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OUTLINE

• Motivation: ELM, RMP & Stochastic Magnetic Field 

• (Ancient) History: How is instability process modified?

• Formulation: A Simple Model Maintaining ∇ ⋅ 𝑱𝑱 = 0

• Analysis: Physical Picture Behind the Calculation

• Conclusion : Where Things Stand & Lessons learned

• Future: What Next?



MOTIVATION: ELM, RMP & STOCHASTIC MAGNETIC FIELD
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3. M. Kikuchi, and M. Azumi, 2015. Frontiers in fusion research II. Heidelberg etc.: Springer.



(ANCIENT) HISTORY: HOW IS INSTABILITY PROCESS MODIFIED?

• Background: People realized that stochastic magnetic field may affect certain phenomena 
in tokamaks in the late 1970s. For example, anomalous electron heat transport. 1

The evolution of area mapping of field lines and 
guiding-center trajectories (a test particle picture)

• Classic of Ancient History: Tearing modes in a braided magnetic field 2. The main 
influence of stochastic magnetic field on macroscopic tearing modes lies in 
anomalous electron viscosity coefficient �̅�𝜇, i.e., the diffusion of current

test particle model

1. A. B. Rechester, and M. N. Rosenbluth, 2020. In Hamiltonian Dynamical Systems (pp. 684-687). CRC Press.
2. P. K. Kaw, E. J. Valeo, and P. H. Rutherford, 1979. Physical Review Letters, 43(19), p.1398.

Defects: 1. Physics of 𝜇𝜇? How derive?   2. Lack of  (or too simple) micro-macro connection

𝐸𝐸∥ = 𝜂𝜂𝐽𝐽∥ − �̅�𝜇 𝑚𝑚/𝑛𝑛𝑒𝑒2 ∇⊥2 𝐽𝐽∥.



FORMULATION: A SIMPLE MODEL MAINTAINING ∇ ⋅ 𝑱𝑱 = 0

Target: Construct a simple model to get insights and guide simulations

The model should 

maintain ∇ ⋅ 𝑱𝑱 = 0

connect micro and macro scales

be tractable

Electrostatic 
interchange

• Linearized vorticity equation
− 𝜌𝜌0/𝐵𝐵02 𝜕𝜕𝑡𝑡∇⊥2𝜙𝜙

∇⊥⋅𝑱𝑱𝒑𝒑𝒑𝒑𝒑𝒑

− 𝑔𝑔/𝐵𝐵0 𝜕𝜕𝑦𝑦𝑝𝑝
∇⊥⋅𝑱𝑱𝑷𝑷𝑷𝑷

+𝒃𝒃𝟎𝟎 ⋅ ∇𝐽𝐽∥
∇∥𝐽𝐽∥

= 0

• Electrostatic Ohm’s law of resistive MHD

𝐸𝐸∥ = −∇∥𝜙𝜙 = 𝜂𝜂∥𝐽𝐽∥
• Linearized pressure equation

𝜕𝜕𝑡𝑡𝑝𝑝 − ∇𝜙𝜙 × �𝒛𝒛 /𝐵𝐵0 ⋅ ∇𝑝𝑝0 = 0

∇ ⋅ 𝑱𝑱 = 0



FORMULATION: A SIMPLE MODEL MAINTAINING ∇ ⋅ 𝑱𝑱 = 0

Introduce a static stochastic magnetic field �𝒃𝒃 = �𝑩𝑩⊥/𝐵𝐵0 = ∑𝑚𝑚,𝑛𝑛 �𝒃𝒃𝑚𝑚,𝑛𝑛 𝑥𝑥′ 𝑒𝑒𝑖𝑖 𝑚𝑚𝑚𝑚−𝑛𝑛𝑛𝑛

Total field = Main field + Randomly tilted lines, i.e.

