Ion Heat and Parallel Momentum Transport by Stochastic Magnetic Fields and Turbulence

Chang-Chun Chen^{1,3}, Patrick Diamond^{1,3}, and Steven Tobias²

¹University of California San Diego, USA ²University of Leeds, UK ³Kavli Institute for Theoretical Physics, Santa Barbra, CA, USA

This work is supported by the U.S. Department of Energy under award number DE-FG02-04ER54738

63rd Annual Meeting of the APS Division of Plasma Physics, Nov. 9th 2021

Outline

Introduction Transport of momentum and ion heat in stochastic magnetic field.

Results

scattering.

in additional to the Maxwell force contribution.

- a. In strong turbulence regime, the mean flow is driven by **stochastic-turbulent**
- b. Stochastic lines and parallel ion flow gradient drives a **net electron particle flux**,

Why we study stochastic fields in fusion device?

Kinetic Stress and Particle Transport by Stochastic Fields and Turbulence

Coexistence of Stochastic Field and Turbulence

Before L-H transition, L-mode plasma with RMP:

Magnetic islands overlapping forms stochastic fields

Strong electrostatic turbulence

Key question:

How does stochastic fields influence on the response of parallel flow and pressure in strong/weak turbulence regime?

We analyze the dephasing effect of stochastic field in strong and weak electrostatic turbulence—how they together drives transport.

(Chen et al., PPCF, accepted (2021))

Chang-Chun Samantha Chen

Kinetic Stress and Particle Transport by Stochastic Fields and Turbulence

Both **stochastic field** and turbulence enter the cross-phase $\langle \widetilde{b}\widetilde{p} \rangle$, $\langle \widetilde{b}\widetilde{u}_{\parallel} \rangle$,

and hence enter the dephasing mechanism.

Example

Experimental Result of Madison Symmetric Torus (MST)

(Ding et al., PRL **110**, 065008 (2013))

MST Experimental results: demonstrated the similarity of the kinetic stress to the parallel flow.

Chang-Chun Samantha Chen

Kinetic Stress and Particle Transport by Stochastic Fields and Turbulence

Model

- Cartesian coordinate: strong mean field B_0 is in z direction (3D). 1.
- Rechester & Rosenbluth (1978): waves, instabilities, and transport are studied in the presence of external excited, static, stochastic fields.
- **3.** $\underline{k} \cdot \underline{B} = 0$ (or $k_{\parallel} = 0$) resonant at rational surface in third direction, and Kubo number: $Ku_{mag} = l_{ac} | \widetilde{\mathbf{B}} | / \Delta_{\perp} B_0).$

(a) Pressure equation:
$$\frac{\partial}{\partial t}p + (\mathbf{u} \cdot \nabla)p = -\gamma p(\nabla_z)$$

(b) Parallel flow equation: $\frac{\partial}{\partial t}u_z + (\mathbf{u} \cdot \nabla)u_z = -\frac{1}{\rho}$

We use mean field approximation: $\nabla_z = \nabla_z^{(0)} + \tilde{b} \cdot \nabla_{\perp}$

$$p = \langle p \rangle + \widetilde{p}$$
, Perturbations produced by turbu
where $\langle \rangle = \frac{1}{L_{\parallel}} \int dL_{\parallel} \frac{1}{2\pi r} \int rd\theta$

ensemble average over the symmetry direction

We define rms of normalized stochastic field $\tilde{b} \equiv \sqrt{\langle \tilde{B}^2 \rangle} / B_0^2$

 $\cdot \mathbf{u}_{z}$)

 $-\nabla_z p$

lences

Magnetic islands overlapping forms stochastic

vortices

Physical Picture of Pressure Response Local **pressure excess** $(b_r \partial_r \langle p \rangle)$ caused by magnetic perturbation is balanced by: $(u_{\parallel} \text{ response in the same way})$

Heuristics

Only strong turbulent cases are relevant!

Chang-Chun Samantha Chen

Kinetic Stress and Compressible Energy Flux

Mean field equation for parallel flow and the pressure equation:

 $\frac{\partial}{\partial t} \langle u_z \rangle + \frac{\partial}{\partial x} \langle \widetilde{u}_x \widetilde{u}_z \rangle = -\frac{1}{\rho} \frac{\partial}{\partial x} \langle \widetilde{b}_x \widetilde{p} \rangle \equiv -\frac{\partial}{\partial x} K, \text{ where the kinetic stress } K \equiv \frac{1}{\rho} \langle \widetilde{b}_x \widetilde{p} \rangle$

 $\frac{\partial}{\partial t}\langle p \rangle + \frac{\partial}{\partial x}\langle \widetilde{u}_{x}\widetilde{p} \rangle = -\rho c_{s}^{2} \frac{\partial}{\partial x}\langle \widetilde{b}_{x}\widetilde{u}_{z} \rangle \equiv -\frac{\partial}{\partial x}H, \text{ where the$ **compressible heat flux** $<math>H \equiv \rho c_{s}^{2}\langle \widetilde{b}_{x}\widetilde{u}_{z} \rangle$ (or, ion heat density flux) Perturbed equation with **Riemann variables** $f_{\pm} \equiv \tilde{u}_{z,k\omega} \pm \frac{\tilde{p}_{k\omega}}{\tilde{q}_{z,k\omega}}$: ρC_{s}

