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OUTLINE

• Motivation: Instability in a Stochastic Magnetic Field

• Formulation: A Simple Model Maintaining ∇ ⋅ 𝑱 = 0

• Analysis: Physical Picture Behind the Calculation

• Conclusion: Lessons learned

• Future: What Next?



MOTIVATION: INSTABILITY IN A STOCHASTIC MAGNETIC FIELD

Hot topic: a trade-off between good 

confinement and good power handling

L-H transition power threshold 𝑃𝐿𝐻
versus RMP perturbation strength1

1. L. Schmitz, D.M. Kriete, et al., 2019.

2. P. Beyer, X. Garbet, and P. Ghendrih, 1998

3. M.J. Choi, et al., 2021. 

One interesting topic: plasma 

turbulence in the stochastic layer 

plasma pressure in a sector at the low field side with and without RMP2

Large-scale pressure fluctuations are suppressed 

and fluctuation of electric field increases.2

How to distinguish the effect of stochastic magnetic field?

—— Complexity-Entropy analysis

Results: the spatial structure of turbulence becomes less predictable3

But the physical picture is still unclear…



MOTIVATION: INSTABILITY IN A STOCHASTIC MAGNETIC FIELD

Basic problem: How does stochastic magnetic field modify instability process?

Some history:

• Motivation: Stochastic field transport in the late 1970s1, 2.  

• Early research: Tearing modes in a braided magnetic field3. 

• Defects: 

1. Is quasi-neutrality maintained at all scales? 

2. No micro-macro feedback. 

1. B.B. Kadomtsev, O.P. Pogutse, 1979. 

2. A.B. Rechester, and M.N. Rosenbluth, 1977

3. P.K. Kaw, E.J. Valeo, and P.H. Rutherford, 1979. 

Target: Construct a simple model to get insights and guide simulations

• maintain ∇ ⋅ 𝑱 = 0 at all scales

• connect micro and macro scales

• be tractable        resistive interchange

The evolution of area mapping of field lines and 

guiding-center trajectories (a test particle picture)

The model is supposed to:



FORMULATION: A SIMPLE MODEL MAINTAINING ∇ ⋅ 𝑱 = 0

The basic logic:

Key point: potential fluctuations are generated due to stochastic magnetic field



FORMULATION: A SIMPLE MODEL MAINTAINING ∇ ⋅ 𝑱 = 0

1. Classical resistive interchange:

• Linearized vorticity equation

− 𝜌0/𝐵0
2 𝜕𝑡∇⊥

2𝜑
∇⊥⋅𝑱𝒑𝒐𝒍

− 𝑔/𝐵0 𝜕𝑦𝑝

∇⊥⋅𝑱𝑷𝑺

+𝒃𝟎 ⋅ ∇𝐽∥
∇∥𝐽∥

= 0

• Electrostatic Ohm’s law of resistive MHD

𝐸∥ = −∇∥𝜑 = 𝜂∥𝐽∥

• Linearized pressure equation

𝜕𝑡𝑝 − ∇𝜑 × ො𝒛 /𝐵0 ⋅ ∇𝑝0 = 0

2. Magnetic perturbation:

∇ ⋅ 𝑱 = 0

Where we start:

෩𝒃 = ෩𝑩⊥/𝐵0 =෍

𝑚,𝑛

෩𝒃𝑚,𝑛 𝑥′ 𝑒𝑖 𝑚𝜃−𝑛𝜙

Since 𝑩𝒕𝒐𝒕 = 𝑩𝟎 + ෩𝑩⊥, now the parallel gradient is ∇∥= ∇∥
0
+ ෩𝒃 ⋅ ∇⊥.

Compared to mode, the profile of stochastic field evolves much slowly in space.

Sketch of the mode and stochastic magnetic field



FORMULATION: A SIMPLE MODEL MAINTAINING ∇ ⋅ 𝑱 = 0

Remember: we want to keep ∇ ⋅ 𝑱 = 0 at all scales.

If there are only ෩𝒃 and ത𝜑, ∇ ⋅ 𝑱 = 0 is not guaranteed!

