

# Intrinsic Multi-Scale Microturbulence in a Stochastic Magnetic Field

Mingyun Cao<sup>1</sup>, Patrick H. Diamond<sup>1</sup>

<sup>1</sup>University of California, San Diego

#### AAPPS-DPP 2021

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738

#### OUTLINE

- Motivation: Instability in a Stochastic Magnetic Field
- Formulation: A Simple Model Maintaining  $\nabla \cdot \boldsymbol{J} = 0$
- Analysis: Physical Picture Behind the Calculation
- Conclusion: Lessons learned
- Future: What Next?

# **MOTIVATION: INSTABILITY IN A STOCHASTIC MAGNETIC FIELD**

# Hot topic: a trade-off between good confinement and good power handling



# One interesting topic: plasma turbulence in the stochastic layer



plasma pressure in a sector at the low field side with and without RMP<sup>2</sup> Large-scale pressure fluctuations are suppressed and fluctuation of electric field increases.<sup>2</sup>

How to distinguish the effect of stochastic magnetic field?

— Complexity-Entropy analysis

Results: the spatial structure of turbulence becomes less predictable<sup>3</sup>

But the physical picture is still unclear...

1. L. Schmitz, D.M. Kriete, et al., 2019. 2. P. Beyer, X. Garbet, and P. Ghendrih, 1998 3. M.J. Choi, et al., 2021.

# MOTIVATION: INSTABILITY IN A STOCHASTIC MAGNETIC FIELD

#### Basic problem: How does stochastic magnetic field modify instability process?

Some history:

- Motivation: Stochastic field transport in the late 1970s<sup>1, 2</sup>.
- Early research: Tearing modes in a braided magnetic field<sup>3</sup>.
- Defects:
  - 1. Is quasi-neutrality maintained at all scales?
  - 2. No micro-macro feedback.

**Target:** Construct a simple model to get insights and guide simulations The model is supposed to:

- maintain  $\nabla \cdot \mathbf{J} = 0$  at all scales
- connect micro and macro scales
- be tractable resistive interchange



The evolution of area mapping of field lines and guiding-center trajectories (a test particle picture)

B.B. Kadomtsev, O.P. Pogutse, 1979.
 A.B. Rechester, and M.N. Rosenbluth, 1977
 P.K. Kaw, E.J. Valeo, and P.H. Rutherford, 1979.

## FORMULATION: A SIMPLE MODEL MAINTAINING $\nabla \cdot \boldsymbol{J} = 0$

The basic logic:



Key point: potential fluctuations are generated due to stochastic magnetic field

Where we start:

- 1. Classical resistive interchange:
  - Linearized vorticity equation

 $\nabla \cdot \boldsymbol{J} = \boldsymbol{0}$ 

Sketch of the mode and stochastic magnetic field

 $r_{m_2n_2}$ 

• Electrostatic Ohm's law of resistive MHD

$$E_{\parallel} = -\nabla_{\parallel}\varphi = \eta_{\parallel}J_{\parallel}$$

• Linearized pressure equation

$$\partial_t p - (\nabla \varphi \times \hat{\mathbf{z}}) / B_0 \cdot \nabla p_0 = 0$$

2. Magnetic perturbation:

$$\widetilde{\boldsymbol{b}} = \widetilde{\boldsymbol{B}}_{\perp} / B_0 = \sum_{m,n} \widetilde{\boldsymbol{b}}_{m,n}(x') e^{i(m\theta - n\phi)}$$

Since  $B_{tot} = B_0 + \widetilde{B}_{\perp}$ , now the parallel gradient is  $\nabla_{\parallel} = \nabla_{\parallel}^{(0)} + \widetilde{B} \cdot \nabla_{\perp}$ .

Compared to mode, the profile of stochastic field evolves much slowly in space.

# FORMULATION: A SIMPLE MODEL MAINTAINING $\nabla \cdot \boldsymbol{J} = 0$

**Remember: we want to keep**  $\nabla \cdot \boldsymbol{J} = 0$  **at all scales.** If there are only  $\tilde{\boldsymbol{b}}$  and  $\bar{\varphi}$ ,  $\nabla \cdot \boldsymbol{J} = 0$  is not guaranteed! At micro scale:

$$\tilde{\boldsymbol{J}} = \tilde{\boldsymbol{J}}_{\parallel} = \tilde{\boldsymbol{J}}_{\parallel^{0}} + \tilde{\boldsymbol{J}}_{\perp} = -\frac{1}{\eta_{\parallel}} (\tilde{\boldsymbol{b}} \cdot \nabla_{\perp}) \bar{\phi} \boldsymbol{b}_{0} - \frac{1}{\eta_{\parallel}} \nabla_{\parallel}^{(0)} \bar{\phi} \tilde{\boldsymbol{b}}$$
$$\nabla \cdot \tilde{\boldsymbol{J}} = \nabla_{\parallel}^{(0)} \tilde{\boldsymbol{J}}_{\parallel^{0}} + \nabla_{\perp} \cdot \tilde{\boldsymbol{J}}_{\perp} = -\frac{1}{\eta_{\parallel}} \{ \nabla_{\parallel}^{(0)} [(\tilde{\boldsymbol{b}} \cdot \nabla_{\perp}) \bar{\phi}] + (\tilde{\boldsymbol{b}} \cdot \nabla_{\perp}) \nabla_{\parallel}^{(0)} \bar{\phi} \} \neq 0$$

Insights from the classic: Kadomtsev and Pogutse'78<sup>1</sup>:

Electron heat flux is divergence free at all scales  $\rightarrow \nabla \cdot q = 0$ 

K&P C&D Analogy  $\gamma_{k}^{(1)}$ Goal  $\langle q_r \rangle_{NL}$ Base State  $\overline{\varphi} \\ \widetilde{b}$ Stochastic quantity Constraint  $\nabla \cdot \boldsymbol{q} = 0$  $\nabla \cdot \boldsymbol{J} = 0$ **Resulting Fluctuations**  $\varphi$ Intrinsic Multi-Scale Microturbulence 1. B. B. Kadomtsev, and O. P. Pogutse, 1979.

 $\tilde{J}_{\parallel}$   $\tilde{J}_{\perp}$   $\tilde{J}_{tot}$  Small-scale current

# FORMULATION: A SIMPLE MODEL MAINTAINING $\nabla \cdot \boldsymbol{J} = 0$

The full set of equations is

$$\left[ \begin{array}{c} \left[ \frac{\partial}{\partial t} + \widetilde{\widetilde{p}} \cdot \nabla \right] \right] \nabla_{\perp}^{2} \widetilde{\varphi} = -\frac{s}{\tau_{A}} \left[ \nabla_{\parallel}^{(0)^{2}} \widetilde{\varphi} + \left( \nabla_{\perp} \cdot \langle \widetilde{b} \widetilde{b} \rangle \right) \cdot \nabla_{\perp} \widetilde{\varphi} \right] + \left( \nabla_{\parallel}^{(0)} \widetilde{b} \cdot \nabla_{\perp} \widetilde{\varphi} \right) + \left( \left( \widetilde{b} \cdot \nabla_{\perp} \right) \nabla_{\parallel}^{(0)} \widetilde{\phi} \right) \right] - \frac{gB_{0}}{\rho_{0}} \frac{\partial \widetilde{p}_{1}}{\partial y},$$

$$\left[ \left[ \frac{\partial}{\partial t} + \widetilde{\widetilde{p}} \cdot \nabla \right] \right] \nabla_{\perp}^{2} \widetilde{\varphi} = -\frac{s}{\tau_{A}} \left[ \nabla_{\parallel}^{(0)^{2}} \widetilde{\varphi} + \left( \underbrace{\widetilde{b}} \cdot \nabla_{\perp} \right) \nabla_{\parallel}^{(0)} \widetilde{\varphi} \right] + \underbrace{\nabla_{\parallel}^{(0)} \left( \widetilde{b} \cdot \nabla_{\perp} \right) \widetilde{\phi} \right]}_{(\alpha)} - \frac{gB_{0}}{\rho_{0}} \frac{\partial \widetilde{p}_{1}}{\partial y},$$

$$\left[ \left[ \frac{\partial}{\partial t} + \widetilde{\widetilde{p}} \cdot \nabla \right] \right] \widetilde{p}_{1} - \frac{\nabla \widetilde{\varphi} \times \widetilde{z}}{B_{0}} \cdot \nabla p_{0} = 0,$$

$$\left[ \frac{\partial}{\partial t} + \widetilde{\widetilde{p}} \cdot \nabla \right] \widetilde{p}_{1} - \frac{\nabla \widetilde{\varphi} \times \widetilde{z}}{B_{0}} \cdot \nabla p_{0} = 0,$$

$$\left[ \frac{\partial}{\partial t} + \widetilde{\widetilde{p}} \cdot \nabla \right] \widetilde{p}_{1} - \frac{\nabla \widetilde{\varphi} \times \widetilde{z}}{B_{0}} \cdot \nabla p_{0} = 0,$$