∇∥= ∇∥
0 + �𝒃𝒃 ⋅ ∇⊥

Model: a low-𝑘𝑘 single test mode + a high-𝑘𝑘 stochastic magnetic field background

𝒌𝒌 ≪ 𝒌𝒌′

(∇ ⋅ �𝒃𝒃 = 0)

𝜕𝜕
𝜕𝜕𝜕𝜕 𝛻𝛻⊥

2 �𝜑𝜑 = −
𝑆𝑆
𝜏𝜏𝐴𝐴

𝛻𝛻∥
0 + �𝒃𝒃 ⋅ 𝛻𝛻⊥

2
�𝜑𝜑 −

𝑔𝑔𝐵𝐵0
𝜌𝜌0

𝜕𝜕�̅�𝑝
𝜕𝜕𝜕𝜕

𝑏𝑏𝒌𝒌𝟏𝟏
2

= 𝑏𝑏0 2𝑆𝑆 𝑘𝑘1𝑚𝑚 𝐹𝐹 𝑟𝑟 − 𝑟𝑟𝒌𝒌𝟏𝟏 /𝑤𝑤𝒌𝒌𝟏𝟏



FORMULATION: A SIMPLE MODEL MAINTAINING ∇ ⋅ 𝑱𝑱 = 0

Remember: we want to keep ∇ ⋅ 𝑱𝑱 = 0 at all scales.

If only �𝒃𝒃 and �𝜑𝜑, ∇ ⋅ 𝑱𝑱 = 0 is not guaranteed!

At micro scale:

�𝑱𝑱 = �𝑱𝑱∥ = �𝑱𝑱∥0 + �𝑱𝑱⊥ = −
1
𝜂𝜂∥

�𝒃𝒃 ⋅ ∇⊥ �𝜙𝜙𝒃𝒃𝟎𝟎 −
1
𝜂𝜂∥
∇∥
0 �𝜙𝜙�𝒃𝒃

∇ ⋅ �𝑱𝑱 = ∇∥
0 𝐽𝐽∥0 + ∇⊥ ⋅ �𝑱𝑱⊥ = −

1
𝜂𝜂∥

∇∥
0 �𝒃𝒃 ⋅ ∇⊥ �𝜙𝜙 + �𝒃𝒃 ⋅ ∇⊥ ∇∥

0 �𝜙𝜙 ≠ 0

∇ ⋅ 𝑱𝑱 = 0 no longer holds!

There must be something we’ve missed at small scales.

What is the missing piece? ∇ ⋅ �𝑱𝑱 ≠ 0



FORMULATION: A SIMPLE MODEL MAINTAINING ∇ ⋅ 𝑱𝑱 = 0

Insights from the Classic: Kadomtsev and Pogutse ’78 1:

Electron heat flux is divergence free at all scales                𝛻𝛻 ⋅ 𝒒𝒒 = 0

where    𝒒𝒒 = −𝜒𝜒∥𝛻𝛻∥𝑇𝑇�𝒃𝒃 − 𝜒𝜒⊥𝛻𝛻⊥𝑇𝑇 �𝒃𝒃 = �𝒃𝒃𝟎𝟎 + �𝒃𝒃 𝛻𝛻∥ = 𝛻𝛻∥
0 + �𝒃𝒃 ⋅ 𝛻𝛻⊥

The idea is, to maintain ∇ ⋅ 𝒒𝒒 = 0, there must be a temperature fluctuation �𝑇𝑇.

1. B. B. Kadomtsev, and O. P. Pogutse, 1979. Plasma Physics and Controlled Nuclear Fusion Research 1978, Volume 1, 1, pp.649-662.
2. P. Beyer, X. Garbet, and P. Ghendrih, 1998. Physics of Plasmas, 5(12), pp.4271-4279. 

Analogy K&P C&D

Base state 𝑇𝑇 𝑟𝑟 �𝜑𝜑𝒌𝒌

External fluctuation �𝒃𝒃 �𝒃𝒃

Constraint ∇ ⋅ 𝒒𝒒 = 0 ∇ ⋅ 𝑱𝑱 = 0

Resulting fluctuation �𝑇𝑇 ? ? ?

Therefore, to maintain ∇ ⋅ 𝑱𝑱 = 0, electrostatic convective cells should be considered.2
Hint: in this story, �𝒃𝒃 could induce an electrostatic potential fluctuation �𝜑𝜑



FORMULATION: A SIMPLE MODEL MAINTAINING ∇ ⋅ 𝑱𝑱 = 0

The actual model is

Small scale 
convective cells

Further, these small-scale convective cells drive a turbulent 
viscosity 𝜈𝜈 and a turbulent diffusivity 𝜒𝜒.