At micro scale:

෨𝑱 = ෨𝑱∥ = ෨𝑱∥0 + ෨𝑱⊥ = −
1

𝜂∥
෩𝒃 ⋅ ∇⊥ ത𝜙𝒃𝟎 −

1

𝜂∥
∇∥

0 ത𝜙෩𝒃

∇ ⋅ ෨𝑱 = ∇∥
0 ሚ𝐽∥0 + ∇⊥ ⋅ ෨𝑱⊥ = −

1

𝜂∥
∇∥

0 ෩𝒃 ⋅ ∇⊥ ത𝜙 + ෩𝒃 ⋅ ∇⊥ ∇∥
0 ത𝜙 ≠ 0

Insights from the classic: Kadomtsev and Pogutse’781:

Electron heat flux is divergence free at all scales                ∇ ⋅ 𝒒 = 0

1. B. B. Kadomtsev, and O. P. Pogutse, 1979. Intrinsic Multi-Scale Microturbulence Small-scale current



FORMULATION: A SIMPLE MODEL MAINTAINING ∇ ⋅ 𝑱 = 0

The full set of equations is

𝜕

𝜕𝑡
+ ෥𝒗 ⋅ ∇ ∇⊥

2 ᪄𝜑 = −
𝑆

𝜏𝐴
[∇∥

(0)2
᪄𝜑 + ∇⊥ ⋅ ⟨ ƿ𝒃 ƿ𝒃⟩ ⋅ ∇⊥ ᪄𝜑

(𝑎)

+ ∇∥
(0) ƿ𝑏 ⋅ ∇⊥ ƿ𝜑

(𝑏)

+ ƿ𝑏 ⋅ ∇⊥ ∇
∥′
(0)

ƿ𝜑

(𝑐)

] −
𝑔𝐵0

𝜌0

𝜕 ᪄𝑝1

𝜕𝑦
,

𝜕

𝜕𝑡
+ ෥𝒗 ⋅ ∇ ∇⊥

2 ƿ𝜑 = −
𝑆

𝜏𝐴
[∇∥

(0)2
ƿ𝜑 + ƿ𝑏 ⋅ ∇⊥ ∇∥

(0)
᪄𝜑

(𝛼)

+ ∇∥
(0) ƿ𝑏 ⋅ ∇⊥ ᪄𝜑

(𝛽)

] −
𝑔𝐵0

𝜌0

𝜕 ƿ𝑝1

𝜕𝑦
,

𝜕

𝜕𝑡
+ ෥𝒗 ⋅ ∇ ᪄𝑝1 −

∇ ᪄𝜑×ƶ𝐳

𝐵0
⋅ ∇𝑝0 = 0,

𝜕

𝜕𝑡
+ ෥𝒗 ⋅ ∇ ƿ𝑝1 −

∇ ƿ𝜑×𝐳

𝐵0
⋅ ∇𝑝0 = 0,

−𝜈𝑇∇⊥
2 or 𝜒𝑇∇⊥

2

Some assumptions/observations:

• ത𝜑: low 𝒌, slow interchange approximation 1/𝑤𝒌
2 ≫ 𝑘𝑦

2

• ෤𝜑: high 𝒌′, fast interchange approximation 1/𝑤𝒌′
2 ≪ 𝑘𝑦

′ 2

• The beat of ෩𝒃 and ത𝜑 serves as the drive of ෤𝜑 while ෤𝜑 modifies 

ത𝜑, thus small scale and large scale are now connected.

Turbulent viscosity or

Turbulent diffusivity

𝐴 = ҧ𝐴 =
1

2𝜋 2
ඵ𝑑𝜃𝑑𝜙𝑒−𝑖 𝑚𝜃−𝑛𝜙 𝐴

④

①

②

③

Relate ෤𝜑 to ෩𝒃

replaced by

Three players in the model: ෩𝒃, ത𝜑, and ത𝜑



ANALYSIS: PHYSICAL PICTURE BEHIND THE CALCULATION

𝜕

𝜕𝑡
− 𝜈𝑇∇⊥

2 ∇⊥
2 ത𝜑 +

𝑆

𝜏𝐴
∇⊥ ⋅ ෩𝒃෩𝒃 ⋅ ∇⊥ ത𝜑

𝑎

= −
𝑆

𝜏𝐴
∇∥
ቀ )0 2

ത𝜑 + ∇∥
0 ෩𝒃 ⋅ ∇⊥ ෤𝜑

𝑏

+ ෩𝒃 ⋅ ∇⊥ ∇∥
0

෤𝜑

𝑐

−
𝑔𝐵0
𝜌0

𝜕 ҧ𝑝1
𝜕𝑦

Main equation:

①

(𝑎): 
𝑆

𝜏𝐴
∇⊥ ⋅ ෩𝒃෩𝒃 ⋅ ∇⊥ ത𝜑 =

𝑆

𝜏𝐴
𝜕𝑥 𝑏𝑟

2𝜕𝑥 ത𝜑𝒌 𝑥 magnetic vorticity damping

𝑆

𝜏𝐴
𝜕𝑥 ෨𝑏𝑟

2
𝜕𝑥 ത𝜑 ~

𝑣𝐴
2

𝜂

𝑘𝑦
2

𝐿𝑠
2

𝑜𝐼
′4

Δ𝑥 2
ത𝜑

𝛻∥𝐽∥
(1)~

𝑆

𝜏𝐴
𝛻∥

0 2
ത𝜑~

𝑣𝐴
2

𝜂

𝑘𝑦
2

𝐿𝑠
2 Δ𝑥 2

3𝑟𝑑 order ∇∥𝐽∥

As  
𝑆

𝜏𝐴

෨𝐵
𝑟𝑘′

𝐵0

2

~
𝑉𝐴
2

𝜂

𝑘𝜃
′2

𝐿𝑆
2 𝑊𝐼

′4

When 𝑤𝐼
′~

𝑘𝑦
2

𝑘𝑦
′ 2

Δ𝑥 4

1

4

, 3rd order magnetic torque balances 1st order. This is a reminiscent of Rutherford ’731 while the 

difference is significant: the ratio (𝑘𝑦
2/𝑘𝑦

′ 2) is due to the multi-scale characteristic.

𝑜𝐼
′ ≡ island width for stochastic field

Δ𝑥 ≡ ത𝜑 layer width

𝛾𝒌𝜕𝑥
2 ത𝜑𝒌 +

𝑆

𝜏𝐴
𝜕𝑥 𝑏𝑟

2𝜕𝑥 ത𝜑𝒌 𝑥 Enhance inertia

(3rd order magnetic torque)

1. P. H. Rutherford, 1973. 



ANALYSIS: PHYSICAL PICTURE BEHIND THE CALCULATION

• Perpendicular electric field ෩𝑬⊥ generates a parallel current.

• Parallel electric field ෨𝐸∥0 generates a perpendicular current 

Why do we have 𝝂𝑻? What’s the value of 𝝂𝑻?

(𝑏) = 𝛻∥
0
𝛻⊥ ⋅ ෩𝒃 ෤𝜑 = −∇∥

0
(෩𝒃 ⋅ ෩𝑬⊥)

𝑐 = 𝛻⊥ ⋅ ෩𝒃𝛻∥
0
෤𝜑 = −∇⊥ ⋅ ෩𝒃⊥ ෨𝐸∥0

𝑬 field projections along 

wandering tilting lines

෤𝜑 is the so-called intrinsic multi-scale microturbulence, which is the origin of 𝜈𝑇.

Separation of time scales:

The time scale of ത𝜑 is much larger than that of ෤𝜑. Therefore, 𝜈𝑇 should be large enough so that ෤𝜑 is 

over-saturated during the evolution of ത𝜑. The scaling of 𝜈𝑇 is given by the nonlinear closure theory:

𝜈 = ∑𝒌𝟐 ƿ𝑣𝒌2
2
𝜏𝒌𝟐



CONCLUSION : LESSONS LEARNED

• A full set of equations for ത𝜑’s evolution in 

presence of 𝑏𝒌′
2.

• Calculate the correction to the growth rate of 

resistive interchange in a stochastic magnetic field:

• Calculate the scaling of turbulent viscosity in the 

weak-mean-pressure-gradient limit:

• Obtain the non-trivial ෨𝑏𝑟 ෤𝜑

𝛾𝑘
(1)

= −
1

3

𝑆

𝜏𝐴
ƿ𝑏𝑟

2
−
5

6
𝜈

𝑆

𝜏𝐴

2
3 𝑘𝜃

𝐿𝑠
2

2
3 𝜌0𝐿𝑝

𝑔𝑝0

1
3

−
2 2

3
𝑅𝑟𝑚𝑛

𝑆

𝜏𝐴

4
3 𝑘𝜃

4

𝐿𝑠
5

1
3 𝜌0𝐿𝑝

𝑔𝑝0

−
1
3

𝐼

.

