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Motivation: the Application of RMP
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2. Schmitz, L., et al. Nuclear Fusion 59, no. 12 (2019): 126010.

Suppression of ELM by using RMP [1]
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Motivation: the Application of RMP

• A new trend: A trade-off between good confinement and good power handling.

• A basic question: How does a stochastic magnetic field modify the instability process?

• Origin: Interest in stochastic field transport in the late 1970’s [1,2]

• Early research: Tearing mode in braided magnetic field [3]

• Point: Effect of stochastic magnetic field enters as anomalous dissipation by hyper-

resistivity 𝜇. Ohm’s law of resistive MHD is revised as

𝐸∥ = 𝜂𝐽∥ − 𝜇∇⊥
2 𝐽∥

• Unsolved questions:

1. Quasi-neutrality is not maintained at all orders

2. Lack of, or too simple, micro-macro feedback

Rechester and Rosenbluth’s test particle model [1]

1. A.B. Rechester, and M.N. Rosenbluth, 1977

2. B.B. Kadomtsev, O.P. Pogutse, 1979. 

3. P.K. Kaw, E.J. Valeo, and P.H. Rutherford, 1979. 
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Questions Arising from Simulations

• Simulations of resistive ballooning modes 

in a stochastic magnetic field. [1]  

• Increased small-scale structures and 

spatial roughness of the pressure 

fluctuation profile in stochastic region. 

• Stronger suppression of Large-scale 

fluctuations than small-scale fluctuations.

1. Beyer, P., Xavier Garbet, and Philippe Ghendrih. Physics of Plasmas 5, no. 12 (1998): 4271-4279.
Why?



Questions Arising from Experiments

• Experimental study on the fluctuations with 

the stochastic magnetic field. [1]

• An increase in the bicoherence of the 

temperature fluctuation → increased 

nonlinear coupling.

• A reduction in the Jensen-Shannon 

complexity → turbulence distribution 

becomes more random. 
1. Choi, Minjun J., et al. arXiv preprint arXiv:2102.10733 (2021).

Rescaled complexity 𝐶𝐽𝑆 ∈ [−1,1] tells the 

statistics and predictability of a turbulence. E.g., 

for white noise, 𝐶𝐽𝑆 = 0, for logistic map, 𝐶𝐽𝑆 = 1.

Why?



𝑱∥ = −
𝟏

𝜂∥
∇∥

0
ത𝜑 𝒃𝟎

Possible Answer: A Microturbulence

• Constraint: Quasi-neutrality (∇ ⋅ 𝑱 = 0) at all scales!

• Effect: Introduction of ෩𝒃 leads to parallel current density fluctuations.

• Insights from the classic: Kadomtsev and Pogutse’78 [1]:

1. B. B. Kadomtsev, and O. P. Pogutse, 1979. 

Intrinsic Multi-Scale Microturbulence

A current density fluctuation ෨𝑱⊥
must be driven to balance ෨𝑱∥, so 

that the total current density 

fluctuation ෨𝑱𝒕𝒐𝒕 is divergence free.

෪∇∥𝑱∥ = −
1

𝜂∥
∇∥

0 ෩𝒃 ⋅ ∇⊥ ത𝜑 + ෩𝒃 ⋅ ∇⊥ ∇∥
0
ത𝜑 ≠ 0

electrostatic potential

𝑱∥ = −
𝟏

𝜂∥
∇∥

0
+ ෩𝒃 ⋅ ∇⊥ ത𝜑(𝒃𝟎 + ෩𝒃)

increased small-

scale structure & 

nonlinear coupling?



Model Development
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Model Development

• Our model is supposed to

➢ maintain ∇ ⋅ 𝐽 = 0 at all scales ➢ connect micro and macro scales

➢ be tractable         resistive interchange mode

• Formulation:

൞

− 𝜌0/𝐵0
2 𝜕𝑡∇⊥

2 ത𝜑 − 𝜅/𝐵0 𝜕𝑦 ҧ𝑝1 + 𝒃𝟎 ⋅ ∇𝐽∥ = 0

ത𝐸∥ = 𝜂∥ ҧ𝐽∥ = −𝒃𝟎 ⋅ ∇ ത𝜑

𝜕𝑡 ҧ𝑝1 − ∇ ത𝜑 × ො𝒛 /𝐵0 ⋅ ∇𝑝0 = 0

• Externally-prescribed (static) magnetic perturbations:

෩𝒃 = ෩𝑩⊥/𝐵0 = ෍

𝑚1𝑛1

෩𝒃𝒌𝟏 𝑥′ 𝑒𝑖(𝑚1𝜃−𝑛1𝜙) . (𝑥′ = 𝑟 − 𝑟𝑚1𝑛1)

• Parallel gradient operator: ∇∥= ෩𝒃𝟎 ⋅ ∇ ∇∥= ∇∥
0
+ ෩𝒃⊥ ⋅ ∇⊥.