Long wavelength cell in presence of short 
wavelength cells and �𝒃𝒃

𝑏𝑏𝒌𝒌𝟏𝟏
2 = 𝑏𝑏0 2𝑆𝑆 𝑘𝑘1𝑚𝑚 𝐹𝐹 𝑟𝑟 − 𝑟𝑟𝒌𝒌𝟏𝟏 /𝑤𝑤𝒌𝒌𝟏𝟏

�𝜑𝜑 �𝜑𝜑
large scale small scale

+�𝒃𝒃

+�𝒃𝒃

drive

modify



FORMULATION: A SIMPLE MODEL MAINTAINING ∇ ⋅ 𝑱𝑱 = 0

By using method of averaging, the model is described by

𝜕𝜕
𝜕𝜕𝜕𝜕 − 𝜈𝜈𝛻𝛻⊥2 𝛻𝛻⊥2 �𝜑𝜑 = −

𝑆𝑆
𝜏𝜏𝐴𝐴

𝛻𝛻∥
0 2

�𝜑𝜑 + 𝛻𝛻⊥ ⋅ �𝒃𝒃�𝒃𝒃 ⋅ 𝛻𝛻⊥ �𝜑𝜑
(1)

+ 𝛻𝛻∥
0 𝛻𝛻⊥ ⋅ �𝒃𝒃 �𝜑𝜑

(2)

+ 𝛻𝛻⊥ ⋅ �𝒃𝒃𝛻𝛻∥
0 �𝜑𝜑

(3)

−
𝑔𝑔𝐵𝐵0
𝜌𝜌0

𝜕𝜕�̅�𝑝
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝜕𝜕 − 𝜒𝜒𝛻𝛻⊥2 �𝑝𝑝 −

𝛻𝛻 �𝜑𝜑 × �𝒛𝒛
𝐵𝐵0

⋅ 𝛻𝛻𝑝𝑝0 = 0 𝐴𝐴 = �̅�𝐴 =
1
2𝜋𝜋 2�𝑑𝑑𝑑𝑑𝑑𝑑𝜙𝜙𝑒𝑒−𝑖𝑖 𝑚𝑚𝑚𝑚−𝑛𝑛𝑛𝑛 𝐴𝐴

Some assumptions/observations:

• �𝜑𝜑: low 𝒌𝒌, slow interchange approximation 1/𝑤𝑤𝒌𝒌2 ≫ 𝑘𝑘𝑦𝑦2

• �𝜑𝜑: high 𝒌𝒌′, fast interchange approximation 1/𝑤𝑤𝒌𝒌′
2 ≪ 𝑘𝑘𝑦𝑦′

2

• �𝜑𝜑 is driven by the beat of �𝒃𝒃 and �𝜙𝜙, thus macro scale and micro scale are now connected.

• As �𝒃𝒃 is stationary, �𝜑𝜑 is saturated by 𝜈𝜈 and 𝜒𝜒, which originate from micro convective cells.

