

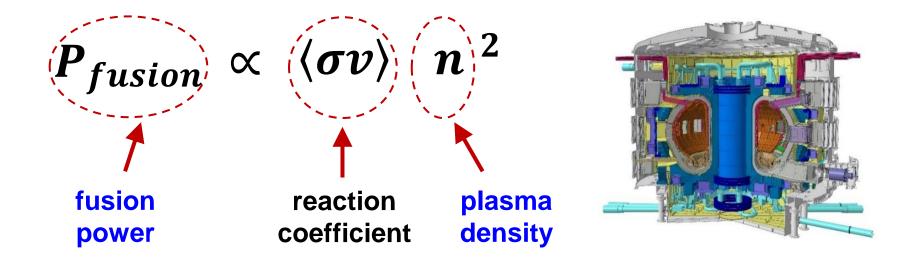
Turbulence spreading dynamics approaching the density limit

<u>Ting Long</u>¹(龙婷), P. H. Diamond^{2*}, R. Ke¹, J. B. Yuan¹, W. J. Tian^{1,3}, L. Nie¹, M. Xu¹, HL-2A Team¹, J-TEXT Team⁴

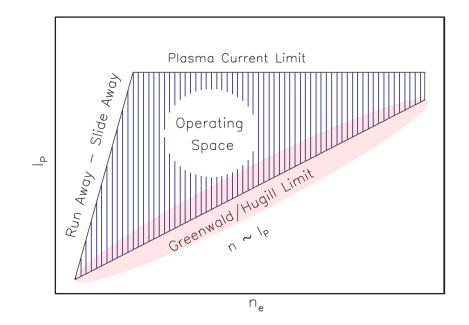
¹ Southwestern Institute of Physics, Chengdu, China
 ² University of California, San Diego, CA, USA
 ³ Tsinghua University, Beijing, China
 ⁴ Huazhong University of Science and Technology, Wuhan, China

6th Asia-Pacific Conference on Plasma Physics, 9 - 14 Oct, 2022, Remote e-conference

1. Motivation: role of turbulence in density limit

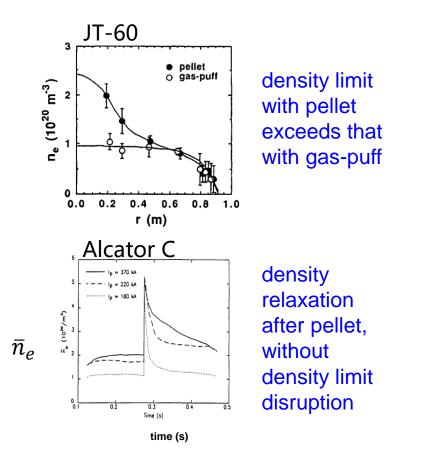

- 2. Turbulence spreading dynamics → density limit
 - Density fluctuation events
 - Turbulence internal energy evolution
 - Connection with $E \times B$ flow shear
 - Beyond the diffusion process

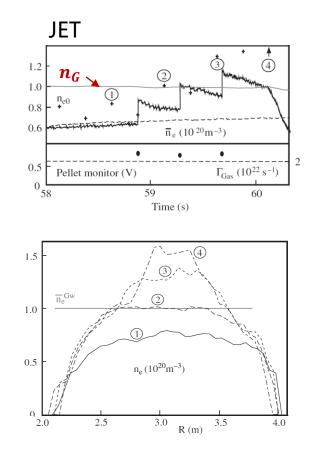
1. Motivation: role of turbulence in density limit


2. Turbulence spreading dynamics \rightarrow **density limit**

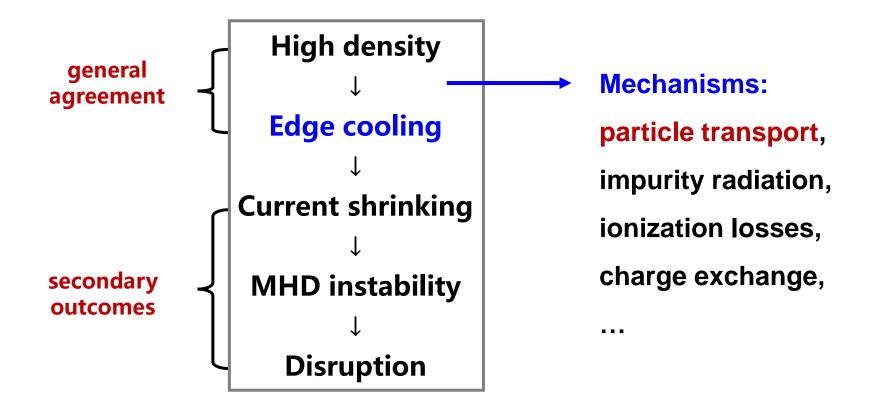
- Density fluctuation events
- Turbulence internal energy evolution
- Connection with $E \times B$ flow shear
- Beyond the diffusion process