∇ ⋅ 𝑱 = 0

➢ be generic



Model Development

• New character: Microturbulence

• Modified model:

𝜕

𝜕𝑡
+ ෥𝒗 ⋅ ∇ ∇⊥

2 ത𝜑 + ෤𝜑 =
𝜂𝑆

𝜏𝐴
∇∥𝐽∥ −

𝜅𝐵0
𝜌0

𝜕 ҧ𝑝1 + ෤𝑝1
𝜕𝑦

,

𝜕

𝜕𝑡
+ ෥𝒗 ⋅ ∇ ҧ𝑝1 + ෤𝑝1 −

∇ ത𝜑 + ෤𝜑 × ො𝒛

𝐵0
⋅ ∇𝑝0 = 0,

𝜂𝐽∥ = −∇∥ ത𝜑 + ෤𝜑 .

• Observation: A multi-scale problem. 

• Technique: Method of averaging

ҧ𝐴 = 𝐴 = ҧ𝐴 + ሚ𝐴 =
1

2𝜋

2

ඵ𝑑𝜃𝑑𝜙𝑒−𝑖 𝑚𝜃−𝑛𝜙 𝐴 .



Model Development

• Separation of different scales:

𝜕

𝜕𝑡
+ ෥𝒗 ⋅ ∇ ∇⊥

2 ᪄𝜑 = −
𝑆

𝜏𝐴
[∇∥

(0)2
᪄𝜑 + ∇⊥ ⋅ ⟨ ƿ𝒃 ƿ𝒃⟩ ⋅ ∇⊥ ᪄𝜑

(𝑎)

+ ∇∥
(0) ƿ𝑏 ⋅ ∇⊥ ƿ𝜑

(𝑏)

+ ƿ𝑏 ⋅ ∇⊥ ∇
∥′
(0)

ƿ𝜑

(𝑐)

] −
𝑔𝐵0

𝜌0

𝜕 ᪄𝑝1

𝜕𝑦
,

𝜕

𝜕𝑡
+ ෥𝒗 ⋅ ∇ ∇⊥

2 ƿ𝜑 = −
𝑆

𝜏𝐴
[∇∥

(0)2
ƿ𝜑 + ƿ𝑏 ⋅ ∇⊥ ∇∥

(0)
᪄𝜑

(𝛼)

+ ∇∥
(0) ƿ𝑏 ⋅ ∇⊥ ᪄𝜑

(𝛽)

] −
𝑔𝐵0

𝜌0

𝜕 ƿ𝑝1

𝜕𝑦
,

𝜕

𝜕𝑡
+ ෥𝒗 ⋅ ∇ ᪄𝑝1 −

∇ ᪄𝜑×ƶ𝐳

𝐵0
⋅ ∇𝑝0 = 0,

𝜕

𝜕𝑡
+ ෥𝒗 ⋅ ∇ ƿ𝑝1 −

∇ ƿ𝜑×𝐳

𝐵0
⋅ ∇𝑝0 = 0,

−𝜈𝑇∇⊥
2 or 𝜒𝑇∇⊥

2

• Some assumptions/observations:

1. ത𝜑: low 𝒌, slow interchange approximation

2. ෤𝜑: high 𝒌𝟐, fast interchange approximation

3. The beat of ෩𝒃 and ത𝜑 drives ෤𝜑

4. ෤𝜑 reacts on the evolution of ത𝜑

④

①

②

③

Relate ෤𝜑 to ෩𝒃

replaced by
Very Important!

𝑩𝟎 = 𝐵𝜙෡𝝓+ 𝐵𝜃 𝑟 ෡𝜽, 𝜏𝐴 = 𝑎 4𝜋𝜌0
1/2/𝐵0, 𝑆 = 𝜏𝑅/𝜏𝐴, 𝜏𝑅 = 4𝜋𝑎2/𝜂

𝐿𝑝 = 1/𝑝0 𝑑𝑝0/𝑑𝑟
−1, 𝐿𝑠 = 𝑠/𝑅𝑞, 𝑠 = 𝑟/𝑞 𝑑𝑞/𝑑𝑟 , 𝑘𝜃 = 𝑚/𝑟𝑚𝑛

A feedback loop

leads to



𝜕

𝜕𝑡
− 𝜈𝑇 ∇⊥

2 ∇⊥
2 ƿ𝜑 +

𝑆

𝜏𝐴
∇∥
(0)2

ƿ𝜑 +
𝑔𝐵0
𝜌0

𝜕 ƿ𝑝1
𝜕𝑦

= [ ƿ𝑏 ⋅ ∇⊥ ∇∥
(0)

