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⚫ Stochastic field : chaos of magnetic field lines (RMP, island, 

stellarator,……)

✓ Interaction and co-existence of stochastic magnetic field and 

turbulence

4

Stochastic magnetic field

+
Excited ෨𝐵𝑟

𝐵

Stochastic region
T. Tokuzawa, APTWG 2021 

Turbulence in stochastic region

L. Schmitz et al, NF 2019

L→H occurs in stochastic layer
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Motivation 
⚫ Stochastic field is important for boundary control in fusion device

Kriete 2020 PoPSchmitz 2019 NF



6

Motivation 
Need theory for turbulent transport in stochastic B field: 

(current focus: L→H transition)

Key physics (All interconnected) :

➢ Direct effect of stochastic field on turbulence1 → generation of micro 

convective cell 

➢ Dephasing effect2→ quenches poloidal Reynolds stress and 

generation of ZF

➢ Particle transport3 → density pump-out

➢ Momentum transport (𝑉𝜃 and 𝑉𝜙)3→ intrinsic torque at edge 

➢ Heat transport3 → L-H power threshold

Note: Previous focused on electron heat transport (Manz 2020), 
we focus on flow, particle and ion heat transport.

1 M. Y. Cao, P9, this meeting

2 C. C. Chen, O 3.2, this meeting

3P.H. Diamond, O3.1, this meeting
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⚫ More specific: how stochastic B-field affects 𝑣𝐸
′ ?

𝑣𝐸
′ Heat, particles ⊥, ∥ flows → momentum

✓ Study turbulence, particle, momentum and heat transport to 

ascertain change of 𝐸𝑟 due to stochastic B field.

✓ Goal is towards 𝑱𝒓 ↔ 𝑬𝒓 relation— effective “Ohm’s law”

Our goal − understand effects of stochastic field 
on 𝐸𝑟 and 𝑣𝐸

′

 Stochastic B-field, externally excited but self-consistent within 

plasma (Ampere’s law), enters 𝑱𝒓

 Take turbulence as electrostatic in L-mode (simple first step). 



Ambipolarity breaking ⇒ 𝐽𝑟

⚫ Ambipolarity breaking due to stochastic field ⇒ 𝐽𝑟

𝐽𝑟 = Ԧ𝐽∥ ∙ Ԧ𝑒𝑟 =
ሚ𝐽∥

෩B𝑟

𝐵

⚫ From Ampere law: ሚ𝐽∥ = −
𝑐

4𝜋
𝛻2 ሚ𝐴∥

𝐽𝑟 =
ሚ𝐽∥

෨𝐵𝑟

𝐵
= −

𝑐

4𝜋𝐵

𝜕

𝜕𝑦
ሚ𝐴∥

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2
ሚ𝐴∥

= −
𝑐

4𝜋𝐵

𝜕

𝜕𝑥

𝜕

𝜕𝑥
ሚ𝐴∥

𝜕

𝜕𝑦
ሚ𝐴∥ =

𝑐

4𝜋𝐵

𝜕

𝜕𝑥
෨𝐵𝑥

෨𝐵𝑦

=
𝑐𝐵

4𝜋

𝜕

𝜕𝑥
෨𝑏𝑥

෨𝑏𝑦 ⇒  
𝑐𝐵0

4𝜋

𝜕

𝜕𝑟
෨𝑏𝑟

෨𝑏𝜃

+
Excited ෨𝐵𝑟

𝐵

Stochastic region

Maxwell stress

𝐽∥ = 𝐽∥,𝑒 + 𝐽∥,𝑖

Note: Stochasticity excited externally (RMP) but 

Ampere’s law must be satisfied in plasma.

