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Outline

• Introduction 
Transport of momentum and ion heat in stochastic magnetic field . 

• Results 
a. In strong turbulence regime, the mean flow is driven by stochastic-turbulent 
scattering. 
b. Stochastic lines and parallel ion flow gradient drives a net electron particle flux, 
in additional to the Maxwell force contribution. 

• Conclusions
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Why we study stochastic fields in fusion device?
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Pedestal Formation

Shear Flow

Quench Turbulence

Edge-Localized Mode (ELM)

• ELMs are quasi-periodic relaxation 
events occurring at edge pedestal in 
H-mode plasma.  

• ELMs can damage wall components of 
a fusion device. 

Boundary Control: Resonant Magnetic Perturbation (RMP) 

Suppress (by inducing magnetic perturbation)

∇n

x

Edge-Localized Mode (ELM)

Trade off: RMPs controls gradients and mitigates 
ELM, but raise the power threshold.  

The transport of parallel momentum and 
pressure in presence of stochastic field is 

important in studies of fusion plasma.
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How does stochastic fields influence on the response of parallel flow and 
pressure in strong/weak turbulence regime?

Coexistence of Stochastic Field and Turbulence

We analyze the dephasing effect of stochastic field in strong and 
weak electrostatic turbulence—how they together drives transport. 

Key question:

Before L-H transition, L-mode plasma with RMP: 

Magnetic islands overlapping forms 
stochastic fields

 ̃B x

 ̃B y

Strong electrostatic turbulence

Both stochastic field and 
turbulence enter the 

cross-phase  , 
and hence enter the 

dephasing mechanism. 

⟨b̃p̃⟩ , ⟨b̃ũ∥⟩
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(Chen et al., PPCF, accepted (2021) )



Experimental Result of Madison 
Symmetric Torus (MST) 

Example

MST Experimental results: demonstrated the similarity of  
the kinetic stress  to the parallel flow.
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(Ding et al., PRL 110, 065008 (2013) )

−ρ
∂
∂r

⟨b̃r p̃∥⟩

⟨u∥⟩

Macroscopic parallel flow 
dynamics.

Microscopic effect measured 
from the fluctuations of the 

pressure and the stochastic field.

Nonlinear momentum 
transport
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Model

I¥
1. Cartesian coordinate: strong mean field   is in   direction (3D). 
2. Rechester & Rosenbluth (1978): waves, instabilities, and transport are 

studied in the presence of external excited, static, stochastic fields. 
3.    (or  ) resonant at rational surface in third direction, 

and Kubo number:  ). 
4. Equations:

B0 z

k ⋅ B = 0 k∥ = 0
Kumag = lac | B̃ | /Δ⊥B0

We use mean field approximation:

p = ⟨p⟩ + p̃, Perturbations produced by turbulences

where ⟨ ⟩ =
1
L∥ ∫ dL∥

1
2πr ∫ rdθ

ensemble average over the symmetry direction 

We define rms of normalized stochastic field b̃ ≡ ⟨ B̃ 2⟩/B2
0

Mean magnetic field  B0

 ̃B x

 ̃B y

 z

 x

 y

Magnetic islands overlapping forms stochastic 

vortices

(a) Pressure equation:    

(b)Parallel flow equation:  

∂
∂t

p + (u ⋅ ∇)p = − γp(∇z ⋅ uz)

∂
∂t

uz + (u ⋅ ∇)uz = −
1
ρ

∇z p
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 ∇z = ∇(0)
z + b̃ ⋅ ∇⊥
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Physical Picture of Pressure Response
Local pressure excess ( ) caused by magnetic perturbation is balanced by: b̃r∂r⟨p⟩

Strong Turbulence:  ̃br ∇r
⟨p⟩
ρ

≃ DT ∇2
⊥ ũz

Mean Toroidal  Magnetic Fields

  : Parallel Speed  x

 z

Flow particles

 ̃bx

 ̃uz(x)