᪄𝜑

(𝛼)

+ ∇∥
(0) ƿ𝑏 ⋅ ∇⊥ ᪄𝜑

(𝛽)

]

Results: ƿ𝑣𝑟 phase `locks on’ to ƿ𝑏𝑟

• Results: The linear response of ෤𝜑 to ෨𝑏𝑟 in the limit of 𝛾𝒌 ≪ 𝜈𝑇𝑘2𝜃
2 (on the macro time scale)

ƿ𝜑𝑘2 ≈ −𝑖
𝑘𝜃
𝐿S

𝑆

𝜏A
෍

𝑙

𝜓𝑘2
𝑙 𝑥2

Λ𝑘2
𝑙 − Λ𝑘2

᪄𝜑𝑘 𝑥 = 0 ∫ 𝜓𝑘2
𝑙 ƿ𝑏𝑟 𝑘2−𝑘

𝑑𝑥2
′ ,

where 𝜓𝒌𝟐
𝑙 is the eigen solution, Λ𝒌𝟐 = 1/𝜒𝑇𝜏𝑝𝜏𝜅 − 𝜈𝑇𝑘2𝜃

4 , Λ𝒌𝟐
𝑙 = 8𝜈𝑇𝑆𝑘2𝜃

2 /𝜏𝐴𝐿𝑠
2(𝑙 + 1/2).

• Implication: A non-trivial correlation

ƿ𝑏𝑟 ƿ𝑣𝑟 = 𝜋
1
2
ƿ𝑘𝜃𝑅𝑟𝑚𝑛

𝐿S
3𝐵0

𝑆

𝜏A
᪄𝜑𝑘 0 × ∫ 𝑑𝑘2𝜃 𝑘2𝜃 𝑘2𝜃

𝑐2𝑍2 𝑘𝜃 − 𝑘2𝜃 𝑤𝑘2𝑜𝑘2
2

Λ𝑘2
0 − Λ𝑘2

,

• Reminder: The statistics of the turbulence is affected by ෩𝒃 (Minjun Choi).

fast interchange slow interchange

෩𝒃 is static!

𝝂𝑻 is required to saturate the growth of ෥𝝋 on a short time scale



• Main equation

−
𝑆

𝜏A

𝑘𝜃
2

𝐿s
2

𝑑2

𝑑𝑘𝑥
2
ƶ᪄𝜑𝑘 𝑘𝑥 + 𝛾𝑘𝑘𝑥

2 ƶ᪄𝜑𝑘 𝑘𝑥 −
𝜅𝑝0
𝐿p𝜌0

𝑘𝜃
2

𝛾𝑘
ƶ᪄𝜑𝑘 𝑘𝑥

= −𝜈𝑇𝑘𝑥
4 ƶ᪄𝜑𝑘 𝑘𝑥 −

𝜅𝑝0𝜒𝑇𝑘𝜃
2

𝜌0𝐿p𝛾𝑘
2 𝑘𝑥

2 ƶ᪄𝜑𝑘 𝑘𝑥 −
𝑆

𝜏A
ƿ𝑏𝑟

2
𝑘𝑥
2 ƶ᪄𝜑𝑘 𝑘𝑥

−
𝑆

𝜏A

2
𝑅𝑘𝜃

2

𝐿s
3 ᪄𝜑𝑘 0 𝑖 2𝜋𝛿 1 𝑘𝑥 + 𝑟𝑚𝑛 2𝜋𝛿 𝑘𝑥 𝐼

• The first-order growth rate correction:

𝛾𝑘
(1)

=
∫−∞
∞ ƶ᪄𝜑𝑘

(0) ෡𝐻1 ƶ᪄𝜑𝑘
(0)
𝑑𝑘𝑥

∫−∞
∞ ƶ᪄𝜑𝑘

(0)
𝜕
𝛾𝑘
(0) ƶ𝐻0 ƶ᪄𝜑𝑘

(0)
𝑑𝑘𝑥

= −
5

6
ดƶ𝜈𝑇
𝑻𝑩𝑫

𝜏p𝜏𝜅

𝜏A
2

1
3

𝑆
2
3 ƿ𝑘

𝜃

2
3 −

1

3

𝑆

𝜏A
ƿ𝑏𝑟

2
−
2 2

3

ƶ𝐼𝑆
4
3 ƿ𝑘

𝜃

4
3

𝜏p𝜏𝜅𝜏A
4

1
3

< 0,

where Ƹ𝜈𝑇 = 𝜈𝑇/𝐿𝑠
2, መ𝐼 = 𝐼𝑅𝑟𝑚𝑛/𝐿𝑠

3, ෨𝑘𝜃 = 𝑘𝜃𝐿𝑠.

