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Preview

@ Revisit analytic model for turbulence in solar tachocline

@ More broadly is the simplest model for understanding interplay
ZFs and magnetics, which is of great interest to the magnetic
confinement problem

@ Observe that cross-helicity is non-conserved. What can we
learn by considering CH more carefully?

@ Derive a simple estimate for the total stationary CH
@ Sketch the weak turbulence theory for this (multi-field) system

@ Using WT, derive a useful and interpretable constraint
connecting CH to momentum transport



Solar tachocline

@ Thin, radially-sheared layer at base
of convection zone. Strongly
turbulent

@ Believed to be strongly involved in
the solar dynamo

@ Home to Q-effect: shear drags Tachocline
poloidal field lines originating from
core, converts to strong toroidal

field R
@ Momentum transport crucial to
problem of why tachocline exists. Cor

Friction or anti-friction?
[Spiegel and Zahn, 1992,
Gough and Mclntyre, 1998]



[-plane MHD model

@ Strong stratification in tachocline = quasi-2D

@ 2D magnetized incompressible turbulence in presence of
planetary vorticity (Coriolis force) gradient:
22 = (0,0, f + By)

0V + BOx) = {1, V2} — {A, VAL + vV g + F
A = {1, A} + VA

o v = (0,1, —0x,0), B=(0,A, —0xA,0)
e {a, b} = 0xad,b — 0yadyb
@ Also serves as a toy model for drift-Alfvén turbulence



Effect of (weak) mean field

@ Tobias et al. (2007) assessed
impact of weak mean field
box on zonal flow formation
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Cross-helicity

@ Previous analytical studies have neglected the effect of
cross-helicity (v-B) = —(AV?%). Often frozen at zero for
simplicity, invoking usual conservation law

@ However, Coriolis term explicitly breaks conservation:
Ot (AV3) = —B(v, A) + dissipation

@ In this work: seek to elucidate the role of cross-helicity in this
system. What is role in momentum transport?



Stationary value

As a start, can obtain stationary CH value from a simple
calculation a la Zeldovich. Neglecting forcing:

SO = bolAD) — n((VAP)

:wmwngw>

Oe(AVZY) = —B{Ad)) + (1 + v)(VYV2A)

BBty
~ bo(1+ Pm)

— | (AVZ)) o

where Pm =%

Note appearance of “magnetic Rhines” scale kyr =
crossover of Rossby and Alfvén frequencies



Simulation results

@ Simulate S-plane
system with fixed
by =2,
n=v=10""%
e =0.01, kr = 32 at
various f3

@ Rm ~ 6000 — 15000

@ Transition to Rossby
turb. begins around
kmr = ke (B = bok?)

@ Transition presaged
by increasing mean
CH — suggests CH
plays a role?
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Simulation results: comparison to Zel'dovich

] Taking [V = Zb = Ef
in stationary CH
estimate yields good
agreement for
kmr S ke

@ At large 8, £p < Ur.
There a better
estimate is a
magnetic Taylor
microscale

Oy = \/n/e(B?).
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Weak turbulence theory

@ Need spectra to determine transport. Seek closure of spectral
equations that treats cross-helicity on equal footing with
energy spectra

@ Simplest approach: weak turbulence theory
[Sagdeev and Galeev, 1969]. Treat nonlinear terms as triplet
interactions between resonant linear modes

@ Downside: fails when linear frequency is small — can't
describe k, — 0 limit or weak field

@ Two eigenmodes in this system (Rossby-Alfvén)

w5i1/4w3‘+wé

2

w4 =

with wg = —Bky /K%, wa = kybg



Spectral equations

@ Generalization of weak turb. spectral equations for arbitrary number of
scalar fields ¢* rarely seen, but can be derived:

’
RGT = Z[”'M:f‘k??k,fcﬁﬁcmwf—wé—wz,,)awf

k'+k’’ =k B~y
o et aa’ « P 1
+ MR MOS0 GG | (i — wl — wih) + P
KT, 5Ky [e% B 2
wk - wk’ - wk”
alB’y* ﬁo/'y* aa’ 0%1% o' B8 Y " 1 _
+ Mk,k’ K’ Mklyk —k Ck Ck” 71—5(0‘-)1( — wk’ — wk/,) — IP ; B .
s y ol — Y
Wy Wy Wyerr

where <¢f¢f‘,/) = C.ﬁmlé(k + K)o el

@ ¢“ is assumed to be an eigenmode. Mff,”k,, are symmetrized coupling
coefficients.

@ PV integrals vanish in case of real coupling coefficients and a single field
— recover classical Sagdeev-Galeev result.