$$\left[ \frac{\partial}{\partial t} + \widetilde{\widetilde{p}} \cdot \nabla \right] \widetilde{p}_{1} - \frac{\nabla \widetilde{\varphi} \times \widetilde{z}}{B_{0}} \cdot \nabla p_{0} = 0,$$

$$\left[ \frac{\partial}{\partial t} + \widetilde{\widetilde{p}} \cdot \nabla \right] \widetilde{p}_{1} - \frac{\nabla \widetilde{\varphi} \times \widetilde{z}}{B_{0}} \cdot \nabla p_{0} = 0,$$

$$\left[ \frac{\partial}{\partial t} + \widetilde{\widetilde{p}} \cdot \nabla \right] \widetilde{p}_{1} - \frac{\nabla \widetilde{\varphi} \times \widetilde{z}}{B_{0}} \cdot \nabla p_{0} = 0,$$

$$\left[ \frac{\partial}{\partial t} + \widetilde{\widetilde{p}} \cdot \nabla \right] \widetilde{p}_{1} - \frac{\nabla \widetilde{\varphi} \times \widetilde{z}}{B_{0}} \cdot \nabla p_{0} = 0,$$

$$\left[ \frac{\partial}{\partial t} + \widetilde{\widetilde{p}} \cdot \nabla \right] \widetilde{p}_{1} - \frac{\nabla \widetilde{\varphi} \times \widetilde{z}}{B_{0}} \cdot \nabla p_{0} = 0,$$

$$\left[ \frac{\partial}{\partial t} + \widetilde{\widetilde{p}} \cdot \nabla \right] \widetilde{p}_{1} - \frac{\nabla \widetilde{\varphi} \times \widetilde{z}}{B_{0}} \cdot \nabla p_{0} = 0,$$

$$\left[ \frac{\partial}{\partial t} + \widetilde{\widetilde{p}} \cdot \nabla \right] \widetilde{p}_{1} - \frac{\nabla \widetilde{\varphi} \times \widetilde{z}}{B_{0}} \cdot \nabla p_{0} = 0,$$

$$\left[ \frac{\partial}{\partial t} + \widetilde{\widetilde{p}} \cdot \nabla \right] \widetilde{p}_{1} - \frac{\nabla \widetilde{\varphi} \times \widetilde{z}}{B_{0}} \cdot \nabla p_{0} = 0,$$

$$\left[ \frac{\partial}{\partial t} + \widetilde{\widetilde{p}} \cdot \nabla \right] \widetilde{p}_{1} - \frac{\nabla \widetilde{\varphi} \times \widetilde{z}}{B_{0}} \cdot \nabla p_{0} = 0,$$

$$\left[ \frac{\partial}{\partial t} + \widetilde{\widetilde{p}} \cdot \nabla \right] \widetilde{p}_{1} - \frac{\nabla \widetilde{\varphi} \times \widetilde{z}}{B_{0}} \cdot \nabla p_{0} = 0,$$

$$\left[ \frac{\partial}{\partial t} + \widetilde{\varepsilon} \cdot \nabla \right] \widetilde{p}_{1} - \frac{\nabla \widetilde{\varphi} \times \widetilde{z}}{B_{0}} \cdot \nabla p_{0} = 0,$$

$$\left[ \frac{\partial}{\partial t} + \widetilde{\varepsilon} \cdot \nabla \right] \widetilde{p}_{1} - \frac{\nabla}{\partial t} \cdot \nabla \nabla \left[ \frac{\partial}{\partial t} + \widetilde{\varepsilon} \cdot \nabla \right] \widetilde{p}_{1} - \frac{\nabla}{\partial t} \cdot \nabla \nabla \left[ \frac{\partial}{\partial t} + \widetilde{\varepsilon} \cdot \nabla \nabla \right] \widetilde{p}_{1} - \frac{\partial}{\partial t} \cdot \nabla \nabla \left[ \frac{\partial}{\partial t} + \widetilde{\varepsilon} \cdot \nabla \nabla \right] \widetilde{p}_{1} - \frac{\partial}{\partial t} \cdot \nabla \nabla \left[ \frac{\partial}{\partial t} + \widetilde{\varepsilon} \cdot \nabla \nabla \right] \widetilde{p}_{1} - \frac{\partial}{\partial t} \cdot \nabla \nabla \left[ \frac{\partial}{\partial t} + \widetilde{\varepsilon} \cdot \nabla \nabla \right] \widetilde{p}_{1} - \frac{\partial}{\partial t} \cdot \nabla \nabla \left[ \frac{\partial}{\partial t} - \widetilde{\varepsilon} \cdot \nabla \nabla \right] \widetilde{p}_{1$$

 $\bar{\varphi}$ , thus small scale and large scale are now connected.

