Ion Heat and Parallel Momentum Transport by Stochastic Magnetic Fields and Turbulence

Chang-Chun Chen^{1,3}, Patrick Diamond^{1,3}, and Steven Tobias²

¹University of California San Diego, USA ²University of Leeds, UK ³Kavli Institute for Theoretical Physics, Santa Barbra, CA, USA

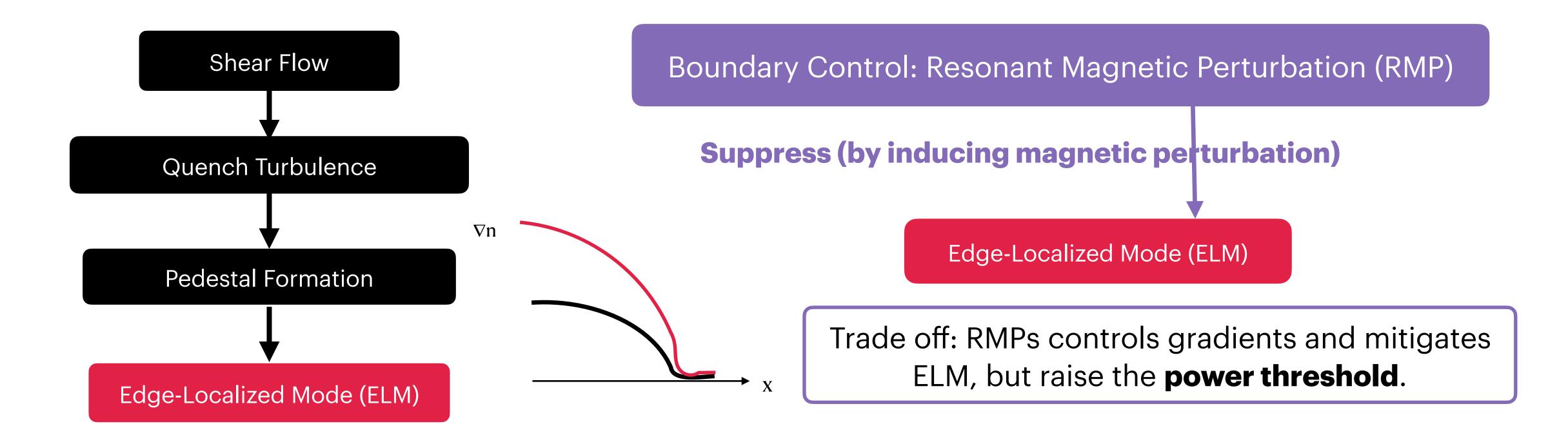
This work is supported by the U.S. Department of Energy under award number DE-FG02-04ER54738

Outline

- Introduction
 Transport of momentum and ion heat in stochastic magnetic field.
- Model & Calculation
- Results
 - a. In strong turbulence regime, the mean flow is driven by stochastic-turbulent scattering.
 - b. Stochastic lines and parallel ion flow gradient drives a net electron particle flux, in additional to the Maxwell force contribution.

Conclusions

Why we study stochastic fields in fusion device?

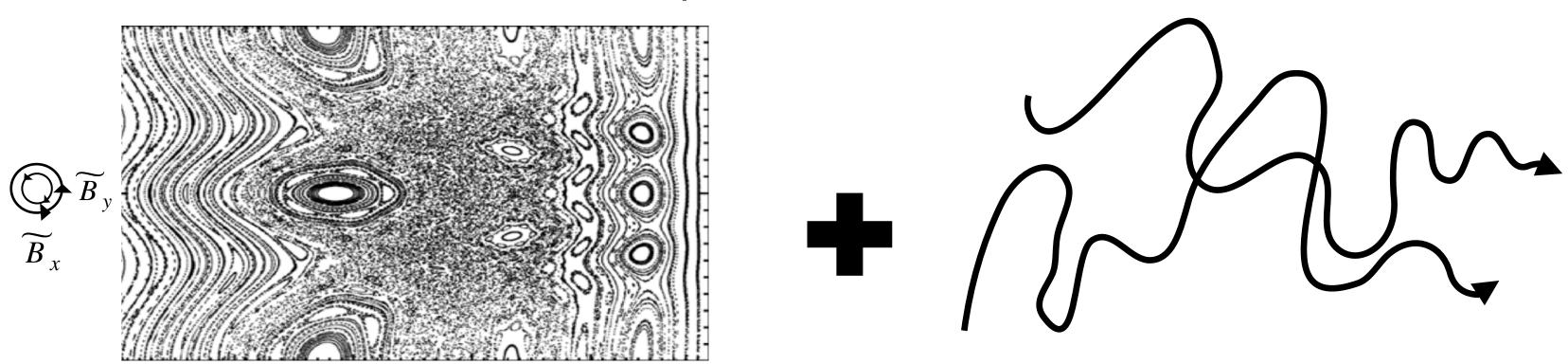


- ELMs are quasi-periodic relaxation events occurring at edge pedestal in H-mode plasma.
- ELMs can damage wall components of a fusion device.

The transport of parallel momentum and pressure in presence of stochastic field is important in studies of fusion plasma.

Coexistence of Stochastic Field and Turbulence

Before L-H transition, L-mode plasma with RMP:



turbulence enter the cross-phase $\langle \widetilde{b} \widetilde{p} \rangle$, $\langle \widetilde{b} \widetilde{u}_{||} \rangle$, and hence enter the dephasing mechanism.

Both **stochastic field** and

Magnetic islands overlapping forms stochastic fields

Strong electrostatic turbulence

Key question:

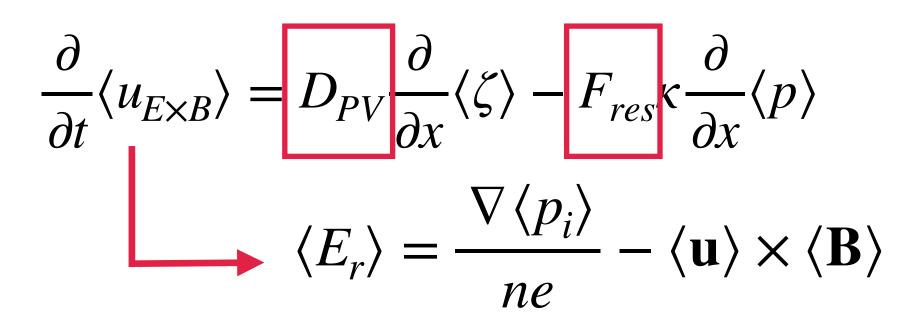
How does stochastic fields influence on the response of parallel flow and pressure in strong/weak turbulence regime?