Return to physical basis

@ Next, specialize to S-plane MHD problem, return to familiar
velocity /magnetic field basis:

1
RGE = o (W3 B+ WBEY — 2uaws Re i)
(1)
o 1
K> Re(Gl e ) = Q2 (“’E\(Elf< — EM) + wpwaRe Hk)
(2)
2 ~ i WA

where Q = w, —w_ =, /4w? —i—w%, EX = (||, EM =
{[Bl?), Hic = (- b_i)
@ Note cross-helicity will contribute to energy dynamics

@ Can be solved numerically in principle. But how to make
analytic progress with this mess?



MHD limit and singularity

e Weak 2D MHD previously studied [Tronko et al., 2013]. Fixed
point is X = E,iV’ = const., Hx =0

@ Natural idea: use small-3 perturbation theory about MHD
spectra

@ After some work, one finds that only O(f3) effect for
|kx| > kmr is to mix the turbulent energies in k-space

o Effect on EX — EM is at least O(8%). That calculation
remains open to the brave and bored

@ The most interesting effects on the spectra are happening at
small k,, but here WT is no longer self-consistent



Cross-spectral identity

@ Is WT useless then? No!

@ Observe that Rossby-Alfvén cross-correlator naturally
oscillates at w —w_ = /4w3 + w3 On timescales longer
than linear, time average is zero!

@ We have again

1

k2 Re(C+— let) — Qz

(w 2(EX — EM) + wswa Re Hk)

6

> (Re Hi):

Time-averaged, stationary cross-helicity spectrum entirely
determines momentum transport!



Cross-spectral identity |l

@ Buildup of cross-helicity during

transition thus linked to breakdown

of Alfvénization condition
|| = | bw|?

o Can rearrange to find:

O _ Ky
(0b)e K2

= Fluctuations kinetic for
£ > Lyr, magnetic for £ < Lyr
[Diamond et al., 2007]
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Figure Time-averaged, ky-averaged spectra
from simulation, confirming calculation. Note
that spectra don't agree at ky = 0 because
Q—0



Combining with Zel'dovich

o Can integrate cross-spectral
identity over k and combine with

the CH estimate

He P i)
bokj o
to find
(P)vz . Kim
<52> kg 0 10t 11;‘;”‘”“‘ 10!

o2
Figure Plot of % — 1, compared to ex-

for some characteristic scale kg
(expect ~ kf)

@ Quantifies the degree of
de-Alfvénization for 3/bgk? < 1

pected Bz scaling



Flux of magnetic potential

o Im(CF~ e ) must similarly
vanish after time-averaging

e Thus ImHx -0 = (¥ A) — 0. ([ pe—

@ In other words, turbulent resistivity .
is zero in weak turbulence.
Sufficiently strong mean field will
be very long-lived e

@ Agrees with intuition from (e.g.)
[Cattaneo and Vainshtein, 1991] — o
. Figure Turbulent resistivity from simulation.
even a weak field quenches flux of nr < n=10"*
Ain 2D MHD. Also Zel'dovich:

nt = n(b?)/b3



Near-zonal flows

o Finally, we make the interesting
observation that in the transitional
regime, spectra are sharply peaked
at smallest available k, > 0

@ Dynamics thus dominated by
“near-zonal” flows, with
characteristic wavelength equal to
the box size. Why?

@ Should study this phenomenon
more carefully. Might expect Figure Snapshot of vorticity V24 for § = 3.
something similar in drift-wave
system near o = 1. Partial
suppression of transport?




Spectra for 3 = 3 x 103
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Figure Stationary spectra, averaged over ky, for 3 = 3 x 103



Conclusion

@ Cross helicity is non-conserved in 3-plane MHD. In presence
of mean magnetic field, attains a finite stationary value

@ In weak turbulence theory, stationary cross-helicity spectrum
equivalent to Maxwell-Reynolds stress — determines
momentum transport

@ Have confirmed both of these calculations in simulation

@ Need strong turbulence to understand zonal flows

H= % could be very large for weak by, large Rm.

Should study this case numerically! Flux of magnetic
potential?

@ CH spectrum related to turbulent emf, but need 3D to study
dynamo
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WT spectral equations sketch

@ Sketch: assume ¢ in eigenbasis:

1
okt = 3 5 [ R oK
By

(4)
assume WLOG Mﬁfﬁ:k// == Ml?i,lz’é),k’
@ Use second-order time-dependent perturbation theory
3o (t) = ¢2(0) + 662D (1) + 66>t 5
ok (1) = ¢ (0) + 69, (t) + 09, (t) +...,  (5)

where ¢ = ekt
@ Apply random phase approx., assume spatial homeogeneity,
and evaluate time integrals in limit w™! < t < 7y,