𝐽𝑟 tracks momentum, not heat transport. Phases? 9

Stochastic field produces currents in plasmas

(Self- consistency)



Maxwell stress:

𝜕𝒌𝒓

𝜕𝑡
= −

𝜕(𝒌𝜽𝑽𝑬)

𝜕𝒓
→ 𝒌𝒓 = 𝒌𝒓

𝟎 − 𝒌𝜽𝑽𝑬
′ 𝝉𝒄

෨𝑏𝑟
෨𝑏𝜃 = −

1

𝐵2 

𝑘

| ሚ𝐴𝑘|2 𝑘𝜃
2𝑉𝐸

′𝜏𝑐 =
1

𝐵2 

𝑘

| ෨𝐵𝑘|2 𝑉𝐸
′𝜏𝑐

Note:τc is coherence time (in shear field) of  magnetic perturbation.

Tilting will tend to align turbulent RS and stochastic Maxwell stress.

Phase 1: Phase in Maxwell stress 

෨𝑏𝑟
෨𝑏𝜃 =

1

𝐵2 

𝑘

| ሚ𝐴𝑘|2 𝑘𝑟𝑘𝜃 phase set by 𝑘𝑟𝑘𝜃

𝜏𝑐 = (
𝑘𝜃

2𝑉𝐸
′2𝐷𝑇

3
)−1/3𝑬 × 𝑩 shear aligns phases, regardless of mechanisms

𝜕𝐴

𝜕𝑡
+ 𝑉 ∙ 𝛻𝐴 = 𝜇 𝑱

𝜕𝐴

𝜕𝑡
+ 𝑉𝐸

′
𝜕𝐴

𝜕𝑦
+ ෨𝑉 ∙ 𝛻𝐴 = 𝜇 𝑱

Shear flow Fluctuation scattering

ሚ𝐴𝑘 tilted by developing 𝑬 × 𝑩
flow, scattered by fluctuation.

10



Phase 2: Dephasing of Reynold stress

Without ෩𝒃𝒓

With ෩𝒃𝒓

More details: C.C. Chen, O 3.2, this meeting 11
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Phase 2: Dephasing of Reynold stress

Through effect on phase correlation:

− 𝑉𝐸
′ tends to align phases.

− ෨𝑏2 tends to break the alignment.
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Instability affected by stochasticity— phase I

Common theme: A Simple Model ∇ ⋅ 𝑱 = 0 (Kadomtsev and Pogutse ’78 )

A low-𝑘 single test mode + a high-𝑘 stochastic magnetic field 

background

𝒌 ≪ 𝒌′

𝜕

𝜕𝑡
𝛻⊥

2 ത𝜑 = −
𝑆

𝜏𝐴
𝛻∥

0
+ ෩𝒃 ⋅ 𝛻⊥

2
ത𝜑 −

𝑔𝐵0

𝜌0

𝜕 ҧ𝑝

𝜕𝑦

𝑏𝒌𝟏

2
= 𝑏0

2𝑆 𝑘1𝜃 𝐹 𝑟 − 𝑟𝒌𝟏
/𝑤𝒌𝟏

Analogy Kadomtsev and Pogutse ’78 This model

Base state 𝑇 𝑟 ത𝜑𝒌

External fluctuation ෩𝒃 ෩𝒃

Constraint ∇ ⋅ 𝒒 = 0 ∇ ⋅ 𝑱 = 0

Resulting fluctuation ෨𝑇 𝜑

electrostatic 
potential 
fluctuation 

induced by ෩𝒃𝒓

If only ෩𝒃 and ത𝜑, ∇ ⋅ 𝑱 = 0

is not guaranteed!

What is missing?

See more details: M. Y. Cao, P9, this meeting
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The actual model must be:

Small scale 
convective cells

Further, these small-scale convective cells drive a 
turbulent viscosity 𝜈 and a turbulent diffusivity 𝜒.

Long wavelength cell in 
presence of short wavelength 

cells and ෩𝒃.