𝑘𝑘𝑦𝑦2 ≪
1
𝑤𝑤𝒌𝒌2

≪
1
𝑤𝑤𝒌𝒌′
2 ≪ 𝑘𝑘𝑦𝑦′

2

𝜕𝜕
𝜕𝜕𝜕𝜕 − 𝜈𝜈𝛻𝛻⊥2 𝛻𝛻⊥2 �𝜑𝜑 +

𝑆𝑆
𝜏𝜏𝐴𝐴
𝛻𝛻∥

0 2
�𝜑𝜑 +

𝑔𝑔𝐵𝐵0
𝜌𝜌0

𝜕𝜕 �𝑝𝑝
𝜕𝜕𝜕𝜕 = −

𝑆𝑆
𝜏𝜏𝐴𝐴

�𝒃𝒃 ⋅ 𝛻𝛻⊥ 𝛻𝛻∥
0 �𝜑𝜑 + 𝛻𝛻∥

0 �𝒃𝒃 ⋅ 𝛻𝛻⊥ �𝜑𝜑

𝜕𝜕
𝜕𝜕𝜕𝜕 − 𝜒𝜒𝛻𝛻⊥2 �̂�𝑝 −

𝛻𝛻 �𝜑𝜑 × �𝒛𝒛
𝐵𝐵0

⋅ 𝛻𝛻𝑝𝑝0 = 0④

①

②

③



ANALYSIS: PHYSICAL PICTURE BEHIND THE CALCULATION

𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜈𝜈∇⊥2 ∇⊥2 �𝜑𝜑 +

𝑆𝑆
𝜏𝜏𝐴𝐴

∇⊥ ⋅ �𝒃𝒃�𝒃𝒃 ⋅ ∇⊥ �𝜑𝜑
1

= −
𝑆𝑆
𝜏𝜏𝐴𝐴

∇∥
� )0 2

�𝜑𝜑 + ∇∥
0 �𝒃𝒃 ⋅ ∇⊥ �𝜑𝜑

2

+ �𝒃𝒃 ⋅ ∇⊥ ∇∥
0 �𝜑𝜑

3

−
𝑔𝑔𝐵𝐵0
𝜌𝜌0

𝜕𝜕�̅�𝑝1
𝜕𝜕𝜕𝜕

To determine �𝑏𝑏 �𝜑𝜑 , we need find linear response of �𝜑𝜑 to �𝒃𝒃. Another equation!
The vorticity equation at micro scale resembles a quantum harmonics under a weak drive. 

By exploiting fast-interchange approximation and using quasi-linear theory, we obtain

�𝜑𝜑𝒌𝒌𝟐𝟐 𝑥𝑥2 = 𝑖𝑖
𝑆𝑆
𝜏𝜏𝐴𝐴
�𝐺𝐺 𝑥𝑥2 𝑥𝑥2′ ) 𝜕𝜕𝑥𝑥′𝑘𝑘∥ �𝜑𝜑𝒌𝒌 𝑥𝑥′ + 𝑘𝑘2∥ + 𝑘𝑘∥ 𝜕𝜕𝑥𝑥′ �𝜑𝜑𝒌𝒌 𝑥𝑥′ �𝑏𝑏𝑟𝑟 𝒌𝒌𝟐𝟐−𝒌𝒌

𝑥𝑥1′ 𝑑𝑑𝑥𝑥2′ ,

where

𝐺𝐺 𝑥𝑥2, 𝑥𝑥2′ = �
𝑛𝑛

𝜓𝜓𝒌𝒌𝟐𝟐
𝑛𝑛 𝑥𝑥2 𝜓𝜓𝒌𝒌𝟐𝟐

𝑛𝑛 𝑥𝑥2′

Λ𝒌𝒌𝟐𝟐
𝑛𝑛 − Λ𝒌𝒌𝟐𝟐

.

Main equation:

−2𝜈𝜈𝑘𝑘2𝑚𝑚2
𝜕𝜕2

𝜕𝜕𝑥𝑥22
�𝜑𝜑𝒌𝒌2 𝑥𝑥2 +

𝑆𝑆
𝜏𝜏𝐴𝐴
𝑘𝑘2𝑚𝑚2 𝑥𝑥22

𝐿𝐿𝑠𝑠2
�𝜑𝜑𝒌𝒌2 𝑥𝑥2 −

𝑔𝑔𝑝𝑝0
𝜒𝜒𝜌𝜌0𝐿𝐿𝑝𝑝

− 𝜈𝜈𝑘𝑘2𝑚𝑚4 �𝜑𝜑𝒌𝒌2 𝑥𝑥2

= 𝑖𝑖
𝑆𝑆
𝜏𝜏𝐴𝐴

𝜕𝜕𝑥𝑥𝑘𝑘∥ �𝜑𝜑𝒌𝒌 𝑥𝑥 + 𝑘𝑘2∥ + 𝑘𝑘∥ 𝜕𝜕𝑥𝑥 �𝜑𝜑𝒌𝒌 𝑥𝑥 �𝑏𝑏𝑟𝑟 𝒌𝒌2−𝒌𝒌
𝑥𝑥1

Eigen function of QHO

①



ANALYSIS: PHYSICAL PICTURE BEHIND THE CALCULATION

(1): 𝑆𝑆
𝜏𝜏𝐴𝐴

∇⊥ ⋅ �𝒃𝒃�𝒃𝒃 ⋅ ∇⊥ �𝜑𝜑 = 𝑆𝑆
𝜏𝜏𝐴𝐴
𝜕𝜕𝑥𝑥 𝑏𝑏𝑟𝑟 2𝜕𝜕𝑥𝑥 �𝜑𝜑𝒌𝒌 𝑥𝑥 magnetic vorticity damping