Three players in the model:  $\tilde{b}$ ,  $\bar{\phi}$ , and  $\bar{\phi}$ 

#### **ANALYSIS: PHYSICAL PICTURE BEHIND THE CALCULATION**

Main equation:

When  $w_I' \sim \left[\frac{k_y^2}{k_y'^2} (\Delta x)^4\right]^4$ , 3<sup>rd</sup> order magnetic torque balances 1<sup>st</sup> order. This is a reminiscent of Rutherford '73<sup>1</sup> while the difference is **significant**: the ratio  $(k_y^2/k_y'^2)$  is due to the multi-scale characteristic.

1. P. H. Rutherford, 1973.

## **ANALYSIS: PHYSICAL PICTURE BEHIND THE CALCULATION**

$$(b) = \left\langle \nabla_{\parallel}^{(0)} \nabla_{\perp} \cdot \left( \widetilde{\boldsymbol{b}} \widetilde{\varphi} \right) \right\rangle = \left\langle -\nabla_{\parallel}^{(0)} \left( \widetilde{\boldsymbol{b}} \cdot \widetilde{\boldsymbol{E}}_{\perp} \right) \right\rangle$$
$$(c) = \left\langle \nabla_{\perp} \cdot \left( \widetilde{\boldsymbol{b}} \nabla_{\parallel}^{(0)} \widetilde{\varphi} \right) \right\rangle = -\nabla_{\perp} \cdot \left\langle \widetilde{\boldsymbol{b}}_{\perp} \widetilde{\boldsymbol{E}}_{\parallel^{0}} \right\rangle$$

*E* field projections along wandering tilting lines

- Perpendicular electric field  $\tilde{E}_{\perp}$  generates a parallel current.
- Parallel electric field  $\tilde{E}_{\parallel^0}$  generates a perpendicular current

#### Why do we have $v_T$ ? What's the value of $v_T$ ?



 $\tilde{\varphi}$  is the so-called intrinsic multi-scale microturbulence, which is the origin of  $v_T$ . Separation of time scales:

The time scale of  $\bar{\varphi}$  is much larger than that of  $\tilde{\varphi}$ . Therefore,  $\nu_T$  should be large enough so that  $\tilde{\varphi}$  is over-saturated during the evolution of  $\bar{\varphi}$ . The scaling of  $\nu_T$  is given by the nonlinear closure theory:

$$\nu = \sum_{k_2} \left| \tilde{v}_{k_2} \right|^2 \tau_{k_2}$$

## **CONCLUSION : LESSONS LEARNED**

- A full set of equations for  $\bar{\varphi}$ 's evolution in presence of  $|b_{k'}|^2$ .
- Calculate the correction to the growth rate of resistive interchange in a stochastic magnetic field:

$$\gamma_{k}^{(1)} = -\frac{1}{3} \left( \frac{S}{\tau_{A}} \right) \left| \tilde{b}_{r} \right|^{2} - \frac{5}{6} v \left( \frac{S}{\tau_{A}} \right)^{\frac{2}{3}} \left( \frac{k_{\theta}}{L_{s}^{2}} \right)^{\frac{2}{3}} \left( \frac{\rho_{0} L_{p}}{g p_{0}} \right)^{\frac{1}{3}} \\ - \frac{2\sqrt{2}}{3} Rr_{mn} \left( \frac{S}{\tau_{A}} \right)^{\frac{4}{3}} \left( \frac{k_{\theta}^{4}}{L_{s}^{5}} \right)^{\frac{1}{3}} \left( \frac{\rho_{0} L_{p}}{g p_{0}} \right)^{-\frac{1}{3}} I.$$

• Calculate the scaling of turbulent viscosity in the weak-mean-pressure-gradient limit:

$$\nu = \left[ \pi^{\frac{1}{2}} \frac{Rr_{mn}}{B_0^2} \frac{k_{\theta}^2}{L_s^3} \left( \frac{S}{\tau_A} \right)^2 \bar{\varphi}_k^2(0) \int dk_{2\theta} \frac{c^2 Z^2 w_{k_2} o_{k_2}^2}{|k_{2\theta}|^5 \gamma_{k_2}^{(0)}} \right]^{\frac{1}{3}}$$

• Obtain the non-trivial  $ig\langle ilde{b}_r ilde{arphi} ig
angle$ 

$$\left\langle \tilde{b}_{r}\tilde{v}_{r}\right\rangle = \pi^{\frac{1}{2}} \frac{k_{\theta}Rr_{mn}}{L_{s}^{2}B_{0}} \frac{S}{\tau_{A}} \bar{\varphi}_{k}(0) \int dk_{2\theta} |k_{2\theta}| k_{2\theta} \frac{c^{2}Z^{2}(k_{\theta}-k_{2\theta})w_{k_{2}}o_{k_{2}}^{2}}{\Lambda_{k_{2}}^{0}-\Lambda_{k_{2}}}$$