𝑏𝒌𝟏

2
= 𝑏0

2𝑆 𝑘1𝜃 𝐹 𝑟 − 𝑟𝒌𝟏
/𝑤𝒌𝟏

ത𝜑 𝜑

large scale small scale

+෩𝒃

+෩𝒃

drive

modify

Instability affected by stochasticity — phase II

 Interation develops ෨𝑏𝑟
෨𝜙 ≠ 0 → small electrostatic fluctuations “lock 

on” to ෨𝑏. 

 Intrinsically a multi-scale problem: ത𝜑; 𝜑 and ෩𝒃

Are micro-cells the agent of RMP induced density “pump-out”?

See more details: M. Y. Cao, P9, this meeting



Particle 1:Stochasticity contribution to particle flux
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𝑆𝑝 = Γ𝑎

𝑎 − 𝑟 + 𝑑𝑎

𝐿𝑑𝑒𝑝
2 exp(−

(𝑎 + 𝑑𝑎 − 𝑟)2

2𝐿𝑑𝑒𝑝
2 )

𝜕𝑛𝑒

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
𝑟Γe = 𝑆𝑝

Γ𝑒 = −(𝐷𝑛𝑒𝑜 + 𝐷𝑇)
𝜕𝑛

𝜕𝑟
+Γ𝑒, 𝑠𝑡𝑜𝑐ℎ

• 𝐷𝑛𝑒𝑜 = (𝑚𝑒/𝑚𝑖)1/2𝜒𝑖,𝑛𝑒𝑜

• 𝐷𝑇~𝑏𝐷𝐺𝐵 with b<1

Γ𝑒, 𝑠𝑡𝑜𝑐ℎ =
𝑐

4𝜋𝑒𝐵
෨𝑏𝑟𝛻⊥

2 ሚ𝐴∥ + 𝑛 ෨𝑉∥,𝑖
෨𝑏𝑟

𝑐

4𝜋𝑒𝐵
෨𝑏𝑟𝛻⊥

2 ሚ𝐴∥ = −
𝑐𝐵

4𝜋𝑒

𝜕

𝜕𝑟
෨𝑏𝑟

෨𝑏𝜃

𝑛 ෨𝑉∥,𝑖
෨𝑏𝑟 : parallel ion flow along tilted field lines

✓ ෨𝑏𝑟
෨𝑏𝜃 phasing via 𝑉𝐸

′ tilt.

⚫ For electron density :

with

⚫ The stochastic field can induce particle flux (𝑛𝑒 = 𝑛𝑖):

with
෨𝑏𝑟

ሚ𝐽∥
෨𝑏𝑟

ሚ𝐽∥,𝑖

− RMP induced density 
“pump-out”?

− Kinetic stress ෨𝑏𝑟𝛿𝑃
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Particle 2: Hybrid diffusivity

⚫ Heuristics 

⚫

⚫

P.H. Diamond, O 3.1, this meeting

Flux-gradient relation 

is changes by ෨𝑏



Flow 1: Stochastic B-field affects 𝑉𝜃

𝑉𝜃 = 𝑉𝜃,𝑛𝑒𝑜 −
1

𝜇

𝜕

𝜕𝑟
෨𝑉𝜃

෨𝑉𝑟 −
1

4𝜋𝜌
෨𝐵𝑟

෨𝐵𝜃

 V𝐸
′ phasing via tilt tends to align turbulence and stochastic B-

field, which counteracts the spin-up of 𝑉𝜃 .