- High plasma density: important for efficient and economic fusion power output
- High density operation: favorable for fusion reactors (baseline scenario for ITER and DEMO)




- Density limit: constraints on the maximum attainable operational density for current-generation tokamaks
- Greenwald empirical scaling: $\overline{n}_{max} \sim n_G [10^{20} m^{-3}] = I_p [MA] / \pi a^2 [m^2]$

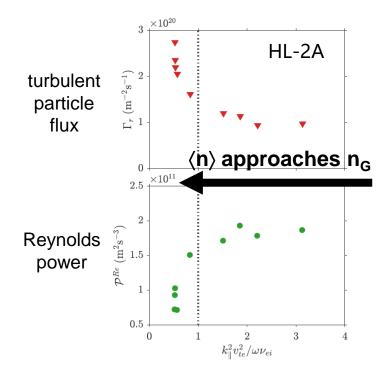
✓ M. Greenwald et al 2002 Plasma Phys. Control. Fusion 44 R27


- Discharges with pellet fueling: n_G is exceeded with peaked density
- What physical process underpin density limit?



- ✓ M. Greenwald et al 1988 Nucl. Fusion 28 2199
 ✓ Y. Kamada et al 1991 Nucl. Fusion 31 1827
- ✓ P.T. Lang et al 2002 Plasma Phys. Control. Fusion 44 1919–1928

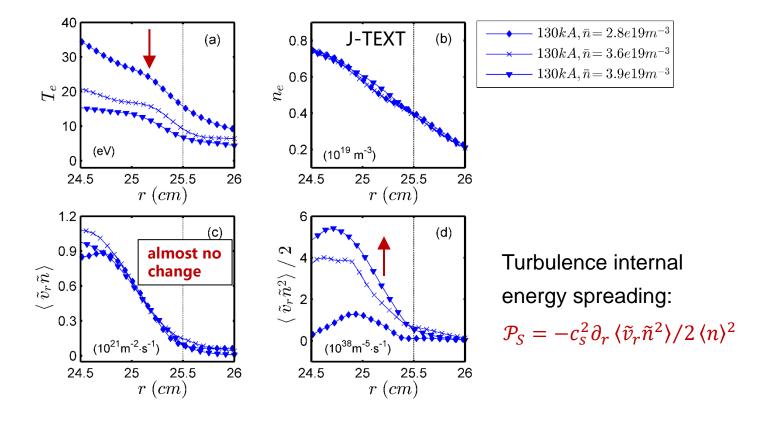
• A widely quoted picture of high density disruption



 Density limit associated with increased particle transport and particle confinement degradation in discharges with low impurity content

- Edge *E* × *B* flow shear layer collapse → enhanced turbulent particle flux near density limit
- The limiting edge density for shear layer collapse: scales with Ip due to the neoclassical screening of zonal flow

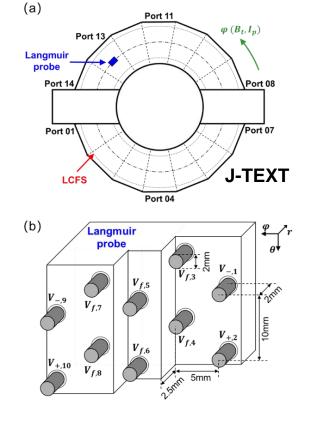
1.5



modulation growth $\sigma \sim l_p^2$ $\beta = 0.1$ $\beta = 0.1$ $\beta = 0.05$ E_{vc} 0.5 E_{vc} 0.5 E_{vc} 0.2 E_t 0.4 0.4 0.6Zonal flow energy E_v vs turbulence energy E_t $n < \frac{\rho_s}{\rho_{\theta}} \left(\frac{s}{c_s}\right)^{\frac{1}{3}} (crit') \sim l_p$

zonal noise drive $\beta \sim I_n^4$

- ✓ R. Singh and P.H. Diamond 2021 Nucl. Fusion 61 076009
- ✓ R. Hong et al 2018 Nucl. Fusion 58 016041
 ✓ R. J. Hajjar et al 2018 Phys. Plasma 25 062306


- Recent experiments: turbulence intensity flux $\langle \tilde{v}_r \tilde{n}^2 \rangle / 2$ shows different dynamics from particle flux $\langle \tilde{v}_r \tilde{n} \rangle$ as $\overline{n} \to n_G$
- Turbulence spreading: a better indicator associated with edge cooling

