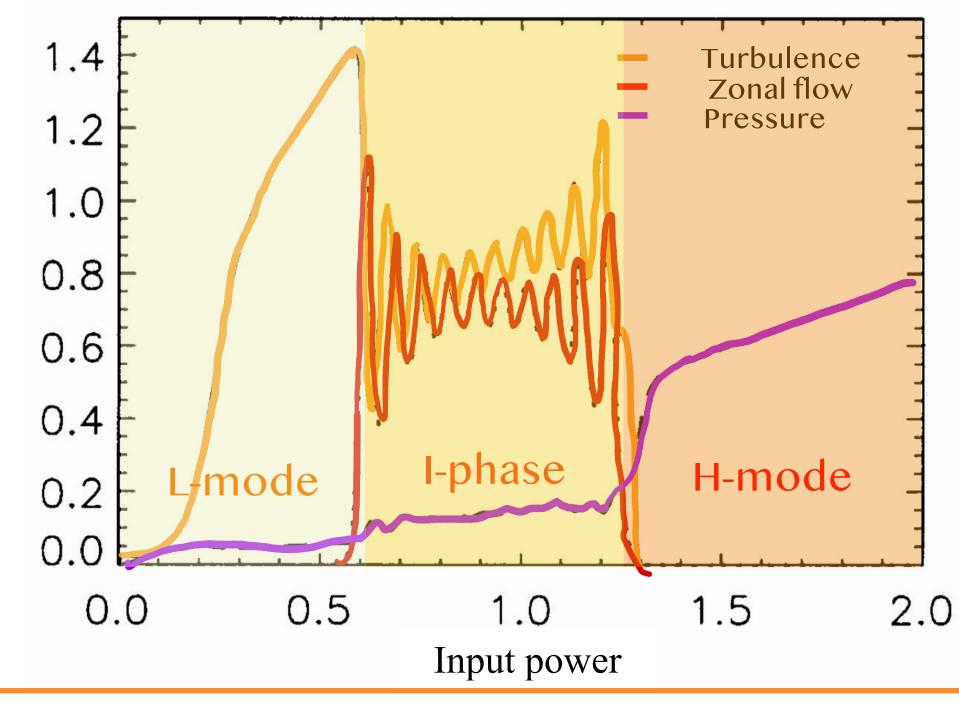
This gives

Broadening parameter (α) :

(
$$\alpha$$
): $\alpha \equiv \frac{b^2}{\sqrt{\beta}\rho_*^2} \frac{q}{\epsilon} > 1$

α quantifies the strength of stochastic dephasing.