𝜕

𝜕𝑟
|෨𝑏𝑟|2 , i.e., profile of stochastic enters → introduce stochastic 

layer width as novel scale

⚫ Poloidal momentum balance 

𝜕 𝑉𝜃

𝜕𝑡
= −𝜇( 𝑉𝜃 − 𝑉𝜃,𝑛𝑒𝑜) −

𝜕

𝜕𝑟
෨𝑉𝜃

෨𝑉𝑟 −
1

4𝜋𝜌
෨𝐵𝑟

෨𝐵𝜃

Turbulence 

Reynold stress

⚫ For SS:

= 𝑉𝜃,𝑛𝑒𝑜 −
1

𝜇

𝜕

𝜕𝑟
(

1

𝐵2
𝜏𝑐𝑉𝐸

′
𝐼

1 + 𝛼𝑉𝐸
′2 −

𝐵2

4𝜋𝜌
𝜏𝑐

′ 𝑉𝐸
′| ෨𝑏𝑟|2)

Maxwell stress  

of stochastic field 

perturbation 
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𝜇 = 𝜇00(1 +
𝜈𝐶𝑋

𝜈𝑖𝑖
)𝜈𝑖𝑖𝑞2𝑅2

𝑉𝜃,𝑛𝑒𝑜 ≈ −1.17
𝜕𝑇𝑖

𝜕𝑟
𝜏𝑐

′ = 𝜏𝑐with

𝐵𝜙 𝐽𝑟



Flow 2: Stochastic B-field affects 𝑉𝜙

⇒
𝜕 𝑉𝜙

𝜕𝑡
=

𝜕

𝜕𝑟
𝜒𝜙

𝜕

𝜕𝑟
𝑉𝜙 +

1

4𝜋𝜌

𝐵𝜃

𝐵

𝜕

𝜕𝑟
෨𝐵𝑟

෨𝐵𝜃 + 𝑆𝑀

⚫ For 𝑉𝜙:
𝜕 𝑉𝜙

𝜕𝑡
+ 𝛻 ∙ ෨𝑉r

෨𝑉𝜙 =
1

𝜌𝑐
𝐽𝑟 𝐵𝜃+𝑆𝑀

෨𝑉r
෨𝑉𝜙 = −𝜒𝜙

𝜕

𝜕𝑟
𝑉𝜙 , 𝜒𝜙 = 𝜒𝑇 =

𝜌𝑠
2𝐶𝑠

𝐿𝑇
,

Only consider diffusive term.

⚫ For SS:
𝜕

𝜕𝑟
𝜒𝜙

𝜕

𝜕𝑟
𝑉𝜙 = −

𝑉𝑇𝑖

2

𝛽

𝐵𝜃

𝐵

𝜕

𝜕𝑟
෨𝑏𝑟

෨𝑏𝜃 − 𝑆𝑀

18

𝑆𝑀= 𝑆𝑎exp(−
𝑟2

2𝐿𝑀,𝑑𝑒𝑝
2 )

𝜕

𝜕𝑟
𝑉𝜙 |𝑟𝑠𝑒𝑝

= −
1

𝜒𝜙
න

0

𝑟𝑠𝑒𝑝

𝑆𝑀𝑑𝑟 −
𝑉𝑇𝑖

2

𝛽𝜒𝜙

𝐵𝜃

𝐵
෨𝑏𝑟

෨𝑏𝜃 |𝑟𝑠𝑒𝑝

✓ Force through radial current across  separatrix.
Integrated external torque

with ෨𝑏𝑟
෨𝑏𝜃 = 𝑉𝐸

′𝜏𝑐
′ | ෨𝑏𝑟|2

Stochasticity affects 

edge toroidal 

velocity, shear

𝐵𝜃 𝐽𝑟

Note: 𝑽𝝓
′

proportional to |෩𝒃𝒓|𝟐/𝝌𝝓. Quenched 𝝌𝝓→ stronger 𝑽𝝓
′

effects!  
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Flow 3: Intrinsic rotation and kinetic stress 

 Kinetic stress is stochastic field-induced viscous stress → significant 
drag on rotation.