• Reminder: Stronger suppression of large-scale fluctuations. (P. Beyer)

Results: the Slow Down of the Large-scale Cell

= ෡𝐻0 ෠ത𝜑𝒌 𝑘𝑥

= ෡𝐻1 ෠ത𝜑𝒌 𝑘𝑥 .

Physics?

turbulent 

viscosity

damping

electrostatic 

scattering



2. Balancing the third term with the linear term, the critical width of magnetic islands

𝑜𝒌𝟐~
𝑘𝜃
2

𝑘2𝜃
2 Δ𝑥 4

1
4

Results: Magnetic Braking Effect

Focusing on the third term, main equation becomes

−
𝑆

𝜏A

𝑘𝜃
2

𝐿s
2

𝑑2

𝑑𝑘𝑥
2 ᪄𝜑𝒌 +

𝑆

𝜏A
ƿ𝑏𝑟

2
+ 𝛾𝒌 𝑘𝑥

2 ᪄𝜑𝒌 −
𝜅𝑝0
𝐿p𝜌0

𝑘𝜃
2

𝛾𝒌
᪄𝜑𝒌 = 0.

• Effect: Enhances the plasma inertia and opposes

the growth of ത𝜑 Magnetic braking effect.

• Results:

1. Corrected growth rate of the ground state

𝛾𝒌
1
=

෨𝑘𝜃

𝑆|෨𝑏𝑟|

𝜏𝐴
𝜏𝑝𝜏𝜅

∝
1

෨𝑏𝑟
.

Inertia term 𝜌𝜕𝑡∇⊥
2 ത𝜑

character of multi-scale system, different with Rutherford’s result 𝑜𝒌𝟐~Δ𝑥
[1]

1. Rutherford, Paul Harding. The Physics of Fluids 16, no. 11 (1973): 1903-1908.

𝑜𝒌𝟐~𝛥𝑥

𝑘𝜃: large-scale cell

𝑘2𝜃: small-scale cells



Results: Turbulent Viscosity

• The last piece: The calculation of the turbulent viscosity 𝜈𝑇

• Strategy: Nonlinear closure theory

𝜈𝑇 =෍

𝒌𝟐

෤𝑣𝒌𝟐
𝟐
𝜏𝒌𝟐 .

• Result: In the limit of 𝜈𝑘2𝜃
2 − 1/𝜏𝑝𝜏𝜅

1/2
≫ 0 , the scaling of the turbulent viscosity is

𝜈𝑇 = 𝜋
1
2
𝑅𝑟𝑚𝑛

𝐵0
2

ƿ𝑘𝜃
2

𝐿s
5

𝑆

𝜏A

2

᪄𝜑𝒌
2(0)∫ 𝑑𝑘2𝜃

𝑐2𝑍2𝑤𝒌𝟐𝑜𝒌𝟐
2

𝑘2𝜃
5𝛾𝒌𝟐

(0)

1
3

.

• Analysis: Equation (2) can be simplified to

𝜕 ෤𝜑

𝜕𝑡
+ ณ𝜆 ෤𝜑 = ෡𝐷 ෨𝑏𝑟 ത𝜑

𝑑𝑟𝑖𝑣𝑒

. Langevin equation!

෩𝒃noise 𝜈𝑇

𝜈𝑇𝑘2𝜃
2 − 1/𝜏𝑝𝜏𝜅

1/2
> 0

෤𝜑 ↑ 𝜈𝑇 ↑ 𝜆 > 0 ෤𝜑 →



Answers to Questions from Simulations

• Appearance of small-scale structures and 

increased spatial roughness with 

stochastic magnetic field → the 

generation of the small-scale convective 

cells;

• Stronger suppression of large-scale 

fluctuations in the stochastic region →
large-scale cell tends to be stabilized by 

the stochastic magnetic field.



Answers to Questions from Experiments

• Reduced 𝐶𝐽𝑆 of the temperature fluctuation in 

the ELM suppression phase with RMP →
electrostatic turbulence phase ‘locks on to 

the stochastic magnetic field’. In other words, 

turbulence becomes more `random’ because 

its statistics is now correlated with the 

stochastic magnetic field.