We analyze the dephasing effect of stochastic field in strong and weak electrostatic turbulence—how they *together* drives transport.

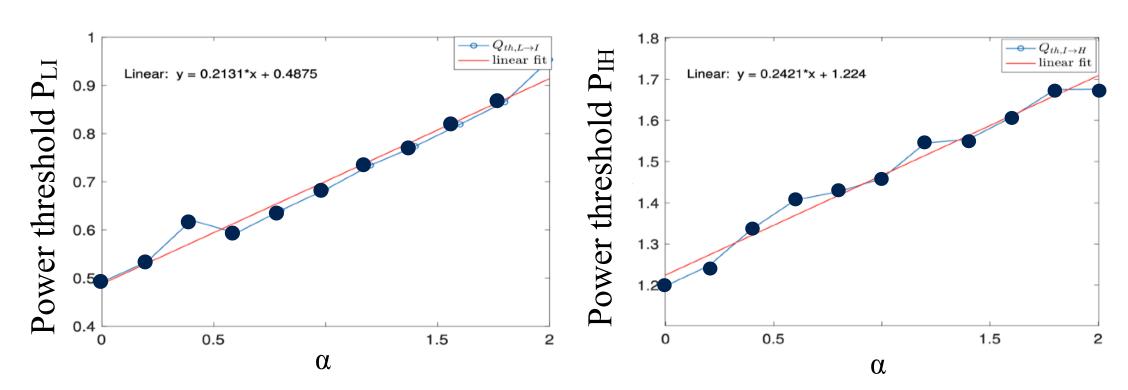
Stochastic field effect on Reynolds Stress and the Power Threshold

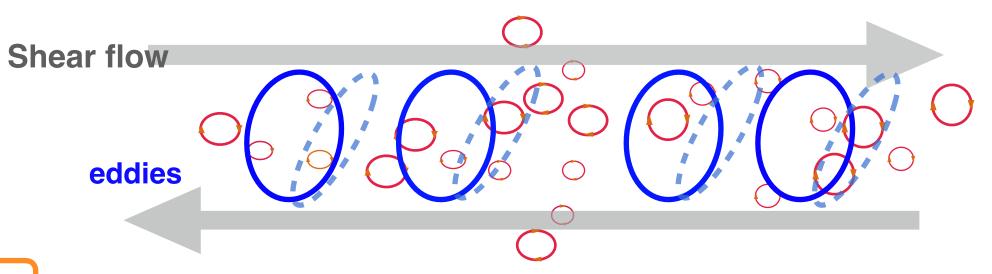
Chen et al., PoP 28, 042301 (2021):

- b^2 shift L-H threshold to higher power, in proportional to $\alpha \equiv \frac{b^2}{\sqrt{\beta}\rho_*^2} \frac{q}{\epsilon}$.
- Dephasing effect caused by stochastic fields quenches poloidal Reynolds stress—the **mean** $E \times B$ **shear** is suppressed by this effect. However, observe



Ion heat/ particle transport Parallel momentum transport



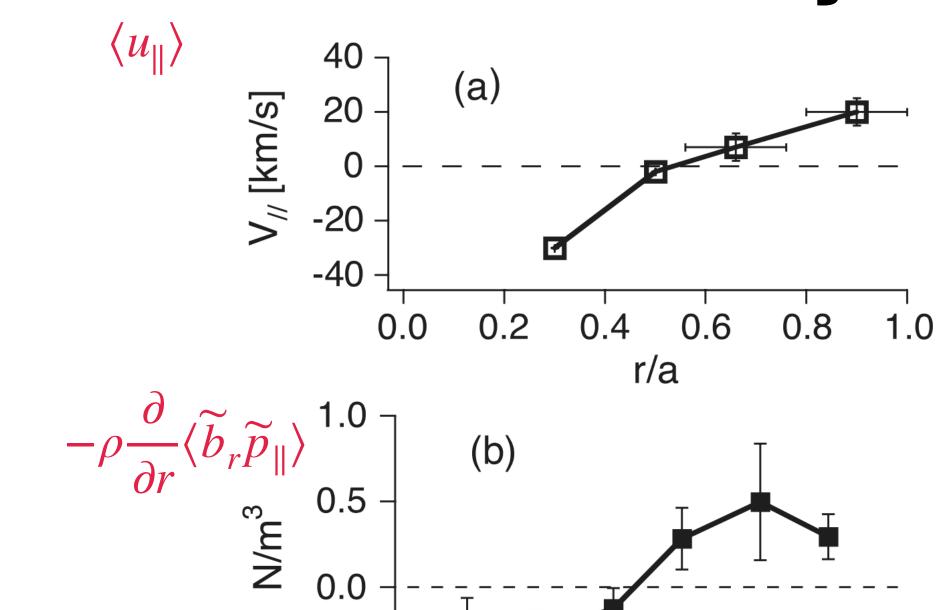


Key question:

How stochastic fields influence the ion heat and the parallel momentum transport?

We examine the physics of stochastic fields interaction with the ion pressure and the parallel flow.

Experimental Result of Madison Symmetric Torus (MST)



Macroscopic parallel flow dynamics.

Microscopic effect measured from the fluctuations of the pressure and the stochastic field. Nonlinear momentum transport

(Ding et al., PRL **110**, 065008 (2013))

r/a

0.4

8.0

MST Experimental results: demonstrated the similarity of the kinetic stress to the parallel flow.

