How the Spatial Structure of Turbulent Mixing Determines Staircase Structure
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Motivations & Questions
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Fate of the Staircase

e I x B staircase” a current subject in Magnetic Fusion.
o Global pattern of shear micro-barriers and avalanching zones creates a
pressure profile resembling a staircase.
o Key feature: The containment of avalanche activity by the series of
micro-barriers, which 1s essential for confinement!

e Suggested ideas: E x B shear predator-prey.
e But... there 1s an even simpler physical mechanism to produce layering!

o Staircase formation, dynamics captured 1n ultra-simple mixing model with two

disparate time scales.

e (Questions
o How does a fixed global shear and spatial pattern of turbulent mixing aftect the
staircase structure?
o How resilient 1s the staircase pattern?
o How does the staircase degrade?

Simple Layering
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e Staircase profile can be produced by solving the passive scalar
transport equation.

0.) _ .' ;

(.” -Fu-Vn = DV?n, (1)
ot
u=(ad/m)z x Vb, (2)
e Consider cellular lattice of marginally overlapping cells.
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e Global transport hybrid:
o Fast rotation in cell & slow diffusion in boundary layer.
e Irreversibility localized to inter-cell boundary.
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Global Spatial Shear
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As the shear strength increases, the staircase
profile breaks down. Shear enhances mixing
(1.e., Increases irreversible process).

Important:
® Pe (measure of shearing) introduces a shear

dispersion time scale 7 = [2d/a m.

e Shear dispersion rate gives etfective mixing rate

faster than diffusion!

e Scalar concentration degrades as shear 1s increased.

Vortex Crystal

Dynamics

e Transport? D* ~ D Pe” (Not a simple addition of process!)
o Two time rates: T, and 7, - = |
o Pe=1z,/7, > I. | ———

e Profile? A

o Consider concentration of injected &
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dye — profile. '
O Staircase arises 1n stationary array

of passive eddys. T s
Log(Pe)

Back-of-Envelope Calculation

e Consider the following approximation,
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® f ..1stheratio of the boundary layer width and cell size

and At 1s the circulation time.

5 — BL width 0 ~ DAt ~ DI, /v, :> D* ~ DPL/2

lp = cell size

e Next, the staircase structure 1s studied at difterent stages of a “melting” vortex crystal.
e The “vortex crystal” 1s simply the array of cells and “melting” 1s related to turbulence mixing
field structure.
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inside the 2D Navier-Stokes equation.

F, = B n’[cos(n n x)+ cos(n n y)] /O (5)
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e The stability of the crystal 1s broken by varying the  and # of a spatially periodic force term

e The resilience of the staircase 1s studied by increasing disorder 1in the vortex crystal through
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e Streamfunction v 1s output and inserted into passive scalar transport equation.
e Scalar concentration 7 1s introduced on the left boundary of the crystal.
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e As the degree of melting 1s increased, the staircase step size increases.
e The degree of melting 1s representative of the extent of deviation from
marginality.
Conclusion
e Strong global spatial shear breaks down staircase profile, thus, shear enhances
mixing.
e Deviation from marginality affects staircase step size. Staircase steps merge.
O Staircase 1s robust and can survive 1n disordered flow.
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