1

# The Feedback Loop



### **CONCLUSION : LESSONS LEARNED**

• Intrinsically a multi-scale problem:  $\bar{\varphi}$ ;  $\tilde{\varphi}$  and  $\tilde{b}$ 

To maintain  $\nabla \cdot J = 0$  at all scales for prescribed  $\tilde{\boldsymbol{b}}$  and instability  $\bar{\varphi}$ ,  $\tilde{\varphi}$  (microscopic convective cells) is generated<sup>1</sup>. (The fluctuation amplitude increases significantly with the RMP ELM suppression, and the fluctuations exhibit the less predictable characteristics  $\rightarrow$  imply the existence of  $\tilde{\varphi}$ )

- This yields a non-trivial  $\langle \tilde{b}_r \tilde{\varphi} \rangle$ , i.e., electrostatic turbulence 'locks on' to magnetic perturbation.
- In the weak-mean-pressure-gradient limit, the scaling of turbulent viscosity is obtained by using nonlinear closure theory.

## **CONCLUSION : LESSONS LEARNED**

$$\gamma_{k}^{(1)} = -\frac{1}{3} \left( \frac{S}{\tau_{A}} \right) \left| \tilde{b}_{r} \right|^{2} - \frac{5}{6} \nu \left( \frac{S}{\tau_{A}} \right)^{\frac{2}{3}} \left( \frac{k_{\theta}}{L_{s}^{2}} \right)^{\frac{2}{3}} \left( \frac{\rho_{0}L_{p}}{gp_{0}} \right)^{\frac{1}{3}} - \frac{2\sqrt{2}}{3} Rr_{mn} \left( \frac{S}{\tau_{A}} \right)^{\frac{4}{3}} \left( \frac{k_{\theta}^{4}}{L_{s}^{5}} \right)^{\frac{1}{3}} \left( \frac{\rho_{0}L_{p}}{gp_{0}} \right)^{-\frac{1}{3}} Rr_{mn} \left( \frac{S}{\tau_{A}} \right)^{\frac{4}{3}} \left( \frac{k_{\theta}^{4}}{L_{s}^{5}} \right)^{\frac{1}{3}} \left( \frac{\rho_{0}L_{p}}{gp_{0}} \right)^{-\frac{1}{3}} Rr_{mn} \left( \frac{S}{\tau_{A}} \right)^{\frac{4}{3}} \left( \frac{k_{\theta}^{4}}{L_{s}^{5}} \right)^{\frac{1}{3}} \left( \frac{\rho_{0}L_{p}}{gp_{0}} \right)^{-\frac{1}{3}} Rr_{mn} \left( \frac{S}{\tau_{A}} \right)^{\frac{4}{3}} \left( \frac{k_{\theta}^{4}}{L_{s}^{5}} \right)^{\frac{1}{3}} \left( \frac{\rho_{0}L_{p}}{gp_{0}} \right)^{\frac{1}{3}} Rr_{mn} \left( \frac{S}{\tau_{A}} \right)^{\frac{1}{3}} \left( \frac{\rho_{0}L_{p}}{gp_{0}} \right)^{\frac{1}{3}} \left$$

- The effect of stochastic magnetic field is to slow down the mode growth through three channels:
  - Magnetic vorticity damping effect (enhanced inertia)

$$inertia \to inertia + \frac{S}{\tau_A} \partial_x |b_r|^2 \partial_x \bar{\varphi}$$

$$w_I' \sim [(k_y^2/k_y'^2)(\Delta x)^4]^{1/4}$$
, when  $(\nabla_{\parallel}J_{\parallel})^{(1)} \sim (\nabla_{\parallel}J_{\parallel})^{(3)}$ .

Magnetic vorticity damping is stronger than Rutherford's problem, for  $k_y \ll k'_y$ .

- Turbulent viscosity  $v_T$  tends to stabilize the mode.
- Large-scale mode is electrostatically scattered by small-scale convective cells. In the weakmean-pressure-gradient limit, the existence of small-scale convective cells can reduce the growth rate of large-scale mode.

## **FUTURE: WHAT NEXT?**

- Another way to solve it? Schrodinger equation with 1-D random potential.
- Can the turbulent diffusivity  $\chi_T$  we find explain "RMP pump-out" effect?
- Look at effects of stochastic magnetic field  $\tilde{b}$  on twisted slicing modes, i.e., include toroidicity.