0.0

-0.5

0.0

Model

- **1.** Cartesian coordinate: strong mean field B_0 is in z direction (3D).
- 2. Rechester & Rosenbluth (1978): waves, instabilities, and transport are studied in the presence of external excited, static, stochastic fields.
- 3. $\underline{k} \cdot \underline{B} = 0$ (or $k_{||} = 0$) resonant at rational surface in third direction, and Kubo number: $Ku_{mag} = l_{ac} |\widetilde{\mathbf{B}}| / \Delta_{\perp} B_0$).
- **4.** Equations:
 - (a) Pressure equation: $\frac{\partial}{\partial t}p + (\mathbf{u} \cdot \nabla)p = -\gamma p(\nabla_z \cdot \mathbf{u}_z)$
 - (b) Parallel flow equation: $\frac{\partial}{\partial t}u_z + (\mathbf{u} \cdot \nabla)u_z = -\frac{1}{\rho}\nabla_z p$

We use mean field approximation: $\nabla_z = \nabla_z^{(0)} + \widetilde{b} \cdot \nabla_\perp$

$$p = \langle p \rangle + \widetilde{p}$$
, Perturbations produced by turbulences where $\langle \cdot \rangle = \frac{1}{L_{||}} \int dL_{||} \frac{1}{2\pi r} \int r d\theta$

ensemble average over the symmetry direction

We define rms of normalized stochastic field $\widetilde{b} \equiv \sqrt{\langle \widetilde{B}^2 \rangle / B_0^2}$





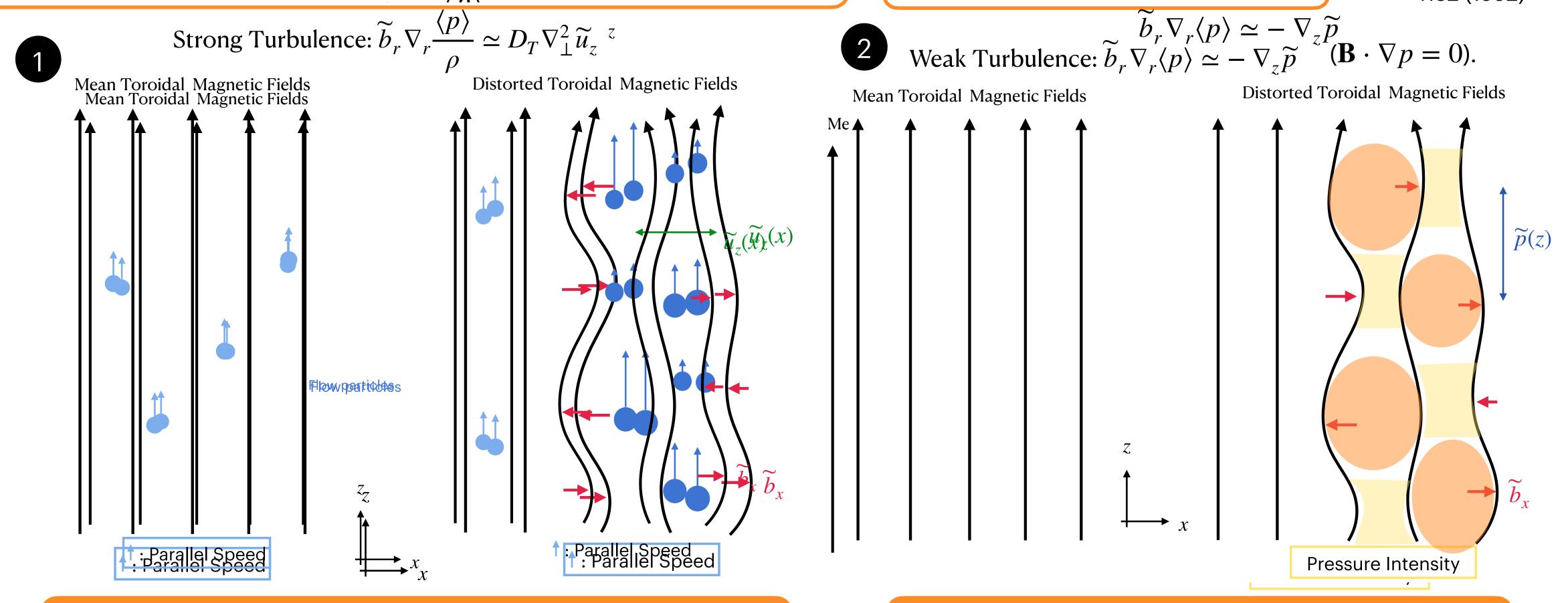
Physical Picture of Pressure Response

Local **pressure excess** $(b_r \partial_r \langle p \rangle)$ caused by magnetic perturbation is balanced by: $(u_\parallel \text{ response in the same way})$

... by parallel flow perturbation, which is damped by turbulent viscosity.

... by parallel pressure gradient.

Finn et al., PoP 4, 1152 (1992)

