Power Scaling of The L mode Density Limit: Physics and Predictions

Rameswar Singh and P H Diamond

CASS, University of California San Diego

US-EU TTF Meeting, April 5-8, 2022, Santa Rosa, CA

Acknowledgement: This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.

What's the issue?

- Discharge terminates when line integrated density exceeds a critical value called Greenwald density $\overline{n}_g = I_p / \pi a^2$.
- Greenwald density limit scaling is Power (Q) Independent !(?) . [Greenwald PPCF 2002]
- <u>Contradictions</u>: *Q* dependence observed in many experiments !

Power scaling observed after Greenwald 2002

• Density limit in JET $n_{crit} \sim Q^{0.4}$

Huber et al JNM 2013

- •New analysis based on radiative power balance $n_{crit} \sim Q^{4/9}$
- •Notice significantly less scattering in data points on inclusion of power dependence!

Preview of results

- Density limit phenomenology is linked with *shear layer collapse*. Radiative effects are *secondary* to transport bifurcation.
- We show that power scaling of L mode density emerges from zonal shear layer collapse dynamics. Shear layer strength increases with power $(Q) \rightarrow$ improved particle confinement $\rightarrow n_{crit} \uparrow$
- Predictions beyond scalings:
 - Zonal shear layer collapse is hysteretic. Hysteresis is due to *dynamical delay in bifurcation* due to critical slowing down. *Fundamentally different* from L-H hysteresis associated with bistable states.
- In the primacy hierarchy, scalings are at the 'surface'. *Fluctuations and dynamics are more fundamental*. Hysteresis is a manifestation of the underlying transport bifurcation process. Experimental observation of shear layer and fluctuation hysteresis would *validate* the linkage of density limit to transport bifurcation.

Conventional Wisdom associates Density Limit to radiative events

Density limit is often associated with macroscopic events

- Global thermal collapse, Radiative condensation / MARFEs. Poloidal detachment, Divertor detachment, MHD activity -radiation driven islands.
- High density→Edge cooling→MARFEs→Current profile shrinkage → Tearing→Islands ...→Disruption!

What's the role of microscopic transport physics?

Recent experiments show density limit is related to shear layer decay

meeting

Shear layer collapse in hydro- regime and origin of current scaling

• Plasma response for Hasegawa - Wakatani :- HDM Theory[Hajjar, Diamond, Malkov 2018]

- $\Gamma_n, \chi \uparrow$ and $\Pi^{res}, \nabla^3_{\perp} \overline{\phi} \downarrow$ as the electron response passes from adiabatic to hydrodynamic regime.
- Weak zonal flow production for $\alpha \ll 1 \rightarrow$ weak regulation of turbulence and enhancement of particle transport and turbulence.
- Origin of current scaling: zonal flow drive is "screened" by neoclassical dielectric [Rosenbluth Hinton 1998].;

• Poloidal gyro-radius
$$\rho_{\theta}$$
 emerges as screening length ρ_{sc} !
Effective ZF inertia \downarrow as $I_p \uparrow \rightarrow \underline{ZF}$ strength increases with $\underline{I_p}$, for fixed drive.

Favorable I_p scaling persist in plateau regime (edge of interest). NO I_p scaling in P-S regime. [Singh & Diamond NF 2021]

$$\frac{\partial}{\partial t} \left\langle \left| \phi_k \right|^2 \right\rangle = \frac{2\tau_c \left\langle \left| S_k \right|^2 \right\rangle}{\left| \varepsilon(q) \right|^2}; \qquad \begin{array}{c} \text{Emission from polarization} \\ \text{interaction} \end{array}$$

Neoclassical response

$$\varepsilon = \varepsilon_{cl} + \varepsilon_{neo} = \frac{\omega_{pi}^2}{\omega_{ci}^2} \left\{ 1 + \frac{q^2}{\epsilon^2} \right\} k_r^2 \rho_i^2$$

Zonal wave #

Shear layer collapse in adiabatic regime

Neoclassical screening + drift wave - zonal flow dynamics <u>a novel predator - prey model</u>.

$$\partial_t E_t = \gamma E_t - \sigma E_v E_t - \eta E_t^2; \ \partial_t E_v = \sigma E_t E_v - \gamma_d E_v + \beta E_t^2$$

Notice,
$$\sigma \sim \varepsilon^{-1} \sim B_{\theta}^2 \sim I_p^2$$
 and $\beta \sim \varepsilon^{-2} \sim B_{\theta}^4 \sim I_p^4$

 \implies I_p jacks up modulational growth and zonal noise \rightarrow stronger feedback on turbulence.