Distorted Toroidal  Magnetic Fields

  : Parallel Speed

1 Strong Turbulence:  ̃br ∇r
⟨p⟩
ρ

≃ DT ∇2
⊥ ũz

Mean Toroidal  Magnetic Fields

  : Parallel Speed  x

 z

Flow particles

 ̃bx

 ̃uz(x)

Distorted Toroidal  Magnetic Fields

  : Parallel Speed

… by parallel flow perturbation, which is damped by turbulent viscosity. … by parallel pressure gradient.
Finn et al., PoP 4, 

1152 (1992)

Weak Turbulence:  ̃br ∇r⟨p⟩ ≃ − ∇z p̃

Mean Toroidal  Magnetic Fields

Pressure Intensity

 x

 z

Distorted Toroidal  Magnetic Fields

 ̃bx

 ̃p(z)

2
Weak Turbulence:  ̃br ∇r⟨p⟩ ≃ − ∇z p̃

Mean Toroidal  Magnetic Fields

Pressure Intensity

 x

 z

Distorted Toroidal  Magnetic Fields

 ̃bx

 ̃p(z)

( ).B ⋅ ∇p = 0

(  response in the same way)u∥

Heuristics

Rate of turbulent (i.e. viscous) mixing    > other 
rate: turbulent viscosity will dissipate the parallel flow. 

DT /l2
⊥

Rate of sound propagation    > other rate: 
pressure gradient builds up parallelly. 

cs/l∥
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Only strong turbulent cases are relevant! 
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Mean field equation for parallel flow and the pressure equation: 
        where the kinetic stress   

         where the compressible heat flux 

∂
∂t

⟨uz⟩ +
∂
∂x

⟨ũxũz⟩ = −
1
ρ

∂
∂x

⟨b̃x p̃⟩ ≡ −
∂
∂x

K, K ≡
1
ρ

⟨b̃x p̃⟩

∂
∂t

⟨p⟩ +
∂
∂x

⟨ũx p̃⟩ = − ρc2
s

∂
∂x

⟨b̃xũz⟩ ≡ −
∂
∂x

H, H ≡ ρc2
s ⟨b̃xũz⟩

(or, ion heat density flux)

Perturbed equation with Riemann variables   :    f± ≡ ũz,kω ± p̃kω

ρcs

Kinetic Stress and Compressible Energy Flux

The propagator   contains the turbulent mixing ( ) and the magnetic 

shear effect ( ).

1/(k4
⊥D2

T + k2
z c2

s ) k4
⊥D2

T
k2

z c2
s
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Magnetic shear Effect

Magnetic shear 
  ̂s =

r0

q
dq
dr

Summation: 

 
∑
kykz

= ∫ dm∫ dn = ∫ dm∫ dx
|m |
q2

q′ 

= r0 ∫ dky ∫ dx
|ky |

q
̂s

 k2
z c2

s = (
kyx
Ls

)2c2
s

⟨b̃x p̃⟩ = ∫ dky
kyr2

0q′ 

q2 ∫ dx | b̃x,k |2 τc,k

1 + (x/xs)2 ( − ρc2
s

∂
∂x

⟨uz⟩)
+∫ dky

kyr2
0q′ 

q2 ∫ dx | b̃x,k |2 1
(k2

⊥DT)2 + k2
z c2

s (ikzc2
s

∂
∂x

⟨p⟩)

1

2

x

x



Scales

x
xswkxs

Acoustic 
width

Acoustic 
width

Strong turbulence regime

Weak turbulence regimeSpatial width 
of  | b̃x,k |2

We consider length scales:
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 F(x/wk)

1

Weak  
Turbulence

Strong  
Turbulence

1
1 + x2/x2s

 x

Intensity

wk−wk xs−xs xs−xs Rational 
surface

  is the acoustic width—  defines the 

the location where the parallel acoustic streaming 
rate = decorrelation rate.  
 
  is analogous to ion Landau resonant point. 

xs ≡
Ls

kycsτc,k
xs

xs
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Dimensionless parameter  

 , 

defines the competition 
between the stochastic-
field and turbulent effect.