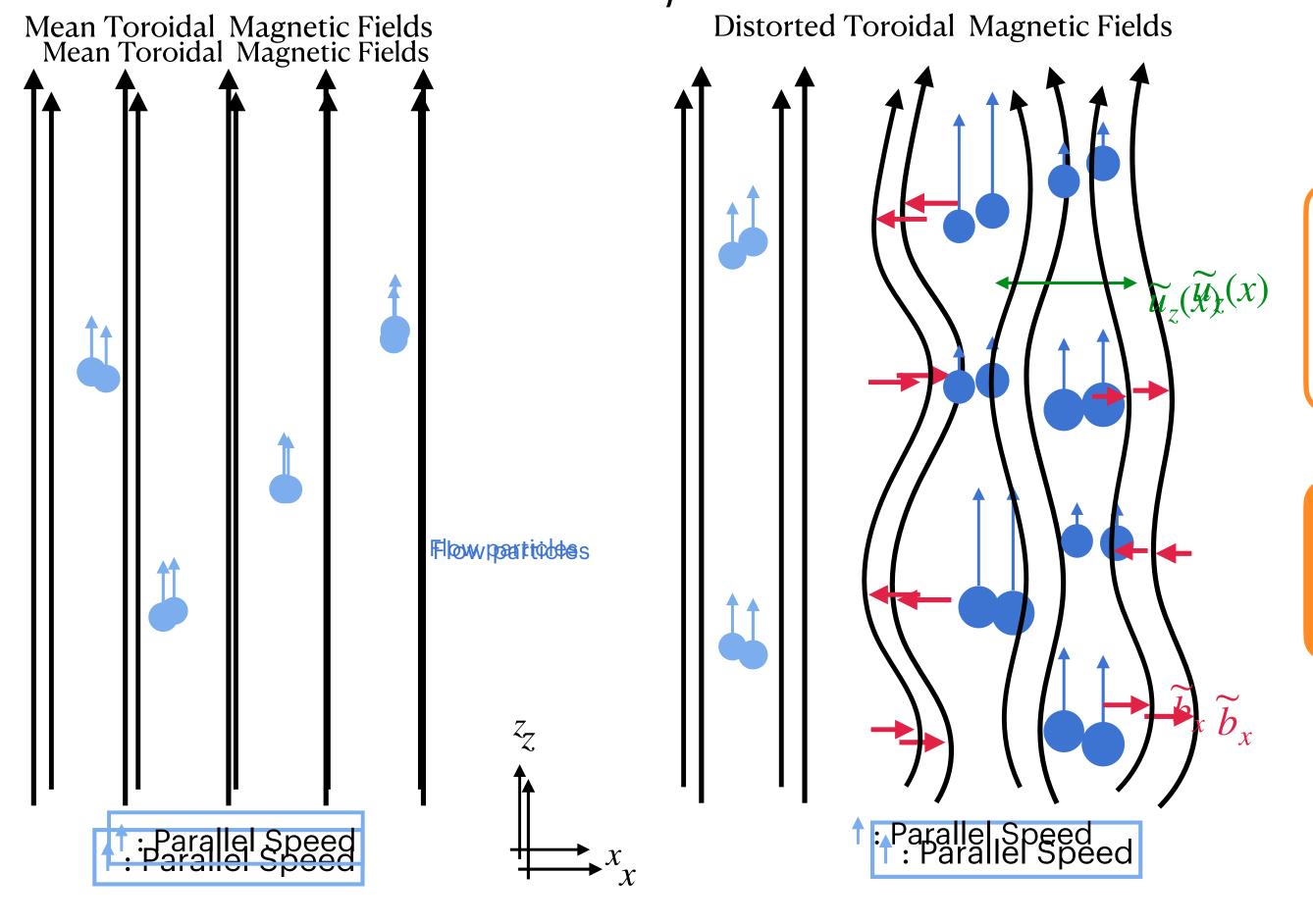


Rate of turbulent (i.e. viscous) mixing D_T/l_\perp^2 > other rate: turbulent viscosity will dissipate the parallel flow.

Rate of sound propagation c_s/l_{\parallel} > other rate: pressure gradient builds up parallelly.

Only the Strong Turbulence Regime is Relevant

Strong Turbulence:
$$\tilde{b}_r \nabla_r \frac{\langle p \rangle}{\rho} \simeq D_T \nabla_\perp^2 \tilde{u}_z^z$$



$$(D_T/l_\perp^2 > \text{other rates}).$$

In reality, the rate of turbulent (i.e. viscous) mixing of the parallel flow response is large.

Only strong turbulent cases are relevant!

Kinetic Stress and Compressible Energy Flux

Mean field equation for parallel flow and the pressure equation:

$$\frac{\partial}{\partial t} \langle u_z \rangle + \frac{\partial}{\partial x} \langle \widetilde{u}_x \widetilde{u}_z \rangle = -\frac{1}{\rho} \frac{\partial}{\partial x} \langle \widetilde{b}_x \widetilde{p} \rangle \equiv -\frac{\partial}{\partial x} K, \text{ where the kinetic stress $K \equiv \frac{1}{\rho} \langle \widetilde{b}_x \widetilde{p} \rangle$$$

$$\frac{\partial}{\partial t}\langle p\rangle + \frac{\partial}{\partial x}\langle \widetilde{u}_x \widetilde{p}\rangle = -\rho c_s^2 \frac{\partial}{\partial x}\langle \widetilde{b}_x \widetilde{u}_z\rangle \equiv -\frac{\partial}{\partial x} H, \text{ where the compressible heat flux } H \equiv \rho c_s^2 \langle \widetilde{b}_x \widetilde{u}_z\rangle$$
(or, ion heat density flux)

Perturbed equation with **Riemann variables** $f_{\pm} \equiv \widetilde{u}_{z,k\omega} \pm \frac{\widetilde{p}_{k\omega}}{\rho c_s}$:

$$-i\omega\frac{\widetilde{p}}{\rho c_{s}} + c_{s}ik_{z}\widetilde{u}_{z} + \widetilde{u}_{\perp}\nabla_{\perp}\frac{\widetilde{p}}{\rho c_{s}}$$

$$= -\widetilde{u}_{x}\frac{\partial}{\partial x}\frac{\langle p\rangle}{\rho c_{s}} - \widetilde{b}_{x}c_{s}\frac{\partial}{\partial x}\langle u_{z}\rangle$$

$$-i\omega\widetilde{u}_{z} + c_{s}ik_{z}\frac{\widetilde{p}}{\rho c_{s}} + \widetilde{u}_{\perp}\nabla_{\perp}\widetilde{u}_{z}$$

$$= -\widetilde{u}_{x}\frac{\partial}{\partial x}\langle u_{z}\rangle - \widetilde{b}_{x}c_{s}\frac{\partial}{\partial x}(\frac{\langle p\rangle}{\rho c_{s}})$$

$$(\pm ic_s k_z + ik_\perp \widetilde{u}_\perp) f_{\pm,k} = -\widetilde{b}_x c_s \left(\frac{\partial}{\partial x} \frac{\langle p \rangle}{\rho c_s} \pm \frac{\partial}{\partial x} \langle u_z \rangle \right)$$

$$\widetilde{u}_\perp \nabla_\perp \equiv -\underline{\nabla}_\perp \cdot \underline{D}_T \cdot \underline{\nabla}_\perp$$

turbulent fluid diffusivity

$$D_T \equiv \sum_{k} |\widetilde{u}_{\perp,k}|^2 \tau_{ac} \simeq 1/k_{\perp}^2 \tau_{c,k}$$
Decorrelation time due to turbulent scattering

$$K = \frac{1}{\rho} \langle \widetilde{b}_{x} \widetilde{p} \rangle = \frac{1}{\rho} \sum_{k_{y}, k_{z}} |\widetilde{b}_{x, k}|^{2} \frac{-1}{k_{\perp}^{4} D_{T}^{2} + k_{z}^{2} c_{s}^{2}} \times$$

$$\left[\rho c_{s}^{2} k_{\perp}^{2} D_{T} \frac{\partial}{\partial x} \langle u_{z} \rangle - i k_{z} c_{s}^{2} \frac{\partial}{\partial x} \langle p \rangle \right]$$