 Stochastic field reduces the toroidal Reynold stress and the effect is 
modest.
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Flow 4: Intrinsic rotation and kinetic stress 

Kinetic stress ෨𝑏 𝑝

→ affects momentum balance 

and intrinsic rotation

W. X. Ding, 2013 PRL, MST

Mean parallel flow: 𝑉∥ = 𝑉∥𝑏𝑟

Kinetic stress ෨𝑏 𝑝

Parallel flow driven by kinetic stress, balanced 
by stochastic magnetic field induced diffusion 
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𝑄𝑖,𝑠𝑡𝑜𝑐ℎ = න 𝑉∥
෨𝐵𝑟𝛿𝑓 𝑉∥

2 + 𝑉⊥
2 = −

𝜕 𝑇𝑖

𝜕𝑟
𝜒∥,𝑖𝜒⊥,𝑖

෨𝑏𝑟
2 𝑙𝑎𝑐𝑘⊥

𝑅𝑀𝑆

∝ −𝑣𝑡ℎ,𝑖𝐷𝑀, 𝑒𝑓𝑓
𝜕 𝑇𝑖

𝜕𝑟

✓ Important as threshold power is directly related to heat flux.

⚫ The stochastic field affects ion heat flux

𝑄𝑖 = − 𝜒𝑖,𝑛𝑒𝑜 + 𝜒𝑖,𝑇 𝛻𝑇𝑖 + 𝑄𝑖,𝑠𝑡𝑜𝑐ℎ

⚫ Heat flux induced by stochastic field :

Ion heat flux with stochastic field 

• 𝜒𝑖,𝑛𝑒𝑜 = 𝜀−3/2𝑞2𝜌𝑠
2𝜈𝑖𝑖

• 𝜒𝑖,𝑇 =
𝐶𝑠

2𝜏𝑐

1+𝛼𝑉𝐸
′2 ∗ 𝐼

~𝜒𝐺𝐵 ∗ 𝐼

• 𝜈𝑖𝑖 =
𝑛0𝑍4𝑒4 ln ⋀

36𝜋𝜀0
2𝑚𝑖

1/2
𝑇𝑖0

3/2

Direct effect on ion heat flux is finite but not so large ( ෨𝑏𝑟
2 𝑙𝑎𝑐𝑘⊥ ≪ 1).
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Towards an expression for 𝑉𝐸 ′
⚫ From Ohm’s law, 𝐸𝑟 and 𝐽𝑟 are related :

Ion temperature

Electron density 
✓ 𝑛

𝜕𝑇𝑖

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
𝑟𝑄𝑖 = 𝑆𝐻 ✓

𝜕𝑛𝑒

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
𝑟Γe = 𝑆𝑝

✓ 𝑉𝜃 = 𝑉𝜃,𝑛𝑒𝑜 +
1

𝜇

𝜕

𝜕𝑟
(

1

𝐵2 𝜏𝑐𝑉𝐸
′ 𝐼

1+𝛼𝑉𝐸
′2 −

𝐵2

4𝜋𝜌
𝜏𝑐

′ 𝑉𝐸
′|෨𝑏𝑟|2)

✓
𝜕

𝜕𝑟
𝑉𝜙 |𝑟𝑠𝑒𝑝

= −
1

𝜒𝜙
0

𝑟𝑠𝑒𝑝 𝑆𝑀𝑑𝑟 −
𝑉𝑇𝑖

2

𝛽𝜒𝜙

𝐵𝜃

𝐵
𝑉𝐸

′𝜏𝑐
′ |෨𝑏𝑟|2|𝑟𝑠𝑒𝑝 Toroidal flow 

Poloidal flow 

⚫ Elements for 𝑬×𝑩 shear:    𝐽𝑟

𝑉𝐸 ′ =
1

𝑒𝐵

𝜕

𝜕𝑟
𝛻𝑃𝑖/𝑛 −

𝜕

𝜕𝑟
𝑉𝜃 +

𝐵𝜃

𝐵

𝜕

𝜕𝑟
𝑉𝜙

=
1

𝑒𝐵

𝜕

𝜕𝑟
𝛻𝑃𝑖/𝑛 −

𝜕

𝜕𝑟
𝑉𝜃,𝑛𝑒𝑜 +

1

𝜇

𝜕

𝜕𝑟
(

1

𝐵2 𝜏𝑐𝑉𝐸
′ 𝐼

1+𝛼𝑉𝐸
′2 −

𝐵2

4𝜋𝜌
𝜏𝑐

′ 𝑉𝐸
′| ෨𝑏𝑟|2)