Kim-Diamond Model

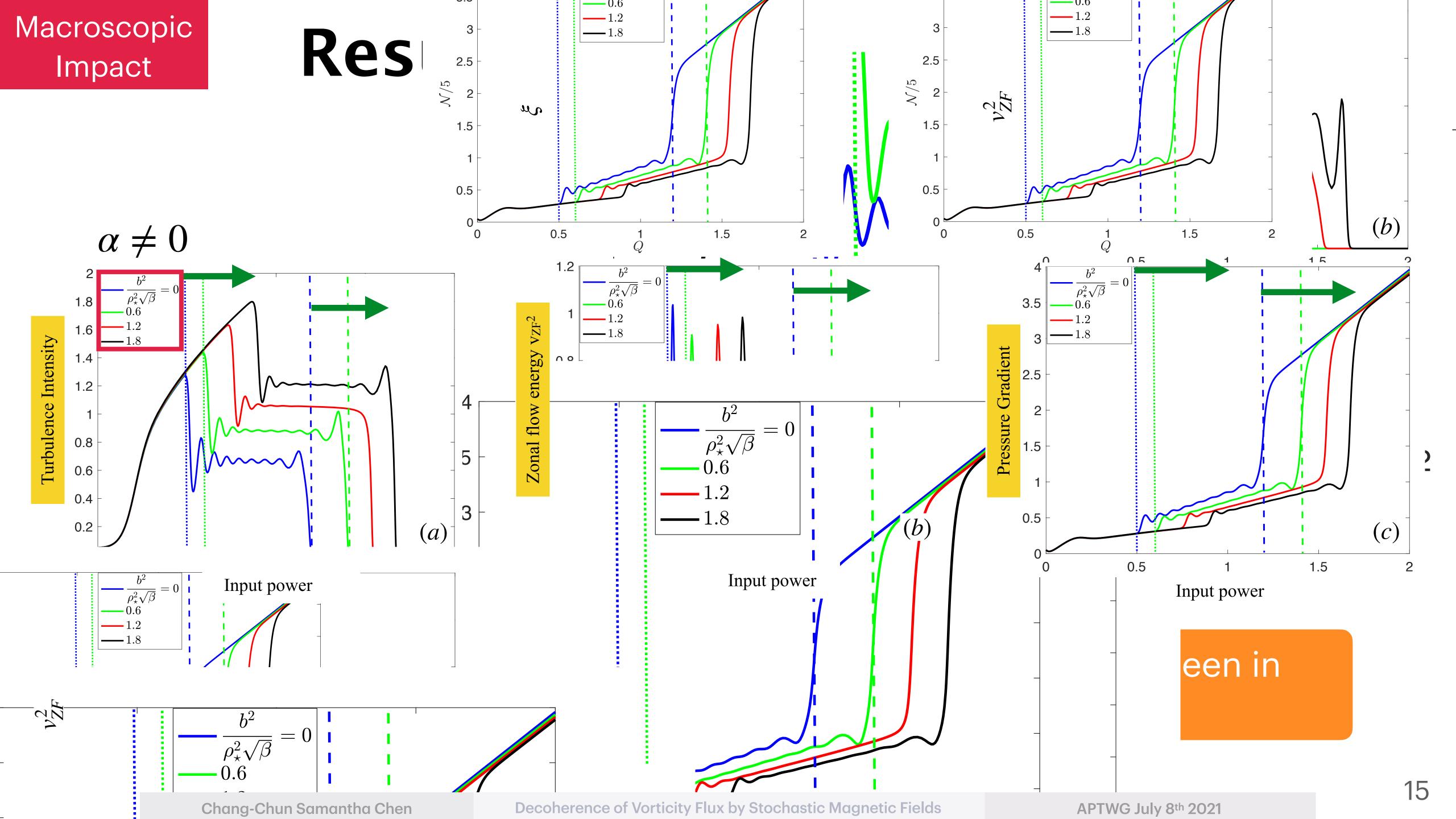
(Kim & Diamond, PoP 10, 1698 (2003))

This reduce model for the L-H transition is useful for testing trends in power threshold increment induced by stochastic fields.

Predator: zonal flow

prey: turbulence

We expect stochastic fields to raise L-H transition thresholds.



