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Preview

Revisit analytic model for turbulence in solar tachocline

More broadly is the simplest model for understanding interplay
ZFs and magnetics, which is of great interest to the magnetic
confinement problem

Observe that cross-helicity is non-conserved. What can we
learn by considering CH more carefully?

Derive a simple estimate for the total stationary CH

Sketch the weak turbulence theory for this (multi-field) system

Using WT, derive a useful and interpretable constraint
connecting CH to momentum transport



Solar tachocline

Thin, radially-sheared layer at base
of convection zone. Strongly
turbulent

Believed to be strongly involved in
the solar dynamo

Home to Ω-effect: shear drags
poloidal field lines originating from
core, converts to strong toroidal
field

Momentum transport crucial to
problem of why tachocline exists.
Friction or anti-friction?
[Spiegel and Zahn, 1992,
Gough and McIntyre, 1998]



β-plane MHD model

Strong stratification in tachocline =⇒ quasi-2D

2D magnetized incompressible turbulence in presence of
planetary vorticity (Coriolis force) gradient:
2Ω = (0, 0, f + βy)

∂t∇2ψ + β∂xψ = {ψ,∇2ψ} − {A,∇2A}+ ν∇4ϕ+ f̃

∂tA = {ψ,A}+ η∇2A

v = (∂yψ,−∂xψ, 0), B = (∂yA,−∂xA, 0)
{a, b} = ∂xa∂yb − ∂ya∂xb

Also serves as a toy model for drift-Alfvén turbulence



Effect of (weak) mean field

Tobias et al. (2007) assessed
impact of weak mean field
b0x̂ on zonal flow formation

Above a critical b0,
turbulence is “Alfvénized.”
Reynolds-Maxwell stress
⟨∂xψ∂yψ⟩ − ⟨∂xA∂yA⟩ ∼∑

k(|vk|2 − |Bk|2) small
=⇒ no ZF

η large enough =⇒
quenches magnetic
turbulence =⇒ critical b0
can be quite large.



Cross-helicity

Previous analytical studies have neglected the effect of
cross-helicity ⟨v · B⟩ = −⟨A∇2ψ⟩. Often frozen at zero for
simplicity, invoking usual conservation law

However, Coriolis term explicitly breaks conservation:

∂t⟨A∇2ψ⟩ = −β⟨vyA⟩+ dissipation

In this work: seek to elucidate the role of cross-helicity in this
system. What is role in momentum transport?



Stationary value

As a start, can obtain stationary CH value from a simple
calculation à la Zeldovich. Neglecting forcing:

1

2
∂t⟨A2⟩ = b0⟨A∂xψ⟩ − η⟨(∇A)2⟩

=⇒ ⟨A∂xψ⟩∞ =
η

b0
⟨b̃2⟩

∂t⟨A∇2ψ⟩ = −β⟨A∂xψ⟩+ (η + ν)⟨∇2ψ∇2A⟩

=⇒ ⟨A∇2ψ⟩∞ ≃ β⟨b̃2⟩ℓbℓv
b0(1 + Pm)

where Pm ≡ ν
η

Note appearance of “magnetic Rhines” scale kMR =
√

β
b0
, defines

crossover of Rossby and Alfvén frequencies



Simulation results

Simulate β-plane
system with fixed
b0 = 2,
η = ν = 10−4,
ε = 0.01, kf = 32 at
various β

Rm ∼ 6000− 15000

Transition to Rossby
turb. begins around
kMR = kf (β = b0k

2
f )

Transition presaged
by increasing mean
CH — suggests CH
plays a role? 10−1 100 101
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Simulation results: comparison to Zel’dovich

Taking ℓv = ℓb = ℓf
in stationary CH
estimate yields good
agreement for
kMR ≲ kf

At large β, ℓb ≪ ℓf .
There a better
estimate is a
magnetic Taylor
microscale

ℓb =
√

η/ε⟨b̃2⟩.
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Weak turbulence theory

Need spectra to determine transport. Seek closure of spectral
equations that treats cross-helicity on equal footing with
energy spectra

Simplest approach: weak turbulence theory
[Sagdeev and Galeev, 1969]. Treat nonlinear terms as triplet
interactions between resonant linear modes

Downside: fails when linear frequency is small → can’t
describe kx → 0 limit or weak field

Two eigenmodes in this system (Rossby-Alfvén)

ω± =
ωβ ±

√
4ω2

A + ω2
β

2

with ωβ = −βkx/k2, ωA = kxb0



Spectral equations

Generalization of weak turb. spectral equations for arbitrary number of
scalar fields ϕα rarely seen, but can be derived:

∂tC
αα′
k =

∑
k′+k′′=k

∑
βγ

[
π|Mαβγ

k,k′,k′′ |
2Cββk′ Cγγk′′ δ(ω

α
k − ωβk′ − ωγk′′)δαα′

+Mαβγ
k,k′,k′′M

βαγ
k′,k,−k′′C

αα′
k Cγγk′′

(
πδ(ωαk − ωβk′ − ωγk′′) + iP 1

ωαk − ωβk′ − ωγk′′

)

+Mα′βγ∗
k,k′,k′′M

βα′γ∗
k′,k,−k′′C

αα′
k Cγγk′′

(
πδ(ωα

′
k − ωβk′ − ωγk′′)− iP 1

ωα
′

k − ωβk′ − ωγk′′

)]
.

where ⟨ϕαk ϕα
′

k′ ⟩ = Cαα
′

k δ(k+ k′)e−i(ωα
k −ωα′

k )t .

ϕα is assumed to be an eigenmode. Mαβγ
k,k′,k′′ are symmetrized coupling

coefficients.