+
𝐵𝜃

𝐵
−

1

𝜒𝜙
0

𝑟𝑠𝑒𝑝 𝑆𝑀𝑑𝑟 −
𝑉𝑇𝑖

2

𝛽𝜒𝜙

𝐵𝜃

𝐵
𝑉𝐸

′𝜏𝑐
′ |෨𝑏𝑟|2|𝑟𝑠𝑒𝑝

⚫
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Increment of LH threshold power

Concern:  ∆𝜔 < 𝐷𝑘⊥
2 , D=𝑣𝐴𝐷𝑀

Turbulence 
decorrelation

Stochastic field 
induced scattering

Broadening parameter: 

Kim and Diamond model, 2003 PRL, predator: zonal flow, prey: turbulence 

The threshold increase due to stochastic dephasing effect is seen in 
turbulence intensity, zonal flow, and pressure gradient.

Δ𝜔~𝐷𝐸𝑆𝑘⊥
2

More details: C.C. Chen, O 3.2, this meeting
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 Testable prediction: The threshold power increase linearly with 
𝛼~𝑏2/𝜌∗

2.
 Could compare directly with ∆𝜔 (𝑘⊥

2𝑣𝐴𝐷𝑀)

Increment of LH threshold power

𝑃𝐿𝐼 v.s. 𝛼 𝑃𝐼𝐻 v.s. 𝛼

More details: C.C. Chen, O 3.2, this meeting
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Results and implications

Topic Goal Key physical results prediction

Reynold stress
(C C Chen)

Flow shear 
evolution

Dephasing when 
∆𝜔~𝑣𝐴𝐷𝑀𝑘⊥

2
Critical parameter 

𝛼~𝑏2/𝜌∗
2 𝛽

Parallel flow and 
ion heat transport

(P.H. Diamond)

Calculate kinetic 

stress ෨𝑏𝑟𝛿𝑃 in 
turbulence

Physical 
understanding of 

stochasticity-
turbulence 
interaction

Hybrid stochastic 
field + turbulence 

viscosity

Instability evolution 
in stochastic field

(M.Y. Cao)

Understand how 

prescribed ෨𝑏 affect 
instability evolution

Maintaining ∇ ∙ 𝐽 =
0 forces generation 
of small scale cells 

by ෨𝑏

෨𝑏𝑟
෨𝜙 ≠ 0

→turbulence “lock 

on” to ෨𝑏. 

Mean field theory
for 𝐸𝑟

(All)

Understand electric 
field shear 
evolution

Unified model 
including all 

transport channels

𝑉𝐸
′ aligns 

stochastic field,
particle flux due to 

෨𝑏
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 Towards to the 1D model to study the interplay in L-H transition.

 Related to experiments: 

① Understand the relationship between the RMP effects on power threshold 

and micro-physics? [stress, fluctuations, transport… ]

② How does the RMP change the evolution of the shear layer (Er well) ? How it 

builds up?

③ How the cross-phase of Reynolds stress change (evolution) vs RMP current? 

④ How does the RMP change the LCO? 

⑤ How toroidal velocity change at pedestal region? 

 Related work in density limit, esp. effect of RMP on Er shear

Future work
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Future work

Future work:

 Towards to the 1D model to study the interplay in L-H transition.

 Related to experiments: understand the relationship between the 

RMP effects on power threshold and micro-physics? RMP effects 

on evolution of the shear layer, LCO…… 

 Related work in density limit, esp. high density limit
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Conclusion
Turbulence in stochastic field is important to many critical problems.