𝑆𝑆
𝜏𝜏𝐴𝐴
𝜕𝜕𝑥𝑥 �𝑏𝑏𝑟𝑟

2𝜕𝜕𝑥𝑥 �𝜑𝜑 ~
𝑣𝑣𝐴𝐴2

𝜂𝜂
𝑘𝑘𝑦𝑦2

𝐿𝐿𝑠𝑠2
𝑤𝑤𝐼𝐼′

4

Δ𝑥𝑥 2 �𝜑𝜑

𝛻𝛻∥𝐽𝐽∥ (1)~
𝑆𝑆
𝜏𝜏𝐴𝐴
𝛻𝛻∥

0 2
�𝜑𝜑~

𝑣𝑣𝐴𝐴2

𝜂𝜂
𝑘𝑘𝑦𝑦2

𝐿𝐿𝑠𝑠2
Δ𝑥𝑥 2

3𝑟𝑟𝑟𝑟 order ∇∥𝐽𝐽∥

As  𝑆𝑆
𝜏𝜏𝐴𝐴

�𝐵𝐵𝑟𝑟𝑘𝑘′
𝐵𝐵0

2
~ 𝑉𝑉𝐴𝐴

2

𝜂𝜂
𝑘𝑘𝜃𝜃
′2

𝐿𝐿𝑆𝑆
2 𝑊𝑊𝐼𝐼

′4

When 𝑤𝑤𝐼𝐼′~
𝑘𝑘𝑦𝑦2

𝑘𝑘𝑦𝑦′
2 Δ𝑥𝑥 4

1
4
, 3rd order magnetic torque balances 1st order. This is a reminiscent of 

Rutherford ’73.1 The ratio (𝑘𝑘𝑦𝑦2/𝑘𝑘𝑦𝑦′
2) is due to the multi-scale character.

1. P. H. Rutherford, 1973. The Physics of Fluids, 16(11), pp.1903-1908. 

Third order magnetic torques:

𝑤𝑤𝐼𝐼′ ≡ island width for stochastic field
Δ𝑥𝑥 ≡ �𝜑𝜑 layer width

𝛾𝛾𝒌𝒌𝜕𝜕𝑥𝑥2 �𝜑𝜑𝒌𝒌 +
𝑆𝑆
𝜏𝜏𝐴𝐴
𝜕𝜕𝑥𝑥 𝑏𝑏𝑟𝑟 2𝜕𝜕𝑥𝑥 �𝜑𝜑𝒌𝒌 𝑥𝑥 Enhance inertia

(3rd order magnetic torque)



ANALYSIS: PHYSICAL PICTURE BEHIND THE CALCULATION

• Perpendicular electric field �𝑬𝑬⊥ generates a parallel current.
• Parallel electric field �𝐸𝐸∥0 generates a perpendicular current 

Recall equation �𝐿𝐿𝒌𝒌+𝑘𝑘′ �𝜑𝜑𝒌𝒌+𝑘𝑘′ = 𝐶𝐶�𝑏𝑏𝒌𝒌′ �𝜑𝜑𝒌𝒌. 
Assume �𝜑𝜑 is near marginal in presence of weak excitation, then

�𝐿𝐿𝒌𝒌+𝑘𝑘′ �𝜑𝜑𝒌𝒌+𝑘𝑘′ ≈ 0

What is 𝜈𝜈?

