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Introduction

e Drift wave - zonal flow turbulence is self-regulating and frequently thought of as a predator-prey system [6]
e Zonal shear feedback on the prey (drift wave) is central to transport regulation

e Predator-prey model between zonal flows and drift waves: [3, 4, 10]:

ON =yN — aEyN — AwN?

O Ey = aNEy —vpEy — yu(N, Ev)Ey * By
e With v,; = 0, two fixed points appear:
No Flow: Ey =0 and N = & Flow: Ey = M_a# and N = £
e v — 0 is akin to a Dimits Shift Regime (Ezonairiow >> EDriftwave)
e Identifies the problem of collisionless saturation — what else limits E g 7

e Tertiary instabilities like K-H — zonal flow instability?!
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Critical Questions

e In what way does the stability criterion dictate zonal flow stability and what is
the impact of zonal flow instability on DW-ZF turbulence?

e Does gradient of the mean potential vorticity (V(PV) = V((n) — (V3 ¢)))
indicate zonal flow instability?

e \How does the profile of the potential vorticity correlate with saturated turbulence levels?

e \How does zonal flow marginality correlate with turbulence levels and what are the implications?

e Does R = W show a correlation with the profile of mean potential vorticity
T ave

(PV) and zonal flow stability?
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e n =n + (n) with n = density fluctuation and (n) = zonally averaged density

e (n) = n.+ ny with n, = fluctuation in zonally averaged density and ng =
background density = k x x
*0=9¢+(0)

o V(PV) = 0:({n) — V¥¢))
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Hasegawa-Wakatani Model

V36 +{6,V30} = a6 —n) — V36 — 1V 6 — (V3 0) — 0:((V3 60,6)) = —(V2 ) [LI]
an + {6.n} = alé — n) — k0,6 — DVn — () — 0,((nd,0)) = ~D(V'n)

Qeff =< g - flow-damping parameter & - linear density gradient drive

e R = %ﬂ calculated in a 10 x 5 region selected from the simulation space
e Zonal Flow Energy = Ezp = [ [ (V1¢)|*dzdy for aepr > 1

e Drift Wave Energy = Epw = [ [ |A|* + V0|2 dedy ~ [ | 02 + |V Lo|2dxdy for app > 1
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Zonal Instability Criterion

Inviscid, Incompressible 2D Fluid

Hasegawa-Mima (aerr > 1)

Rayleigh Criterion

Necessary condition that
states V(V?¢) = 0 for shear flow

instability to occur

Rayleigh-Kuo Criterion

Necessary condition that
states V((n) — V?(¢)) = 0 for shear

flow instability to occur

Both are generalized inflection point theorems
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Procedure For R vs. V<PV>

e Main Question: Does V({PV)) have any observable effect on R = %L’
e Produced BOUT++ simulations with varied density gradient drive [£] (1 to 1.75) and flow damping [g] (0.01 to 0.2)
e R calculated through integrating over a 10 x 5 region shown in Figure 1
— Other region sizes (5x5, 7x7, 9x9) gave similar results
e Points are arbitrary selected to ensure impartial analysis of simulation space
— Points near simulation border removed, as border cells are constrained by boundary conditions

e Gauged effects of altering x and p on V{PV)

105 reion | VEV) = V() — (Vi)
x5 region T [ [ KV .1¢)|*dzdy
Epw = [ [ 6P+ |V _6*dzdy

. > R vs. V((PV))

Figure 1: Analysis of BOUT++ Simulation
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Results | - “The Big Picture Plot I”

: . E
e Variance in R = E}% and

V((PV)) larger for lower [

— Less restriction on flow con-
figuration

e Maximum value for R decreases
as [+ increases as expected

e For areas with R < 1, central-
ization occurs around V(PV) =
1.5

3.0 o

Figure 2: 3D Plot of R vs. V((PV)) vs. u
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Results Il - Comparison Between Larger and Lower Damping

R vs. V({PV)) for u = 0.01 R vs. V((PV)) foru =0.2
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Figure 3: Distribution of R vs. V(PV) for = 0.01 Figure 4: Distribution of R vs. V(PV) for p = 0.2

e More zonal flow energy evident in lower damping conditions
e Dimits-like region visible in lower damping circled in black, disappears with higher damping
e For areas with R < 1, both damping scenarios show centralization around V(PV') = 1.5

e Most locations with low R values have V(PV') # 0, suggests RK stability isn’t major player
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Results Il - V<PV> Profile Dependence on Frictional Damping
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Figure 6: V(PV') profiles with increasing p
e Graphs shown here have arp =2, kK = 1.5

e Variance in V(PV') decreases as p increases

e Most common value of V(PV') stays around V(PV') =
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Results IV - “The Big Picture Plot II”
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Figure 7: 3D Plot of R vs. V(PV) vs. Kk range of V<PV>
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Results V - Comparison Between Higher and Lower Density Gradient Drive
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Figure 8: Distribution of R vs. V(PV) for k = 1.0  Figure 9: Distribution of R vs. V(PV) for k = 1.75

e Dimits-like regime are apparent, with two tails appearing with R > 20

e Increasing k doesn’t diminish the size or volume of these tails
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Results VI - V<PV> Profile Dependence on Density Gradient Drive

g’ime Averaged V <PV> vs Radius for k = 1.0 'Eime Averaged V <PV> vs Radius for k = 1.25 ;’ime Averaged V <PV> vs Radius for k = 1.5
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Figure 10: V(PV') profiles with increasing x
e Graphs shown here have a.rr = 2, p = 0.01

e Most common value of V(PV') increases as & increases

e Larger k still have several areas with V(PV) =0
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Key Results

o R (£4L) isn’t correlated with the RK criterion (V(PV) = 0)
Epw

e Persistent Dimits-like regimes present in low friction damping scenarios and in-
dependent of kappa

o With a, s constant, increasing density gradient drive (x) shifts R vs. V(PV') to
the right

e Increasing frictional damping (u) significantly reduces Zonal Flow Energy
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Next Steps

e Analyze staircase and compare to zonal shear
— See if higher local values match with higher shear flow

e Analyze correlation between V(PV') and its components

— V(PV) vs. V(n) and V(PV) vs. V((V?¢))
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