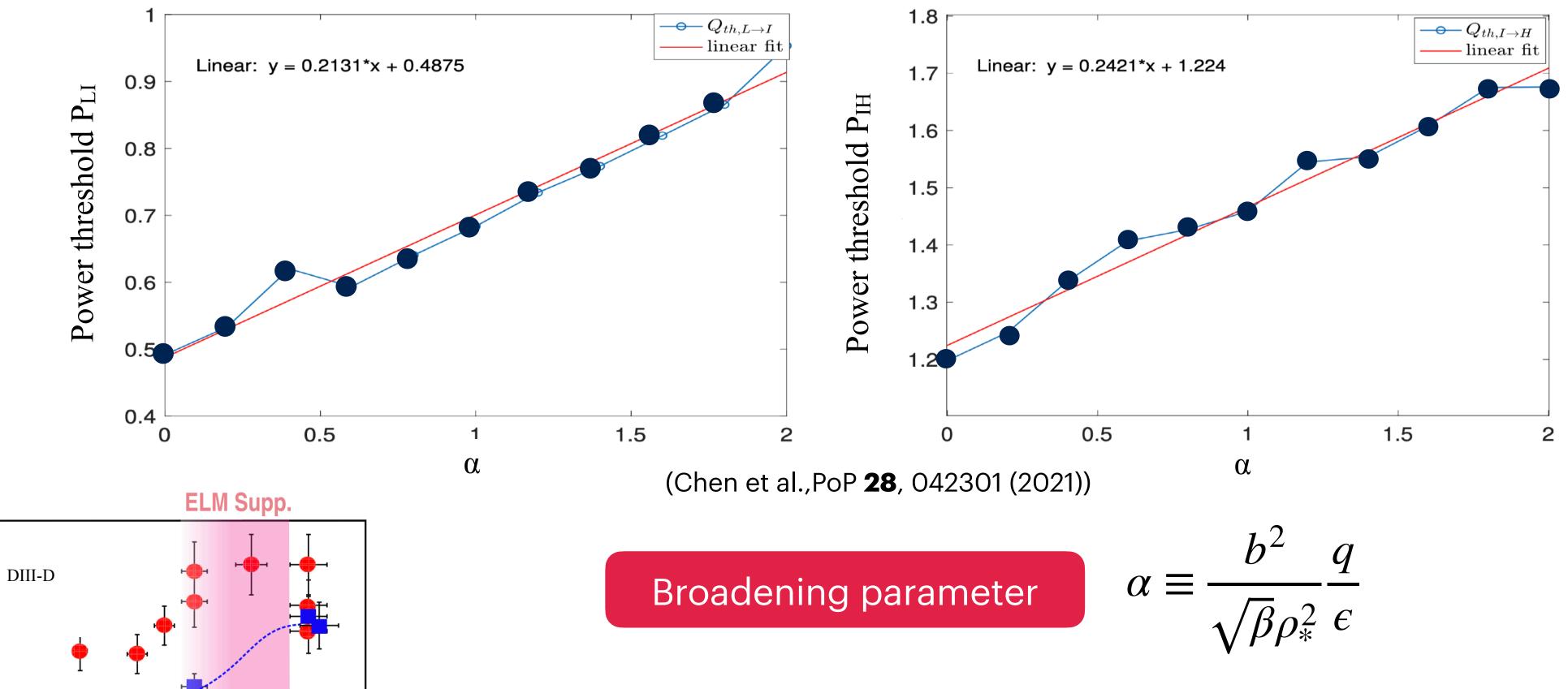
4 (a)

NBI+ECH

3

 P_{LH} (MW)

Results — Increment of PLH



α quantifies the strength of stochastic dephasing.

The threshold increase linearly, in proportional to α . This is due to stochastic dephasing effect.

 $\delta B_r / B (10^{-4})$

Intrinsic Rotation and Kinetic Stress

From parallel acceleration:

$$\frac{\partial}{\partial t}u_z + (\mathbf{u} \cdot \nabla)u_z = -\frac{1}{\rho} \frac{\partial}{\partial z} p$$

Stochastic Fields Effect

$$\frac{\partial}{\partial z} = \frac{\partial}{\partial z}^{(0)} + \underline{b} \cdot \underline{\nabla}_{\perp}$$

$$\frac{\partial}{\partial t}u_z + (\mathbf{u} \cdot \nabla)u_z = -\frac{1}{\rho}\frac{\partial}{\partial z}p$$

$$\frac{\partial}{\partial z} = \frac{\partial}{\partial z}^{(0)} + \underline{b} \cdot \underline{\nabla}_{\perp}$$

$$\frac{\partial}{\partial t}\langle u_z \rangle + \frac{\partial}{\partial x}\langle \widetilde{u}_x \widetilde{u}_z \rangle = -\frac{1}{\rho}\frac{\partial}{\partial x}\langle b\widetilde{p} \rangle$$
Toroidal