• Increased bicoherence in the 

pedestal turbulence  → small-scale 

convective cells potentially open the 

possibility of increased nonlinear 

transfer, by increasing the number of 

triad interactions.



Conclusion: What We Have Learned

• ∇ ⋅ 𝑱 = 0 is maintained at all scales, which 

reveals that electrostatic convective cells 

must be driven by ෩𝒃 ത𝜑 beat. 

• Large scale and small scale are connected. 

As small-scale convective cells are 

modulated by large-scale mode, large-scale 

mode is modified by small-scale cells 

through turbulent viscosity 𝜈𝑇 and 

electrostatic scattering.

• Stochastic magnetic field produces a 

magnetic braking effect, which enhances the 

plasma inertia and exerts a drag on large-

scale mode. This is similar in structure to 

Rutherford’s  nonlinear 𝑱 × 𝑩 forces1, but in 

our case, it’s produced by stochastic 

magnetic perturbations.

• We get a non-trivial ⟨෨𝑏𝑟 ෤𝑣𝑟⟩. The velocity 

fluctuations ෥𝒗 ‘lock on’ to the magnetic 

perturbations ෩𝒃.

Large-scale 

cell

Small-scale 

cells

Stochastic 

magnetic field

Turbulent 

viscosity

Magnetic

curvature

Pressure

gradient
Resistivity++

drive

slow down

scatter

enhance

inertia

generate saturate

drive

∇ ⋅ 𝑱 = 0

maintain



Conclusion: What We Have Learned

• Correlation ෨𝑏𝑟 ෤𝑣𝑟 is calculated explicitly:

ƿ𝑏𝑟 ƿ𝑣𝑟 = 𝜋
1
2
ƿ𝑘𝜃𝑅𝑟𝑚𝑛

𝐿S
3𝐵0

𝑆

𝜏A
᪄𝜑𝑘 0 × ∫ 𝑑𝑘2𝜃 𝑘2𝜃 𝑘2𝜃

𝑐2𝑍2 𝑘𝜃 − 𝑘2𝜃 𝑤𝑘2𝑜𝑘2
2

Λ𝑘2
0 − Λ𝑘2

• The increment in the growth rate of the large-scale mode is calculated:

𝛾𝒌
(1)

= −
5

6
ƶ𝜈
𝜏𝑝𝜏𝜅

𝜏𝐴
2

1/3

𝑆2/3 ƿ𝑘𝜃
2/3

−
1

3

𝑆

𝜏𝐴
ƿ𝑏𝑟

2
−
2 2

3

ƶ𝐼𝑆4/3 ƿ𝑘𝜃
4/3

𝜏𝑝𝜏𝜅𝜏𝐴
4 1/3

.

As 𝛾𝒌
1

is negative definite, the net effect of ෩𝒃 is to reduce resistive interchange growth.

• The criterion when magnetic braking effect becomes significant is given. When the width of 

magnetic islands satisfies 

𝑂𝒌𝟐 ∼
𝑘𝜃
2

𝑘2𝜃
2 (Δ𝑥)4

1/4

.

Unlike Rutherford’s result, here we have an extra factor 𝑘𝜃/𝑘2𝜃
2, which reflects the multi-

scale nature of this problem.

• The scaling of the turbulent viscosity (or turbulent thermal diffusivity) is calculated:

𝜈 = 𝜋
1
2
𝑅𝑟𝑚𝑛

𝐵0
2

ƿ𝑘𝜃
2

𝐿𝑠
5

𝑆

𝜏𝐴

2

᪄𝜑𝒌
2(0)∫ 𝑑𝑘2𝜃

𝑐2𝑍2𝑤𝒌𝟐𝑜𝒌𝟐
2

𝑘2𝜃
5𝛾𝒌𝟐

(0)
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Conclusion: What We Will Do

• Toroidicity effect

In tokamak, the poloidal symmetry is broken by toroidicity effect. This fact introduces 

poloidal coupling of a series of harmonics, which results in ballooning mode. 

Both twisted slicing mode and ballooning mode can be considered as wave packets 
[1,2]. So twisting slicing mode is a particularly clear realization of ballooning.

Idea: studying resistive ballooning mode in a stochastic magnetic field.

Tool: ballooning mode representation.

• Zonal flow

Zonal flow plays a crucial role in L-H transition. The observed enhancement of the 

transition power threshold implies that zonal flow screening or collapse could be a 

possible scenario. Therefore, it is essential to couple zonal flow to current model.  
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