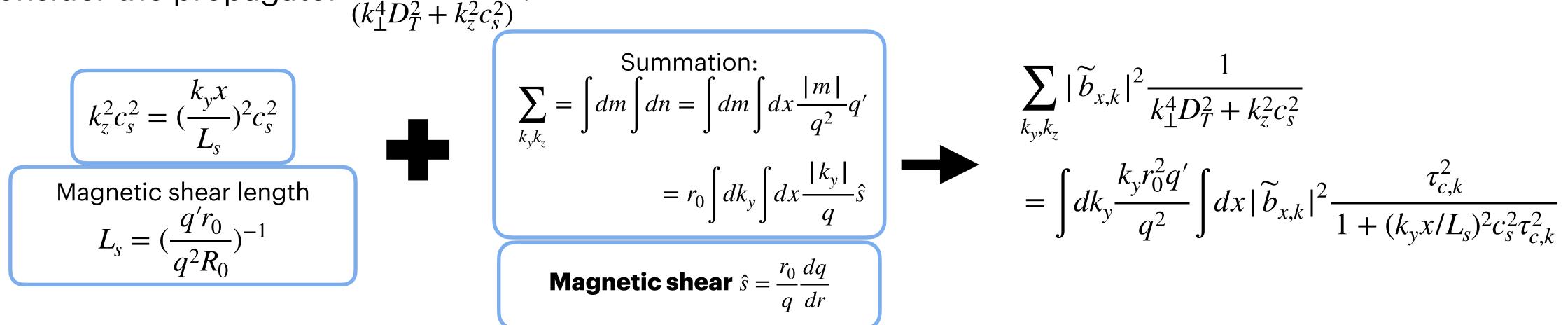
$$H \equiv \rho c_{s}^{2} \langle \widetilde{b}_{x} \widetilde{u}_{z} \rangle = \rho c_{s}^{2} \sum_{k_{y}, k_{z}} |\widetilde{b}_{x, k}|^{2} \frac{-1}{k_{\perp}^{4} D_{T}^{2} + k_{z}^{2} c_{s}^{2}}$$

$$\left[k_{\perp}^{2} D_{T} \frac{\partial}{\partial x} \frac{\langle p \rangle}{\rho} - i k_{z} c_{s}^{2} \frac{\partial}{\partial x} \langle u_{z} \rangle \right]$$

The propagator $1/(k_\perp^4 D_T^2 + k_z^2 c_s^2)$ contains the turbulent mixing $(k_\perp^4 D_T^2)$ and the magnetic shear effect $(k_z^2 c_s^2)$.

Magnetic shear Effect

Consider the propagator $\frac{1}{(k_{\perp}^4 D_T^2 + k_z^2 c_s^2)}$:



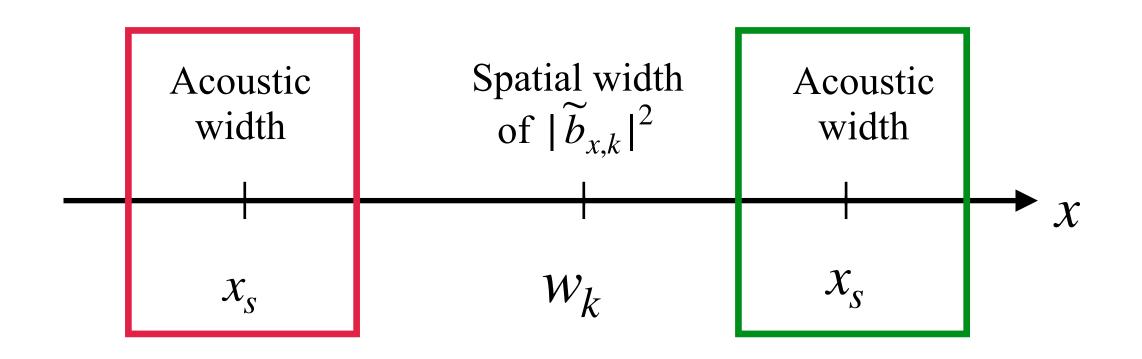
Consider competition between the stochastic field and turbulence:

$$\begin{split} \langle \widetilde{b}_x \widetilde{p} \rangle &= \int dk_y \frac{k_y r_0^2 q'}{q^2} \int dx \, |\widetilde{b}_{x,k}|^2 \frac{\tau_{c,k}}{1 + (k_y x/L_s)^2 c_s^2 \tau_{c,k}^2} \bigg(-\rho c_s^2 \frac{\partial}{\partial x} \langle u_z \rangle \bigg) \, |\widetilde{b}_{x,k}|^2 = CS(k_y) F(x/w_k) \\ &= \int dk_y \frac{k_y r_0^2 q'}{q^2} \int dx \, |\widetilde{b}_{x,k}|^2 \frac{1}{(k_\perp^2 D_T)^2 + k_z^2 c_s^2} \bigg(ik_z c_s^2 \frac{\partial}{\partial x} \langle p \rangle \bigg) \\ &= \frac{1}{1 + (k_y x/L_s)^2 c_s^2 \tau_{c,k}^2} \equiv \frac{1}{1 + (x/x_s)^2} \end{split}$$
Define the acoustic width: $x_s \equiv \frac{L_s}{k_y c_s \tau_{c,k}}$