Reynolds Stress

Kinetic Stress

$$\langle \widetilde{u}_{x}\widetilde{u}_{z}\rangle = -\nu_{turb}\frac{\partial}{\partial x}\langle u_{z}\rangle + F_{z,res}\frac{\partial}{\partial x}\langle p\rangle$$
Turbulent viscosity
$$\nu_{turb} = \sum_{k\omega} |\widetilde{u}_{x,k\omega}|^{2} \frac{2C_{s}b^{2}l_{ac}k^{2}}{\omega_{sh}^{2} + (2C_{s}b^{2}l_{ac}k^{2})^{2}}$$

$$\nu_{turb} = \sum_{k\omega} |\tilde{u}_{x,k\omega}|^2 \frac{2C_s b^2 l_{ac} k^2}{\omega_{sh}^2 + (2C_s b^2 l_{ac} k^2)^2}$$

Pat Diamond's talk this morning 10:10 am

Influence intrinsic rotation

- The sound speed is the relevant speed (acoustic dynamics). Stochastic fields effect is weaker ($C_{S}D_{M} < v_{A}D_{M}$).
- $F_{z,res} \sim \sum_{l} \frac{-\kappa_z}{\omega_{sh}\rho} \nu_{turb,k\omega}$.

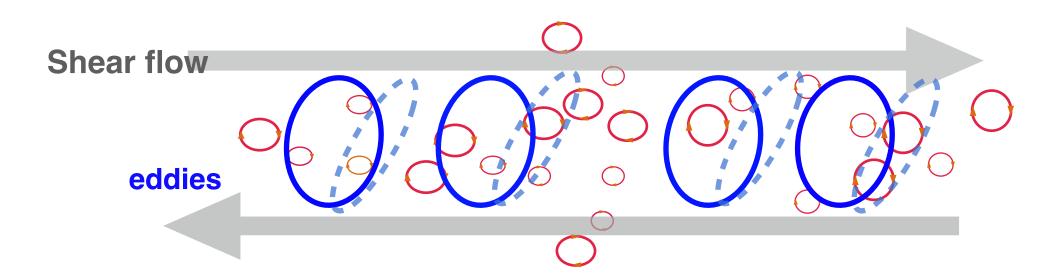
 $F_{z,res}$ Requires symmetry breaking $\langle k_z k_y \rangle \neq 0$

(Chen et al., PoP 28, 042301 (2021))

Stochastic fields reduce the toroidal stress and hence slow down the intrinsic rotation.

Conclusions

• **Dephasing effect** caused by stochastic fields quenches poloidal Reynolds stress (e.g. $\Delta\omega < Dk_\perp^2$). Here, $D=v_AD_M$.



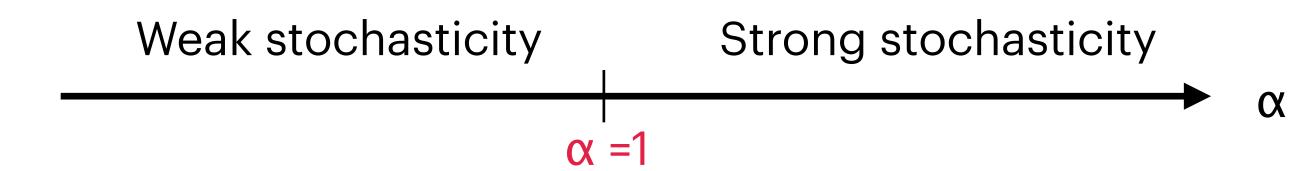
- b^2 shift L-H threshold to higher power, in proportional to $\alpha \equiv \frac{b^2}{\sqrt{\beta}\rho_*^2} \frac{q}{\epsilon}$.
- Stochastic fields have weaker effect on reducing toroidal Reynolds stress, since $C_s D_M < v_A D_M$. Need to revisit symmetry breaking $\langle k_y k_z \rangle \neq 0$ calculation (for $F_{z,res}$) in stochastic magnetic field.

Future Works

- We study the scale corrugation of staircases in presence of stochastic fields.
- Detailed calculations for symmetry breaking of toroidal residual stress.