Magnetic shear Effect

$$k_{z}^{2}c_{s}^{2} = (\frac{k_{y}x}{L_{s}})^{2}c_{s}^{2}$$

$$\sum_{k_{y}k_{z}} = \int dm \int dn = \int dm \int dx \frac{|m|}{q^{2}}q' \langle \widetilde{b}_{x}\widetilde{p} \rangle = \int dk_{y} \frac{k_{y}r_{0}^{2}q'}{q^{2}} \int dx |\widetilde{b}_{x,k}|^{2} \frac{\tau_{c,k}}{1 + (x/x_{s})^{2}} \left(-\rho c_{s}^{2} \frac{\partial}{\partial x} \langle u_{z} \rangle\right)$$

$$= r_{0} \int dk_{y} \int dx \frac{|k_{y}|}{q} \hat{s}$$

$$= r_{0} \int dk_{y} \int dx \frac{|k_{y}|}{q} \hat{s}$$

Chang-Chun Samantha Chen

The propagator $1/(k_{\perp}^4 D_T^2 + k_z^2 c_s^2)$ contains the turbulent mixing $(k_{\perp}^4 D_T^2)$ and the magnetic shear effect ($k_z^2 c_s^2$).

We consider length scales:

Chang-Chun Samantha Chen

Scales

Weak turbulence regime

Strong turbulence regime

Dimensionless parameter $\lambda \equiv \frac{x_s}{-}$ \mathcal{W}_k defines the competition between the stochasticfield and turbulent effect.

 $x_s \equiv \frac{L_s}{k_y c_s \tau_{c,k}}$ is the **acoustic width**— x_s defines the the location where the parallel acoustic streaming rate = decorrelation rate.

 x_{s} is analogous to ion Landau resonant point.

 ${\mathcal X}$

Results – Strong Turbulence Regime

In strong turbulence $(k_{\perp}^2 D_T \gg k_z c_s \text{ or } \lambda > 1)$: $K \equiv \frac{1}{\rho} \langle \widetilde{b}_x \widetilde{p} \rangle \simeq -D_{st} \frac{\partial}{\partial x} \langle u_z \rangle \text{ , where}$ $D_{st} = D_{st}(x) = \sum_{k_y k_z} \left[\widetilde{b}_{x,k} \right]^2 \xrightarrow{c_s} \text{ Stochastic B field} \text{ Turbulent scattering decorrelation rate}$ Turbulent fluid diffusivity $D_T \equiv \sum_k |\widetilde{u}_{\perp,k}|^2 \tau_{ac}$

 D_{st} : the **hybrid turbulent diffusivity**—explain how the kinetic stress is scattered by stochastic B fields and turbulence.

$$H \equiv \rho c_s^2 \langle \widetilde{b}_x \widetilde{u}_z \rangle \simeq -D_{st} \frac{\partial}{\partial x} \langle p \rangle$$

The pressure gradient in presence of tilted B lines balances with the *hybrid* turbulent diffusion.

Chang-Chun Samantha Chen

Kinetic Stress and Particle Transport by Stochastic Fields and Turbulence

Electron Particle Flux

Consider electron density evolution:

$$\frac{\partial \langle n_e \rangle}{\partial t} - \frac{\partial}{\partial x} \frac{\langle \tilde{b}_x \tilde{J}_{z,e} \rangle}{|e|} = 0 \quad \blacksquare \quad = 0 \quad \Box \quad = 0$$

Stochastic lines and parallel ion flow gradient drives a net electron particle flux, in additional to the Maxwell force contribution.

Chang-Chun Samantha Chen

Kinetic Stress and Particle Transport by Stochastic Fields and Turbulence

APS-DPP Nov. 9th 2021

11

Conclusions

- weak electrostatic turbulence.
- effect of stochastic field and turbulent scattering: (Chen et al., PPCF, accepted (2021))

Future Works

- Relevant problems: cosmic ray acceleration and propagation.

Chang-Chun Samantha Chen

• We calculate the **explicit form** of the stochastic-field-induced transports—kinetic stress K and the compressive energy flux H—have different mechanisms in presence of strong/

• In practice, only strong turbulent cases $(k_1^2 D_T \gg k_z c_s \text{ or } \lambda > 1)$ are relevant. We found mean parallel flow and mean pressure are driven via the **hybrid diffusivity** that involves

Magnetic drift—effect of stochastic field and turbulence upon geodesic acoustic modes.

One should include the effect of $\langle b \phi \rangle \neq 0$ in the future (Cao & Diamond 2021, submitted).