Acoustic width x_s : the spatial width of turbulent flow

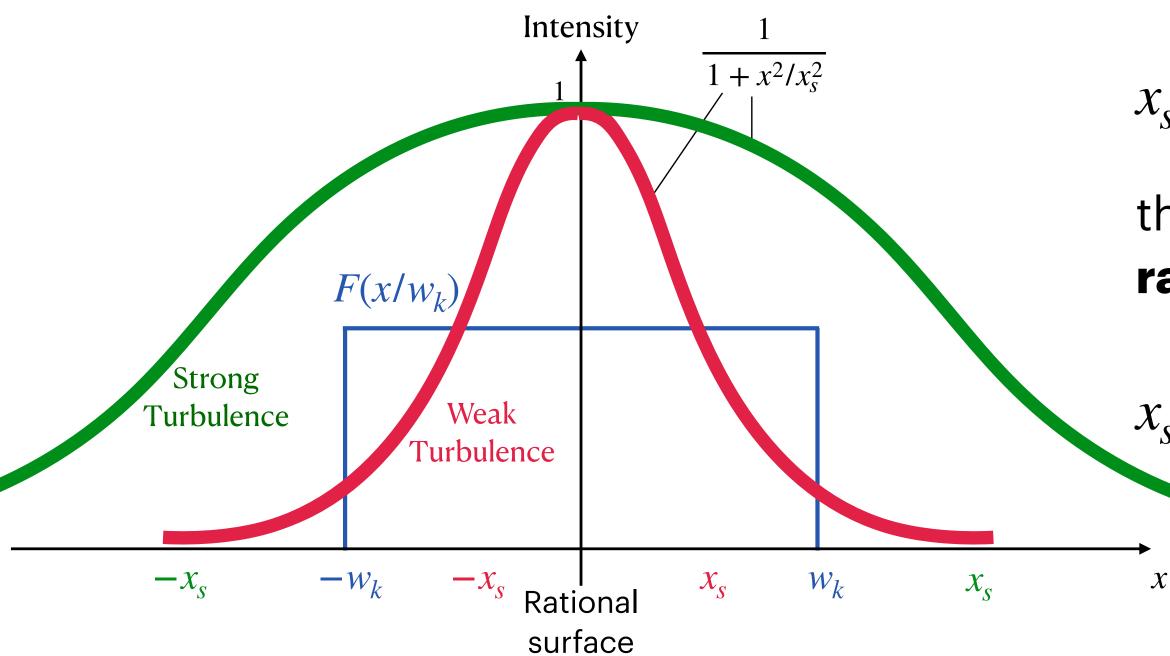
Scales

We consider length scales:



Weak turbulence regime

Strong turbulence regime



 $x_{s} \equiv \frac{L_{s}}{k_{y}c_{s}\tau_{c,k}}$ is the **acoustic width**— x_{s} defines the

the location where the parallel acoustic streaming rate = decorrelation rate.

 x_s is analogous to ion Landau resonant point.

Dimensionless Ratio and Regimes

Dimensionless parameter (λ) that defines the competition between the stochastic-field and turbulent effect: $\lambda \equiv \frac{x_s}{w_k}$

$$\langle \widetilde{b}_{x}\widetilde{p} \rangle = \int dk_{y} \frac{k_{y}r_{0}^{2}q'}{q^{2}} \int dx |\widetilde{b}_{x,k}|^{2} \frac{\tau_{c,k}}{1 + (k_{y}x/L_{s})^{2}c_{s}^{2}\tau_{c,k}^{2}} \left(-\rho c_{s}^{2}\frac{\partial}{\partial x}\langle u_{z}\rangle\right) \longrightarrow \int dx F(x/w_{k}) \cdot \frac{1}{1 + (x/x_{s})^{2}} \frac{1}{(k_{\perp}^{2}D_{T})^{2} + k_{z}^{2}c_{s}^{2}} \left(ik_{z}c_{s}^{2}\frac{\partial}{\partial x}\langle p\rangle\right)$$

In strong turbulence:

$$\frac{x_{\rm s}}{w_k} > 1$$
 , the cutoff length in the integral is $x = w_k$

$$\mathbf{1} = -\rho \mathbf{D}_{st} \frac{\partial}{\partial x} \langle u_z \rangle > \mathbf{2} \quad \text{Rele}$$

Relevant in reality

In weak turbulence:

$$\frac{x_s}{w_k}$$
 < 1, the cutoff length in the integral is $x = x_s$

$$= -D_M \frac{\partial}{\partial x} \langle p \rangle \qquad > 1$$

Results—Strong Turbulence Regime

In strong turbulence ($k_{\perp}^2 D_T \gg k_z c_s$ or $\lambda > 1$):

$$K \equiv \frac{1}{\rho} \langle \widetilde{b}_x \widetilde{p} \rangle \simeq -D_{st} \frac{\partial}{\partial x} \langle u_z \rangle$$
 , where

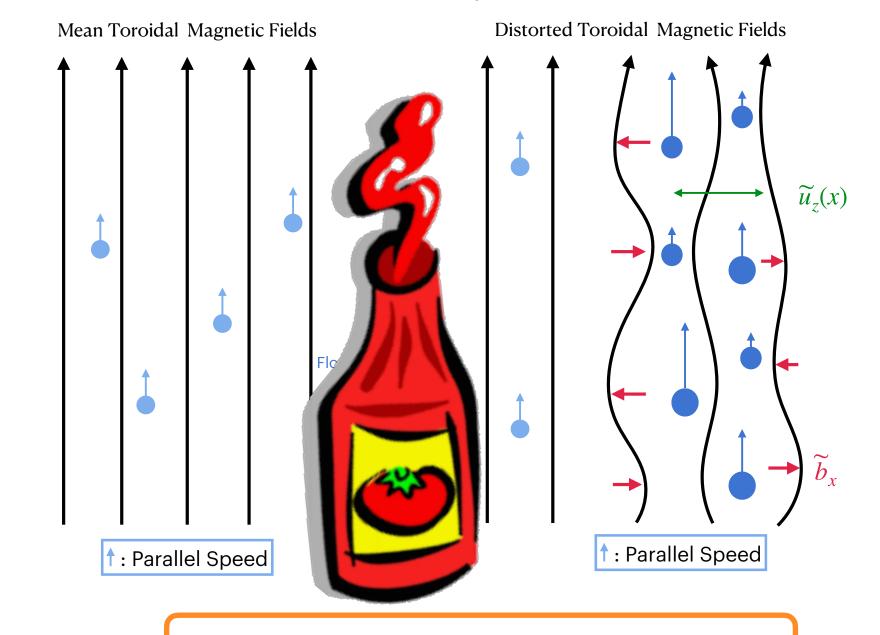
$$D_{st} = D_{st}(x) = \sum_{k_y k_z} \left| \widetilde{b}_{x,k} \right|^2 \frac{C_s}{k_\perp D_T}$$
 Stochastic B field Turbulent scattering decorrelation rate

Turbulent fluid diffusivity
$$D_T \equiv \sum_k |\widetilde{u}_{\perp,k}|^2 \tau_{ac}$$

 D_{st} : the **hybrid turbulent diffusivity**—explain how the kinetic stress is scattered by stochastic B fields and turbulence.

$$H \equiv \rho c_s^2 \langle \widetilde{b}_x \widetilde{u}_z \rangle \simeq -D_{st} \frac{\partial}{\partial x} \langle p \rangle$$

Strong Turbulence:
$$\widetilde{b}_r \nabla_r \frac{\langle p \rangle}{\rho} \simeq D_T \nabla_{\perp}^2 \widetilde{u}_z$$



Pressure gradient $\partial \langle p \rangle / \partial x$ due to \widetilde{b} is balanced by turbulent mixing of parallel flow $\nabla_{\perp}^2 \widetilde{u}_z$.