Takeaways for Experimentalists

- Reynolds stress suppression due to stochastic dephasing→ generation of zonal flow is suppressed.
 - Zonal intensity stays the same but damping occurs due to the stochastic dephasing.
- Stochastic fields broadening effect can be parameterized by α .

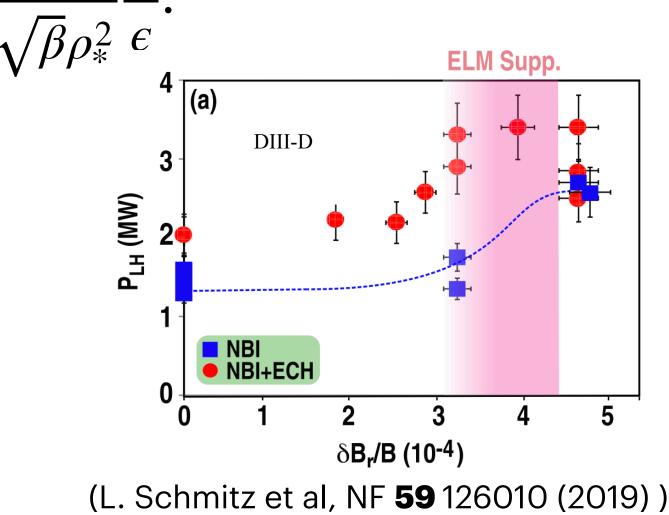


 b^2 shift L-H threshold to higher power, in proportional to $\alpha \equiv \frac{b^2}{\sqrt{\beta}\rho_*^2} \frac{q}{\epsilon}$.

$$\alpha \propto \frac{1}{\rho_*^2}$$
 ρ_* is small $\to \alpha \uparrow$ (pessimistic)

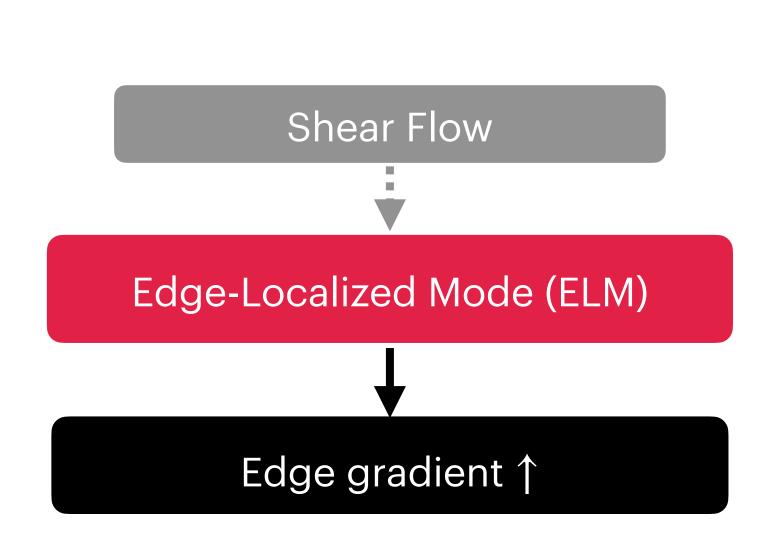
 Our results predicts the power threshold of L-H transition increases linearly as stochastic magnetic field intensity increases.