𝜈𝜈 = �
𝒌𝒌𝟏𝟏

�𝑣𝑣𝒌𝒌𝟏𝟏
2𝜏𝜏𝒌𝒌1

Since �𝜑𝜑 must be saturated by 𝜈𝜈 𝜈𝜈 = 𝑔𝑔/𝐿𝐿𝑝𝑝𝑘𝑘𝑚𝑚′
4 1/2

Above equation just provides a basic value of 𝜈𝜈. The correction is given by the following closure

(2) = 𝛻𝛻∥
0 𝛻𝛻⊥ ⋅ �𝒃𝒃 �𝜑𝜑 = −∇∥

0 (�𝒃𝒃 ⋅ �𝑬𝑬⊥)

3 = 𝛻𝛻⊥ ⋅ �𝒃𝒃𝛻𝛻∥
0 �𝜑𝜑 = −∇⊥ ⋅ �𝒃𝒃⊥ �𝐸𝐸∥0

𝑬𝑬 field projections along 
wandering tilting lines



CONCLUSION : WHERE THINGS STAND & LESSONS LEARNED

• Integro-differential equation for 

�𝜑𝜑 evolution in presence of 𝑏𝑏𝒌𝒌′ 2

• Effect and physics of the third-order 

magnetic torque are clear.

• Can formulate perturbation theory for 

𝛾𝛾𝒌𝒌 → 𝛾𝛾𝒌𝒌
0 + 𝛾𝛾𝒌𝒌

(1)(not finished yet)

• Obtain the value of 𝜈𝜈

𝜈𝜈 ≈�
𝒌𝒌𝟏𝟏

𝑐𝑐𝒌𝒌𝟏𝟏
2 �𝑏𝑏2 𝒌𝒌𝟏𝟏

�𝜑𝜑 2𝛾𝛾𝒌𝒌𝟏𝟏
−1/ 𝑘𝑘1𝑚𝑚2 − 𝑔𝑔𝑘𝑘1𝑚𝑚2 / 𝐿𝐿𝑝𝑝 𝑣𝑣𝑘𝑘1𝑚𝑚2

2



CONCLUSION : WHERE THINGS STAND & LESSONS LEARNED

• Intrinsically a multi-scale problem: �𝜑𝜑; �𝜑𝜑 and �𝒃𝒃
• To maintain ∇ ⋅ 𝑱𝑱 = 0 at all scales for prescribed �𝒃𝒃 and instability �𝜑𝜑, 

�𝜑𝜑(microscopic convective cells) is generated.
• This yields a non-trivial ⟨�𝑏𝑏 �𝜑𝜑⟩, i.e., electrostatic turbulence ‘locks on’   to 

magnetic perturbation.
• Identify magnetic vorticity damping effect (enhanced inertia)

𝑖𝑖𝑛𝑛𝑒𝑒𝑟𝑟𝜕𝜕𝑖𝑖𝑖𝑖 → 𝑖𝑖𝑛𝑛𝑒𝑒𝑟𝑟𝜕𝜕𝑖𝑖𝑖𝑖 +
𝑆𝑆
𝜏𝜏𝐴𝐴
𝜕𝜕𝑥𝑥 𝑏𝑏𝑟𝑟 2𝜕𝜕𝑥𝑥 �𝜑𝜑

• 𝑤𝑤𝐼𝐼′~ (𝑘𝑘𝑦𝑦2/𝑘𝑘𝑦𝑦′
2) Δ𝑥𝑥 4 1/4

, when 𝛻𝛻∥𝐽𝐽∥ (1)~ 𝛻𝛻∥𝐽𝐽∥ (3).
Magnetic vorticity damping is stronger than Rutherford’s problem, for 𝑘𝑘𝑦𝑦 ≪ 𝑘𝑘𝑦𝑦′ .



FUTURE: WHAT NEXT?

• Complete calculations of 𝛾𝛾𝒌𝒌 and 𝜈𝜈 to the first order by using perturbation theory.

• Determine the effects of 𝛻𝛻∥
0 𝛻𝛻⊥ ⋅ �𝒃𝒃 �𝜑𝜑 and 𝛻𝛻⊥ ⋅ �𝒃𝒃𝛻𝛻∥

0 �𝜑𝜑 . (a competition?)

• Another way to solve it? Schrodinger equation with 1-D random potential.

• Look at effects of stochastic magnetic field �𝒃𝒃 on twisted slicing modes.
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