PV integrals vanish in case of real coupling coefficients and a single field
→ recover classical Sagdeev-Galeev result.



Return to physical basis

Next, specialize to β-plane MHD problem, return to familiar
velocity/magnetic field basis:

k2C±±
k =

1

Ω2

(
ω2
±E

K
k + ω2

AE
M
k − 2ωAω± ReHk

)

(1)

k2 Re(C+−
k e−iΩt) = − 1

Ω2

(
ω2
A(E

K
k − EM

k ) + ωβωA ReHk

)

(2)

k2 Im(C+−
k e−iΩt) = −ωA

2Ω
ImHk. (3)

where Ω ≡ ω+ − ω− =
√
4ω2

A + ω2
β,E

K
k = ⟨|ṽk|2⟩,EM

k =

⟨|b̃k|2⟩,Hk = ⟨ṽk · b̃−k⟩
Note cross-helicity will contribute to energy dynamics

Can be solved numerically in principle. But how to make
analytic progress with this mess?



MHD limit and singularity

Weak 2D MHD previously studied [Tronko et al., 2013]. Fixed
point is EK

k = EM
k = const.,Hk = 0

Natural idea: use small-β perturbation theory about MHD
spectra

After some work, one finds that only O(β) effect for
|kx | > kMR is to mix the turbulent energies in k-space

Effect on EK
k − EM

k is at least O(β3). That calculation
remains open to the brave and bored

The most interesting effects on the spectra are happening at
small kx , but here WT is no longer self-consistent



Cross-spectral identity

Is WT useless then? No!

Observe that Rossby-Alfvén cross-correlator naturally

oscillates at ω+ − ω− =
√
4ω2

A + ω2
β. On timescales longer

than linear, time average is zero!

We have again

k2 Re(C+−
k e−iΩt) = − 1

Ω2

(
ω2
A(E

K
k − EM

k ) + ωβωA ReHk

)

=⇒ ⟨EK
k − EM

k ⟩t =
β

b0k2
⟨ReHk⟩t

Time-averaged, stationary cross-helicity spectrum entirely
determines momentum transport!



Cross-spectral identity II

Buildup of cross-helicity during
transition thus linked to breakdown
of Alfvénization condition
|ṽk|2 = |b̃k|2
Can rearrange to find:

⟨∂t ṽ⟩k
⟨∂t b̃⟩k

=
k2MR

k2
.

=⇒ Fluctuations kinetic for
ℓ > ℓMR , magnetic for ℓ < ℓMR

[Diamond et al., 2007]
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Figure Time-averaged, ky -averaged spectra
from simulation, confirming calculation. Note
that spectra don’t agree at kx = 0 because
Ω → 0



Combining with Zel’dovich

Can integrate cross-spectral
identity over k and combine with
the CH estimate

H ≃ β

b0k20
⟨b̃2⟩

to find

⟨ṽ2⟩NZ

⟨b̃2⟩
− 1 ∼ k4MR

k40

for some characteristic scale k0
(expect ∼ kf )

Quantifies the degree of
de-Alfvénization for β/b0k

2
f ≲ 1
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Flux of magnetic potential

Im(C+−
k e−iΩt) must similarly

vanish after time-averaging

Thus ImHk → 0 =⇒ ⟨ṽy Ã⟩ → 0.

In other words, turbulent resistivity
is zero in weak turbulence.
Sufficiently strong mean field will
be very long-lived

Agrees with intuition from (e.g.)
[Cattaneo and Vainshtein, 1991] –
even a weak field quenches flux of
A in 2D MHD. Also Zel’dovich:
ηT = η⟨b̃2⟩/b20
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Figure Turbulent resistivity from simulation.

ηT ≪ η = 10−4



Near-zonal flows

Finally, we make the interesting
observation that in the transitional
regime, spectra are sharply peaked
at smallest available kx > 0

Dynamics thus dominated by
“near-zonal” flows, with
characteristic wavelength equal to
the box size. Why?

Should study this phenomenon
more carefully. Might expect
something similar in drift-wave
system near α = 1. Partial
suppression of transport?

Figure Snapshot of vorticity ∇2ψ for β = 3×
103 at t = 400



Spectra for β = 3× 103
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Figure Stationary spectra, averaged over ky , for β = 3 × 103.



Conclusion

Cross helicity is non-conserved in β-plane MHD. In presence
of mean magnetic field, attains a finite stationary value

In weak turbulence theory, stationary cross-helicity spectrum
equivalent to Maxwell-Reynolds stress → determines
momentum transport

Have confirmed both of these calculations in simulation

Need strong turbulence to understand zonal flows

H = β⟨b̃2⟩ℓbℓv
b0(1+Pm) could be very large for weak b0, large Rm.

Should study this case numerically! Flux of magnetic
potential?

CH spectrum related to turbulent emf, but need 3D to study
dynamo
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WT spectral equations sketch

Sketch: assume ϕα in eigenbasis:

∂tϕ
α
k+iωα

k ϕ
α
k =

∑

βγ

1

2

∫
d2k′d2k′′ δ(k−k′−k′′)Mαβγ

k,k′,k′′ϕ
β
k′ϕ

γ
k′′ ,

(4)

assume WLOG Mαβγ
k,k′,k′′ = Mαγβ

k,k′′,k′

Use second-order time-dependent perturbation theory

ϕ̂αk (t) = ϕ̂αk (0) + δϕ̂
α,(1)
k (t) + δϕ̂

α,(2)
k (t) + . . . , (5)

where ϕ̂αk = e iω
α
k tϕαk .

Apply random phase approx., assume spatial homeogeneity,
and evaluate time integrals in limit ω−1 < t < τNL