- Noise eliminates threshold for zonal flow production.
- Criterion for zonal flow collapse with noise tracks that for collapse of zonal flow without noise i.e.,

$$\gamma < \eta \frac{\gamma_d}{\sigma} \implies \left[\frac{\rho_s}{\sqrt{\rho_{sc}L_n}} \right]^{1/4} \left[\frac{\eta}{\Omega_i} \frac{\gamma_d}{2k_x^2 \rho_s^2 \Theta \Omega_i^2} \frac{\hat{\alpha}}{q_\perp^2 \rho_s^2} \frac{\left(1 + q_\perp^2 \rho_s^2\right)^3}{q_y^2 \rho_s^2} \right]^{1/4}$$
Dimensionless
parameter

Extended model for power scaling of density limit from shear layer collapse scenario (I)

- A variant of KD03 model used for L-H studies, Power (Q) limited to the L mode
- Coefficients derived for ITG mode, Includes neoclassical zonal flow screening response
- In Gyro-Bohm normalization

Normalized Turbulence energy \mathscr{E} :

 $\frac{\partial \mathscr{E}}{\partial t} = \frac{a_1 \gamma(\mathcal{N}, \mathcal{T}) \mathscr{E}}{\left(1 + a_3 \mathscr{V}^2\right)} - \frac{a_2 \mathscr{E}^2}{\uparrow} - \frac{a_4 \mathscr{E}_z \mathscr{E}}{\left(1 + b_2 \mathscr{V}^2\right)}$ Nonlinear Damping

Normalized Temperature gradient \mathcal{T} :

Normalized Zonal flow energy \mathscr{E}_z :

Normalized Density \hat{n} :

Notice, Modulational growth $b_1 \sim \varepsilon^{-1} \sim B_{\theta}^2 \sim I_p^2$ and zonal noise $b_4 \sim \varepsilon^{-2} \sim B_{\theta}^4 \sim I_p^4$

Extended model for power scaling of density limit from shear layer collapse scenario (II)

- Power (Q) ramp up followed by particle source (S) ramp-up
- Two states: L & DL
- Zonal flows (ZF) excited when $Q > Q_{th}$ (Power threshold)
- Q_{th} set by turbulence level and zonal flow damping
- Oscillations- Predator-Prey competition-self-regulation
- ZF energy set by power and density
- Source ramp up \rightarrow density $\uparrow \rightarrow ZF$ damping $\uparrow \rightarrow ZF$ energy \downarrow
- At a critical density(n_{crit}) ZF energy
 →0 and the system bifurcates to DL state

Time evolution of turbulence energy, zonal flow energy, density and temperature gradient in a successive power Q and particle source S ramp.

$$\begin{split} & \underbrace{\mathbf{L} \operatorname{state} \left(\mathbf{W} / \mathbf{ZF}\right)}{\mathcal{E} = b_3 \hat{n} \left(1 + b_2 \mathcal{V}^2\right) / b_1} \\ & \mathcal{E}_z = \frac{a_2}{a_4} \left(1 + b_2 \mathcal{V}^2\right) \left[\frac{a_1}{a_2} \frac{\gamma}{\left(1 + b_2 \mathcal{V}^2\right)} - \frac{b_3}{b_1} \hat{n} \left(1 + b_2 \mathcal{V}^2\right)\right]. \end{split}$$

DL state (W/O ZF)

$$\mathscr{E} = \frac{a_1}{a_2} \frac{\gamma}{(1 + b_2 \mathcal{V}^2)} \qquad \qquad \mathscr{E}_z = 0$$

$L \rightarrow DL$ transition studies: Power scan

- Power (*Q*) ramp up followed by particle source (*S*) ramp-up
- Zonal flow increases with power (Q)
- Oscillations→Predator prey
- Higher power $(Q) \rightarrow \text{longer ZF}$ damping time $\rightarrow \text{higher } n_{crit}$
- Higher power $(Q) \rightarrow$ higher Turb.

$$\operatorname{Energy}\left(\frac{\partial \mathscr{C}}{\partial Q}\right)_{L} < \left(\frac{\partial \mathscr{C}}{\partial Q}\right)_{DL}$$

Power Scaling

- <u>Favorable</u> power scaling of density limit $n_{crit} \sim Q^{1/3}$
- <u>Physics</u>: $\gamma(\nabla T)$ vs ZF damping + saturation by ZF
 - Shear layer strength increases with power $(Q) \rightarrow$ improved particle confinement $\rightarrow n_{crit}$ \uparrow
- Close to Zanca's radiative collapse density $n_{crit} \sim Q^{4/9}$ from radiative power balance
- n_{crit} from initial value > n_{crit} from static bifurcation \rightarrow bifurcation delay due to critical slowing down