Particle flux

✓ Ambipolarity breaking ⇒ ෨𝑏𝑟
෨𝑏𝜃 , contribute to 𝑱𝒓 , phase set by 𝑉𝐸

′

✓ Both amplitude and profile of |𝑏𝑟|2 matter.

Turbulence

✓ To maintain ∇ ⋅ 𝑱 = 0 at all scales for prescribed ෩𝒃 and instability ത𝜑, 𝜑

(microscopic convective cells) generated by ෩𝒃, yields a non-trivial ⟨ ෨𝑏 𝜑⟩, i.e., 

electrostatic turbulence ‘locks on’ to ෩𝒃.

Momentum

✓ V𝐸
′ phasing ⇒ stochastic ෨𝑏𝑟

෨𝑏𝜃 opposes turbulence ෨𝑉𝑟
෨𝑉𝜃 , 

phase linked, counteracting 𝑉𝜃

✓ Kinetic stress (residual stress) drive parallel flow (intrinsic rotation), which 

is balanced by turbulent 𝜒𝜙

✓ Toroidal flow effects significant for low external torque.
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Conclusion and future work

⚫ Two effects opposes flow:

—Dephasing effect caused by 

stochastic fields reduces poloidal 

Reynolds stress (for ∆𝜔 < 𝐷𝑘⊥
2 , 

D=𝑣𝐴𝐷𝑀)

— introduce maxwell stress ෨𝑏𝑟
෨𝑏𝜃

⚫ 𝑃𝐿𝐻 increased due to the Reynold 

stress dephasing, in proportion to the 

broadening parameter.

Future work:
 Towards to the 1D model to study the whole effect on L-H 

transition.

 Related to experiments: understand the relationship between the 

RMP effects on power threshold and micro-physics? RMP effects 

on evolution of the shear layer, LCO…… 
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A limiting case (further reduced)
⚫ Consider simple flow shear + fluctuations → predator-prey 

type model

✓ Flow:
𝜕𝑉

𝜕𝑡
= −𝜇𝑉 −

𝜕

𝜕𝑟
𝑉𝜃

′𝜏𝑐𝑐𝑠
2 𝜀𝐹 −

| ෨𝑏𝑟|2

𝛽

✓ Fluctuation energy

Fluctuation intensity Stochastic field, Maxwell stress

𝜕𝜀𝐹

𝜕𝑡
=

𝛾𝜀𝐹

1 + 𝛼𝑉𝜃
′2 − 𝜎𝜀𝐹

2 ≅ 𝛾𝜀𝐹 1 − 𝛼𝑉𝜃
′2 − 𝜎𝜀𝐹

2

⚫ Follow P. H. Diamond (1994) →

✓ Slave fluctuation to flow shear

✓ 0D: identify edge length scale

Flow damping
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A limiting case, cont’d

𝜕𝜀𝐹

𝜕𝑡
= −𝜇𝜀𝐹 +

𝜀𝐹

𝐿2

Τ𝛾 𝜎

1 + 𝛼𝑉𝜃
′2 −

|෨𝑏𝑟|2

𝛽
𝜏𝑐𝑐𝑠

2

⚫ Slave fluctuation to flow shear:  

Reynolds stress drive Maxwell stress

⚫ For steady state and fixed point, get simplified flow shear 

𝑉𝜃
′2 =

1

𝛼

𝜏𝑐𝑐𝑠
2

𝐿2 Τ𝛾 𝜎

𝜇 +
|෨𝑏𝑟|2

𝛽𝐿2 𝜏𝑐𝑐𝑠
2

− 1

✓ Growth rate 𝛾~𝛻𝑃 ⟹

onset of flow shear

✓ Maxwell stress adds to 

damping

✓ Flow shear threshold is increased by stochastic field

✓ Layer width sets minimal L

✓ Likely a trigger of L→H transition at boundary of stochastic region?! 