λ ≡
xs

wk



Strong Turbulence:  ̃br ∇r
⟨p⟩
ρ

≃ DT ∇2
⊥ ũz

Mean Toroidal  Magnetic Fields

  : Parallel Speed  x

 z

Flow particles

 ̃bx

 ̃uz(x)

Distorted Toroidal  Magnetic Fields

  : Parallel Speed

Results—Strong Turbulence Regime

Pressure gradient   due 
to    is balanced by turbulent 
mixing of parallel flow  .

∂⟨p⟩/∂x
b̃

∇2
⊥ ũz
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In strong turbulence (  or  ): 

       , where   

                

                 Turbulent fluid diffusivity   

        

        

k2
⊥DT ≫ kzcs λ > 1

K ≡
1
ρ

⟨b̃x p̃⟩ ≃ − Dst
∂
∂x

⟨uz⟩

Dst = Dst(x) = ∑
kykz

| b̃x,k |2 c2
s

k2
⊥DT

DT ≡ ∑
k

| ũ⊥,k |2 τac

H ≡ ρc2
s ⟨b̃xũz⟩ ≃ − Dst

∂
∂x

⟨p⟩

  : the hybrid turbulent diffusivity—explain how the kinetic 
stress is scattered by stochastic B fields and turbulence.

Dst

The pressure gradient in presence of tilted B lines 
balances with the hybrid turbulent diffusion.

Turbulent scattering 
decorrelation rate

Stochastic B field

Relevant 
cases
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Electron Particle Flux
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Ampère’s Law 
 −∇2

⊥Az = μ0(Jz,e + Jz,i)

Consider electron density evolution:

∂⟨ne⟩
∂t

= −
∂
∂x

Γe,s

=
∂
∂x

B0

μ0 |e |
∂
∂x

⟨b̃xb̃y⟩ +
∂
∂x

n0DM
∂
∂x

⟨uz,i⟩

Electron 
particle flux

Familiar div. 
Maxwell stress

Ion flow along the 
tilted B line

Stochastic lines and parallel ion flow gradient drives a net electron 
particle flux, in additional to the Maxwell force contribution.

⟨b̃xũz⟩ = − DM
∂
∂x

⟨uz⟩

∂⟨ne⟩
∂t

= −
1

μ0 |e |
∂
∂x

⟨b̃x ∇2
⊥ Ã z,e⟩ − n0,i

∂
∂x

⟨b̃xũz,i⟩

Total current 
contribution

Ion current 
contribution

 
∂⟨ne⟩

∂t
−

∂
∂x

⟨b̃xJ̃z,e⟩
|e |

= 0

DM ≡ ∑
kykz

| b̃x,k |2 τd,kcs

Dispersal timescale of an 
acoustic wave packet along 
the stochastic magnetic field
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Stochastic B field

Turbulent scattering 
decorrelation rate

Conclusions
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Future Works
• Magnetic drift—effect of stochastic field and turbulence upon geodesic acoustic modes. 

• One should include the effect of   in the future (Cao & Diamond 2021, submitted). 

• Relevant problems: cosmic ray acceleration and propagation.
⟨b̃ ϕ̃ ⟩ ≠ 0

• We calculate the explicit form of the stochastic-field-induced transports—kinetic stress   
and the compressive energy flux  —have different mechanisms in presence of strong/
weak electrostatic turbulence. 

• In practice, only strong turbulent cases (  or  ) are relevant. We found 
mean parallel flow and mean pressure are driven via the hybrid diffusivity that involves 
effect of stochastic field and turbulent scattering: 
 

                                                       

K
H

k2
⊥DT ≫ kzcs λ > 1

Dst = Dst(x) = ∑
kykz

| b̃x,k |2 c2
s

k2
⊥DT
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