Power scaling of critical density

$L \rightarrow DL$ transition studies: Stochastic field scan

- RMP→ breaking of nested magnetic surfaces→ magnetic islands at rational surfaces→overlapping of islands→Stochastic *B*
- Model extensions: [Chen et al PoP 2021]
 - Growth rate reduction $\gamma \rightarrow \gamma/(1 + \alpha)$,
 - Reynolds stress dephasing $\langle v_r v_\theta \rangle \rightarrow \langle v_r v_\theta \rangle / (1 + \alpha),$
 - Particle and heat flux dephasing $\langle v_r n \rangle \rightarrow \langle v_r n \rangle / (1 + \sqrt{\beta}\alpha)$, $\langle v_r T \rangle \rightarrow \langle v_r T \rangle / (1 + \sqrt{\beta}\alpha)$ • $\alpha = q \left(\frac{\delta B_r}{B}\right)^2 / \sqrt{\beta} \rho_{\star}^2 \epsilon$ is normalized

stochastic B intensity

- Power threshold Q_{th} for zonal flow excitation \uparrow when $\alpha \uparrow$
- ZF energy \downarrow and Turb. Energy \uparrow in steady Q and S region
- ZF damping time \downarrow when $\alpha \uparrow$ $\implies n_{crit}$ decreases with stochastic B
- After shear layer collapse, Turb. energy decreases with stochastic B

Stochastic field scaling

- <u>Unfavorable</u> stochastic field scaling $n_{crit} \sim (1 + \alpha)^{-5/3}$
- <u>Physics</u>: Stochastic fields erode the shear u^{tro} layer by dephasing the Reynolds stress
- Ambient stochastic B accelerate the shear layer decay on increasing n.

Stochastic field α scaling of critical density

Hysteresis with cyclic power ramp

- All fields exhibit hysteresis in cyclic *Q* ramp!
- Physics prediction - beyond scalings !
- <u>Physics</u>:
 - Two states L(w/ ZF), DL(w/o ZF)
 - But only one stable state at any moment —then why hysteresis?
 - Delay in (transcritical) bifurcation due to critical slowing down at the static bifurcation point Q_{th} .
 - Linearized dynamics near bifurcation point reveals zonal flows begin to grow when $\int_{t_0}^{t} dt' \left(b_1(t') \frac{a_1 \gamma(t')}{a_2} b_3 \hat{n}(t') \right) > 0$
 - Dynamical bifurcation at time t^* when $\int_{t_0}^{t^*} dt' \left(b_1(t') \frac{a_1 \gamma(t')}{a_2} - b_3 \hat{n}(t') \right) = 0$
 - Static bifurcation at time \bar{t} when $\left(b_1(\bar{t})\frac{a_1\gamma(\bar{t})}{a_2} b_3\hat{n}(\bar{t})\right) = 0$

Hysteresis plot in t=[200 400]

Effect of ramp speed on bifurcation delay

- $Delay = Q_j Q_{th}$
- For low \dot{Q} , Delay is independent of \dot{Q}
- For high \dot{Q} , Delay follows a power law $\dot{Q}^{0.69}$

• Passage through static bifurcation point (Q_{th}) exhibits a delay that depends on the ramp speed \dot{Q} !

Conclusions

- Radiative cooling is secondary (i.e., a consequence of) to the transport bifurcation.
- Density limit is a back transition $L \rightarrow DL$ phenomena
- $L \rightarrow DL$ associated with shear layer collapse
- Scalings emerge from shear layer dynamics •
 - I_p scaling from neoclassical zonal flow screening
 - Favorable Q scaling due to strengthening of shear layer on increasing Q, thus preventing ulletshear layer collapse
 - Unfavorable stochastic B scaling due to erosion of shear layer by Reynolds stress dephasing
- $L \rightarrow DL$ hysteresis due to dynamical delay in bifurcation is a testable prediction of the model beyond scalings ! Hysteresis is a manifestation of the underlying transport bifurcation process associated with shear layer collapse.

Future directions

- H-mode density limit: H-L back transition by mean ExB shear collapse? Mechanism of mean shear collapse at high density? Role of SOL or pedestal ? Role of spreading?
- How flux surface shaping effects the shear layer collapse criterion? Can negative triangularity sustain $n > n_g$? Triangularity scaling of n_{crit} ?
 - Analytic calculations and GENE simulations show that residual zonal flow ϕ_{res} increases with δ^+ but $\phi_{res}(\delta^-) < \phi_{res}(\delta^+)$. Does it mean n_{crit} increases with δ^+ but $n_{crit}(\delta^-) < n_{crit}(\delta^+)$?
 - More experiments on density limit studies in δ^+ and δ^- ?