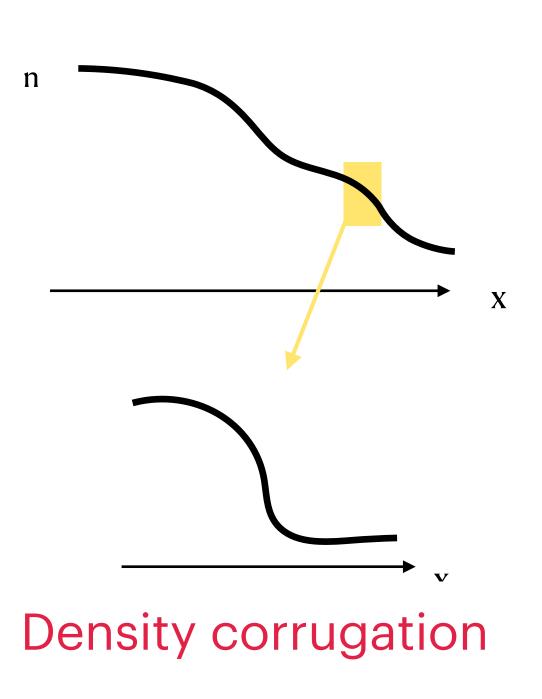
Chang-Chun Samantha Chen

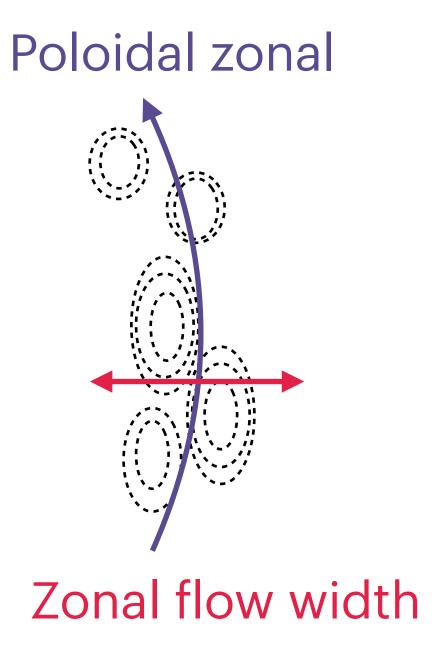


Thank you!

Fate of Spatial structure of zonal flow?







Zonal flow width is related to corrugation length.

We are interested in zonal flow width in presence of stochastic fields.

Layering Structure—Mixing Length Model

PE Dissipation

A mixing length model for layering:

- Reduce evolution equations (based on H-W model).
- Energy and Potential entropy (PE) conserved.

Density:
$$\frac{\partial}{\partial t} \langle n \rangle = \frac{\partial}{\partial x} \left(D_n \frac{\partial \langle n \rangle}{\partial x} \right) + D_c \frac{\partial^2}{\partial x^2} \langle n \rangle$$

turb. particle diffusion

Potential Vorticity:
$$\frac{\partial}{\partial t} \langle \zeta \rangle = \frac{\partial}{\partial x} \left((D_n - \chi) \frac{\partial \langle n \rangle}{\partial x} \right) + \chi \frac{\partial^2}{\partial x^2} \langle \zeta \rangle + \mu_c \frac{\partial^2}{\partial x^2} \langle \zeta \rangle$$
residual stress
turb. Viscous diffusion

Turbulent potential Enstrophy: $\frac{\partial}{\partial t}\epsilon = \frac{\partial}{\partial x}\left(D_e\frac{\partial \epsilon}{\partial x}\right) + \chi\left[\frac{\partial(n-\zeta)}{\partial x}\right]^2 - \epsilon_c^{-1/2}\epsilon^{3/2} + P$ mean-turb PE