𝜈 = 𝜋
1
2
𝑅𝑟𝑚𝑛

𝐵0
2

𝑘𝜃
2

𝐿𝑠
3

𝑆

𝜏𝐴

2

᪄𝜑𝒌
2(0)∫ 𝑑𝑘2𝜃

𝑐2𝑍2𝑤𝒌2𝑜𝒌2
2

𝑘2𝜃
5𝛾𝒌2

(0)

1
3

෨𝑏𝑟 ෤𝑣𝑟 = 𝜋
1
2
𝑘𝜃𝑅𝑟𝑚𝑛

𝐿𝑠
2𝐵0

𝑆

𝜏𝐴
ത𝜑𝒌 0 න𝑑 𝑘2𝜃 𝑘2𝜃 𝑘2𝜃

𝑐2𝑍2 𝑘𝜃 − 𝑘2𝜃 𝑤𝒌2𝑜𝒌2
2

Λ𝒌2
0 − Λ𝒌2



CONCLUSION : LESSONS LEARNED

• Intrinsically a multi-scale problem: ത𝜑; ෤𝜑 and ෩𝒃

To maintain ∇ ⋅ 𝑱 = 0 at all scales for prescribed ෩𝒃 and instability ത𝜑, ෤𝜑(microscopic convective cells) 

is generated1. (The fluctuation amplitude increases significantly with the RMP ELM suppression, 

and the fluctuations exhibit the less predictable characteristics → imply the existence of ෤𝜑)

• This yields a non-trivial ⟨෨𝑏𝑟 ෤𝜑⟩, i.e., electrostatic turbulence ‘locks on’ to magnetic perturbation.

• In the weak-mean-pressure-gradient limit, the scaling of turbulent viscosity is obtained by using 

nonlinear closure theory.

1. M.J. Choi, et al., 2021. 



CONCLUSION : LESSONS LEARNED

• The effect of stochastic magnetic field is to slow down the mode growth through three channels:

• Magnetic vorticity damping effect (enhanced inertia)

𝑖𝑛𝑒𝑟𝑡𝑖𝑎 → 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 +
𝑆

𝜏𝐴
𝜕𝑥 𝑏𝑟

2𝜕𝑥 ത𝜑

𝑤𝐼
′~ (𝑘𝑦

2/𝑘𝑦
′ 2) Δ𝑥 4

1/4
, when 𝛻∥𝐽∥

(1)~ 𝛻∥𝐽∥
(3).

Magnetic vorticity damping is stronger than Rutherford’s problem, for 𝑘𝑦 ≪ 𝑘𝑦
′ .

• Turbulent viscosity 𝜈𝑇 tends to stabilize the mode.

• Large-scale mode is electrostatically scattered by small-scale convective cells. In the weak-

mean-pressure-gradient limit, the existence of small-scale convective cells can reduce the 

growth rate of large-scale mode.

𝛾𝑘
(1)

= −
1

3

𝑆

𝜏𝐴
ƿ𝑏𝑟

2
−
5

6
𝜈

𝑆

𝜏𝐴

2
3 𝑘𝜃

𝐿𝑠
2

2
3 𝜌0𝐿𝑝

𝑔𝑝0

1
3

−
2 2

3
𝑅𝑟𝑚𝑛

𝑆

𝜏𝐴

4
3 𝑘𝜃

4

𝐿𝑠
5

1
3 𝜌0𝐿𝑝

𝑔𝑝0

−
1
3

𝐼



FUTURE: WHAT NEXT?

• Another way to solve it? Schrodinger equation with 1-D random potential.

• Can the turbulent diffusivity 𝜒𝑇 we find explain “RMP pump-out” effect?

• Look at effects of stochastic magnetic field ෩𝒃 on twisted slicing modes, i.e., include toroidicity.

Twisted slicing modes 



Thank you