The pressure gradient in presence of tilted B lines balances with the *hybrid* turbulent diffusion.

Results—Weak Turbulence Regime

Weak Turbulence: $\widetilde{b}_r \nabla_r \langle p \rangle \simeq - \nabla_z \widetilde{p}$

In weak turbulence ($k_{\perp}^2 D_T \ll k_z c_s$ or $\lambda > 1$):

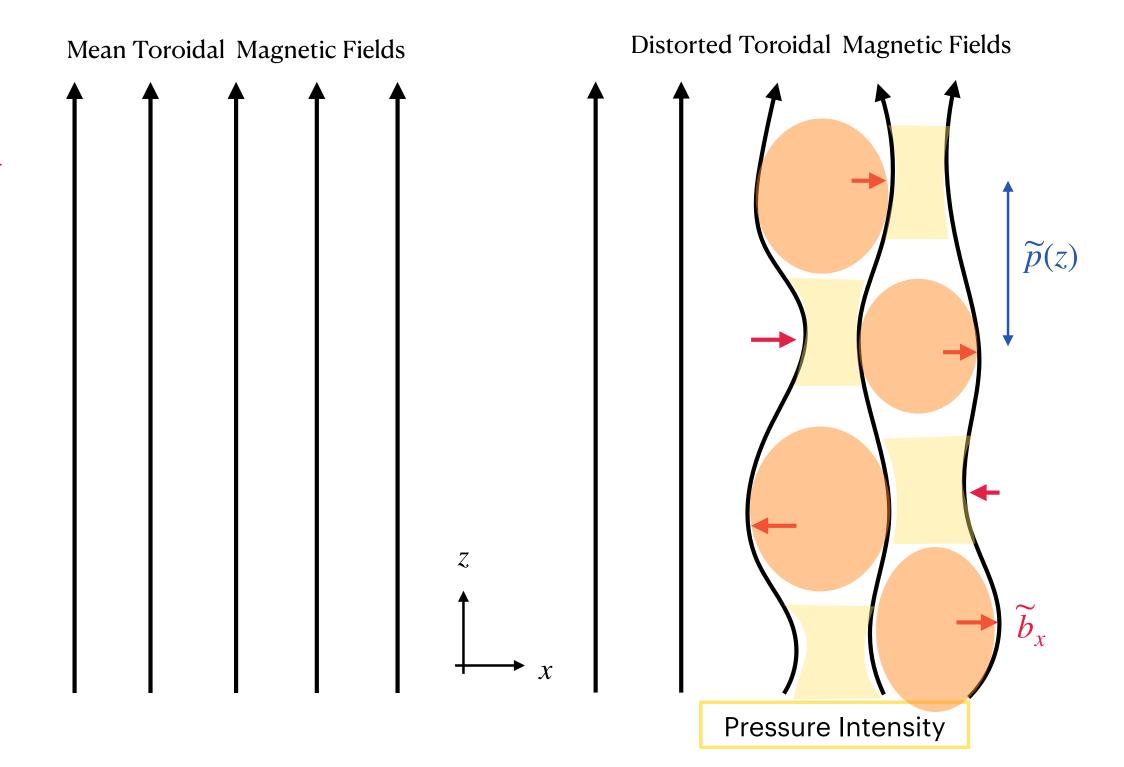
$$K \equiv \frac{1}{\rho} \langle \widetilde{b}_{x} \widetilde{p} \rangle \simeq -\frac{1}{\rho} D_{M} \frac{\partial}{\partial x} \langle p \rangle, \text{ where}$$

$$D_{M} = D_{M}(x) \equiv \sum_{k_{y}, k_{z}} |\widetilde{b}_{x,k}|^{2} \tau_{d,k} c_{s}$$

 D_{M} is the magnetic diffusivity.

$$H \equiv \rho c_s^2 \langle \widetilde{b}_x \widetilde{u}_z \rangle \simeq -\rho c_s^2 D_M \frac{\partial}{\partial x} \langle u_z \rangle$$

For weak scattering, momentum and energy transport occur only through stochastic B fields, with familiar transport coefficient $c_{s}D_{M}$.



Pressure gradient $\partial \langle p \rangle / \partial x$ due to b is balanced by the parallel pressure gradient

Results—Mean Evolution of Parallel Flow and Pressure

	Strong Turbulence (λ>1)	Weak Turbulence (λ <1)
Kinetic Stress $K \equiv \langle \widetilde{b}_x \widetilde{p} \rangle / \rho$	$K = -D_{st} \frac{\partial}{\partial x} \langle u_z \rangle$	$K = -\frac{1}{\rho} D_{M} \frac{\partial}{\partial x} \langle p \rangle$
Compressive energy flux $H \equiv \rho c_s^2 \langle \widetilde{b}_x \widetilde{u}_z \rangle$	$H = -D_{st} \frac{\partial}{\partial x} \langle p \rangle$	$H = -\rho c_s^2 D_M \frac{\partial}{\partial x} \langle u_z \rangle$
Mean evol. of parallel flow	$\frac{\partial}{\partial t}\langle u_z\rangle = -\frac{\partial}{\partial x}\langle \widetilde{u}_x \widetilde{u}_z\rangle + \frac{\partial}{\partial x} D_{st}(x) \frac{\partial}{\partial x}\langle u_z\rangle$	$\frac{\partial}{\partial t} \langle u_z \rangle \simeq -\frac{\partial}{\partial x} \langle \widetilde{u}_x \widetilde{u}_z \rangle + \frac{\partial}{\partial x} \frac{D_M(x)}{\rho} \frac{\partial}{\partial x} \langle p \rangle$
Mean evol. of pressure	$\frac{\partial}{\partial t}\langle p\rangle = -\frac{\partial}{\partial x}\langle \widetilde{u}_x \widetilde{p}\rangle + \frac{\partial}{\partial x} D_{st}(x) \frac{\partial}{\partial x}\langle p\rangle$	$\frac{\partial}{\partial t}\langle p\rangle = -\frac{\partial}{\partial x}\langle \widetilde{u}_x \widetilde{p}\rangle + \frac{\partial}{\partial x}\rho c_s^2 D_M(x) \frac{\partial}{\partial x}\langle u_z\rangle$