PE diffusion

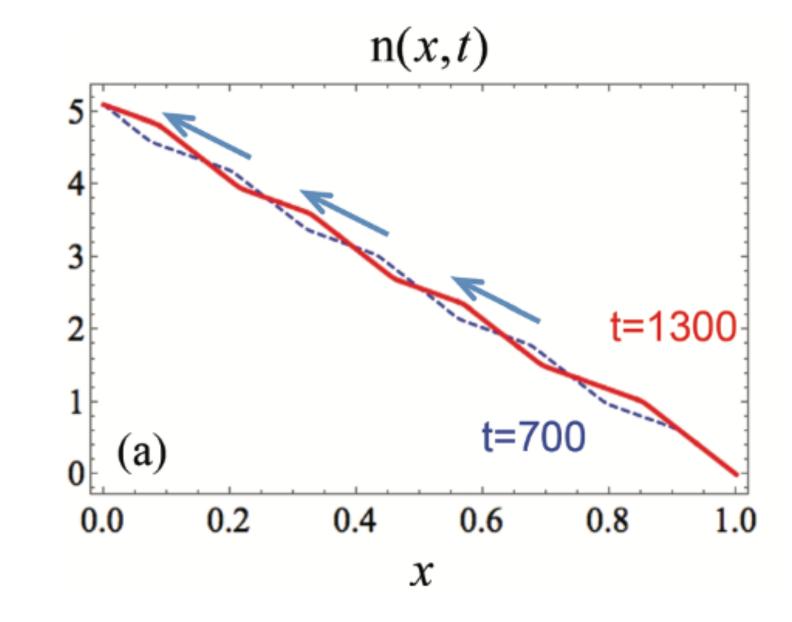
n : density ζ : potential vorticity

 ϵ : turbulent PE $\epsilon \equiv (\delta n - \delta \zeta)^2/2$

 D_n : turbulent particle diffusivity

 χ : turbulent vorticity

P : production



Ashourvan & Diamond, PoP **24**, 012305 (2017)

Density corrugation forms staircase-like structure.

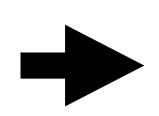
Coupling

Scale Selection

The mixing length (l_{mix}) depends on **two scales**:

• Driving scale:
$$l_0$$

• Rhines scale: $l_{RH} = \frac{\sqrt{\epsilon}}{|\partial_{x}q|}$



mixing scale:
$$l_{mix} = \frac{l_0}{(1 + l_0^2 (\partial_x q)^2 / \epsilon)^{\kappa/2}} = \frac{l_0}{(1 + l_0^2 / l_{RH}^2)^{\kappa/2}}$$

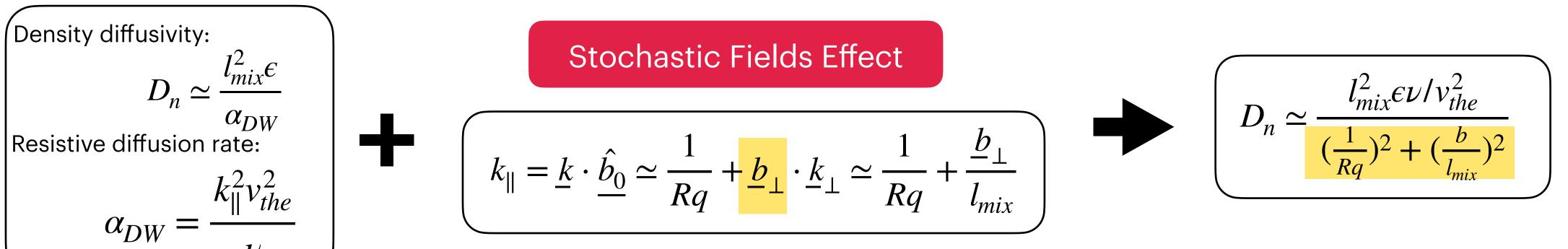
Strong mixing $(l_{RH} > l_0)$: $l_{mix} \simeq l_0$ (Weak mean PV gradient) Weak mixing $(l_0 > l_{RH})$: $l_{mix} \simeq l_0^{1-\kappa} l_{RH}^{\kappa}$ (Strong PV gradient)

 l_{mix} (hybrid length scale) sets the scale of zonal flow.

What is the effect of stochastic fields on staircases?

Main effect of diffusivity D_n and χ

For α_{DW} (a measurement of the resistive diffusion rate in the parallel direction) > 1 in H-W regime:



Same for χ (or D_{PV} in this case).

Competition btw
$$\frac{1}{Rq}$$
 v.s. $\frac{b_{\perp}}{l_{mix}}$ gives $Ku_{mag} = bRq/l_{mix}$ \longrightarrow $Ku_{mag} = Ku_{mag}(l_{mix})$

The mixing length is not likely affected by b^2 .

A change of scale selection or staircase corrugation requires $Ku_{mag} \geq 1$.

Conclusions

• The mixing length is not likely affected by b^2 . To change mixing length, we need $Ku_{mag} \ge 1$.