hybrid turbulent diffusivity:
$$D_{st} = \sum_{k_y k_z} |\widetilde{b}_{x,k}|^2 \frac{c_s^2}{k_\perp^2 D_T}$$
 $D_T \equiv \sum_k |\widetilde{u}_{\perp,k}|^2 \tau_{ac}$

Strong turbulence regime: Mean flow (macroscopic) is driven by the stochastic-turbulent scattering (microscopic).

Electron Particle Flux

Motivated by Finn et al., PoP **4**, 1152 (1992):

$$\frac{\partial \tilde{v}_{\parallel}}{\partial t} = -\frac{c_s^2}{n} \, \hat{\mathbf{b}} \cdot \nabla \tilde{n},$$
$$\frac{\partial \tilde{n}}{\partial t} = -n \, \hat{\mathbf{b}} \cdot \nabla \tilde{v}_{\parallel}.$$

Then, writing $u = \tilde{v}_{\parallel}/c_s + \tilde{n}/n$, $v = \tilde{v}_{\parallel}/c_s - \tilde{n}/n$, we obtain

$$\frac{\partial u}{\partial t} + c_s \hat{\mathbf{b}} \cdot \nabla u = 0,$$

$$\frac{\partial v}{\partial t} - c_s \hat{\mathbf{b}} \cdot \nabla v = 0.$$
(6)

Consider equation of parallel flow and electron density:

Consider equation of parallel flow and electron density:

Mean Field
Theory
$$n_e = \langle n_e \rangle + \widetilde{n}_e$$

$$n_e = \langle n_e \rangle + \widetilde{n}_e$$

Mean Field
$$n_e = \langle n_e \rangle + \widetilde{n}_e$$

Theory
$$n_e = \langle n_e \rangle + \widetilde{n}_e$$

Riemann-like variables variables
$$h_{\pm} \equiv \frac{\widetilde{u}_z}{c_s} \pm \frac{\widetilde{n}_e}{\langle n_e \rangle}$$

$$\langle \widetilde{b}_x \widetilde{n}_e \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{n}_e \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{n}_e \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field
$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle n_e \rangle$$

Field

$$\frac{\partial}{\partial t} \frac{\langle u_z \rangle}{c_s} = \frac{\partial}{\partial x} c_s D_M \frac{\partial}{\partial x} \frac{\langle n_e \rangle}{n_0} \qquad \frac{\partial}{\partial t} \langle n_e \rangle = \frac{\partial}{\partial x} D_M \frac{\partial}{\partial x} \langle u_z \rangle$$
 Flu

$$\frac{\partial}{\partial t}\langle n_e \rangle = \frac{\partial}{\partial x} D_M \frac{\partial}{\partial x} \langle u_z \rangle$$

Fluxes are non-diffusive (off-diagonal)

This is overlooked by Finn et al. since their analysis never convert back from Riemann-like variables.

How is this related to the particle transport?

Electron Particle Flux

Consider electron density evolution:

$$\frac{\partial \langle n_e \rangle}{\partial t} - \frac{\partial}{\partial x} \frac{\langle \widetilde{b}_x \widetilde{J}_{z,e} \rangle}{|e|} = 0$$

$$-\nabla_{\perp}^2 A_z = \mu_0 (J_{z,e} + J_{z,i})$$

$$-\nabla_{\perp}^2 A_z = \mu_0 (J_{z,e} + J_{z,i})$$

$$-\nabla_{\perp}^2 A_z = \mu_0 (J_{z,e} + J_{z,i})$$

Total current contribution

tilted B line

Ion current contribution

$$\langle \widetilde{b}_x \widetilde{u}_z \rangle = -D_M \frac{\partial}{\partial x} \langle u_z \rangle$$

$$D_M \equiv \sum_{k_y k_z} |\widetilde{b}_{x,k}|^2 \tau_{d,k} c_s$$
 Dispersal timescale of an acoustic wave packet along the stochastic magnetic field

$$\begin{split} \frac{\partial \langle n_e \rangle}{\partial t} &= -\frac{\partial}{\partial x} \Gamma_{e,s} \quad \text{Electron particle flux} \\ &= \frac{\partial}{\partial x} \frac{B_0}{\mu_0 |e|} \frac{\partial}{\partial x} \langle \widetilde{b}_x \widetilde{b}_y \rangle + \frac{\partial}{\partial x} n_0 D_M \frac{\partial}{\partial x} \langle u_{z,i} \rangle \end{split}$$
 Familiar div.

Stochastic lines and parallel ion flow gradient drives a net electron particle flux, in additional to the Maxwell force contribution.

Maxwell stress

Conclusions

- We calculate the **explicit form** of the stochastic-field-induced transports—kinetic stress K and the compressive energy flux H—have different mechanisms in presence of strong/weak electrostatic turbulence.
- In practice, only strong turbulent cases ($k_1^2D_T\gg k_zc_s$ or $\lambda>1$) are relevant. We found mean parallel flow and mean pressure are driven via the hybrid diffusivity that involves effect of stochastic field and turbulent scattering:

$$D_{st} = D_{st}(x) = \sum_{k_v k_z} |\widetilde{b}_{x,k}|^2 \frac{c_s^2}{k_\perp^2 D_T}$$
 Stochastic B field Turbulent scattering decorrelation rate

Future Works

- Magnetic drift—effect of stochastic field and turbulence upon geodesic acoustic modes.
- One should include the effect of $\langle b \phi \rangle \neq 0$ in the future (Cao & Diamond 2021).
- Relevant problems: cosmic ray acceleration and propagation.

Chang-Chun Samantha Chen

AAPPS-DPP Sep. 27th 2021