LCFS at r = 25.5 cm

✓ T. Long et al 2021 Nucl. Fusion 61 126066

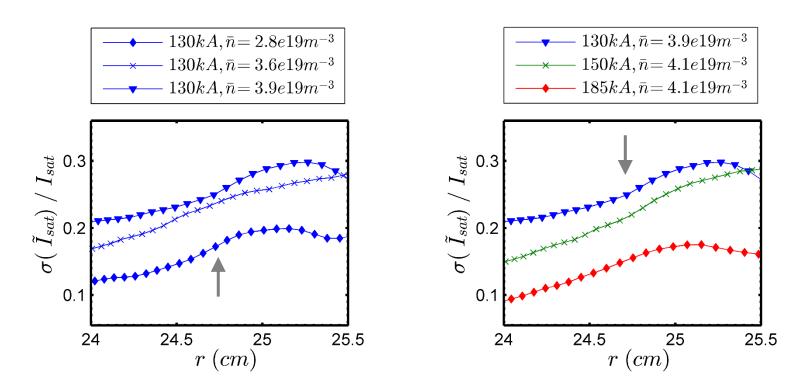
- In this talk: studies of turbulence spreading dynamics approaching the density limit
- Experimental set up
 - Ohmic hydrogen discharges, limiter
 - > $B_t \sim 1.6/1.9/2.2$ T, $I_p \sim 130/150/185$ kA, $q(a) \sim 3.8$
 - $\geq \bar{n}_e = 2.8 4.9 \times 10^{19} \text{m}^{-3}$
 - ▶ \bar{n}_{max} (before disruption) ~0.7 n_G
 - > Langmuir probe: T_e , ϕ_p , n_e , $E \times B$ velocity, turbulent particle flux, turbulence spreading
 - ➢ Fluctuations 2 − 100 kHz

T. Long et al 2022 (to be submitted)

1. Motivation: role of turbulence in density limit

2. Turbulence spreading dynamics \rightarrow **density limit**

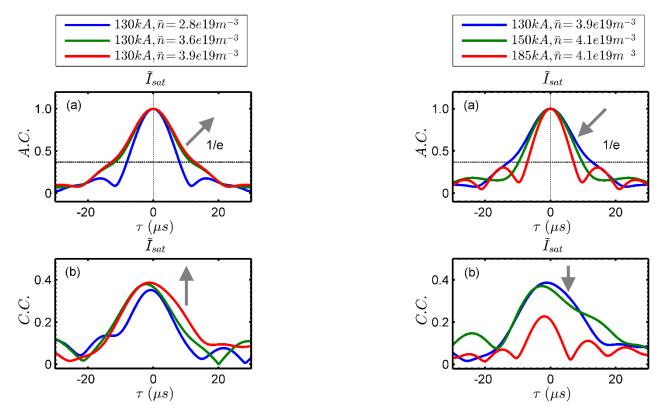
- Density fluctuation events
- Turbulence internal energy evolution
- Connection with $E \times B$ flow shear
- Beyond the diffusion process


1. Motivation: role of turbulence in density limit

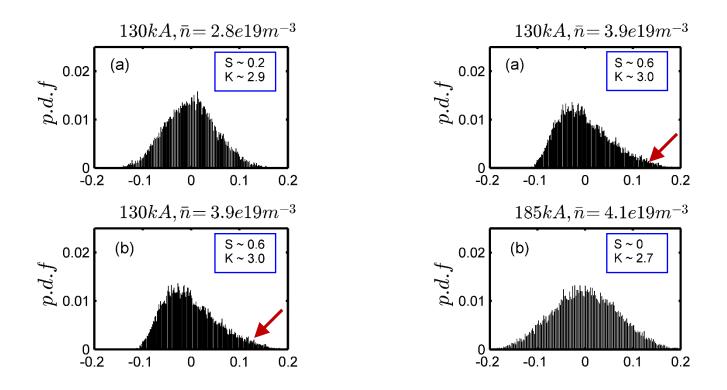
2. Turbulence spreading dynamics \rightarrow density limit

- Density fluctuation events
- Turbulence internal energy evolution
- Connection with $E \times B$ flow shear
- Beyond the diffusion process

Density fluctuation events



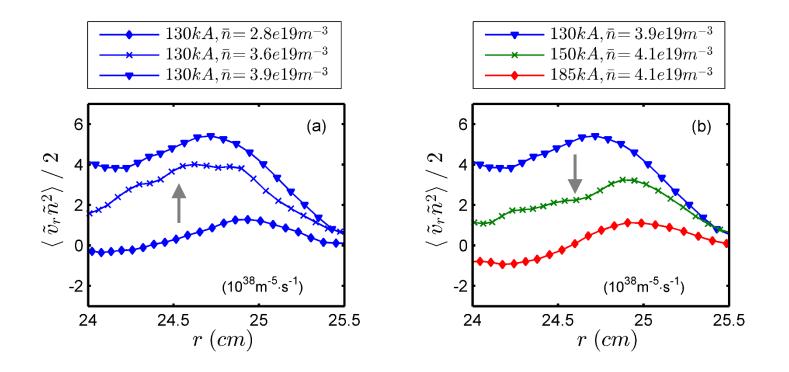
- > For the same I_p : fluctuation amplitude increases as \overline{n} increases
- > For the close \overline{n} : fluctuation amplitude decreases as I_p increases


Density fluctuation events

Auto-correlation and cross-correlation

- > For the same I_p : correlation increases as \overline{n} increases
- > For the close \overline{n} : correlation decreases as I_p increases

PDF characteristics


- > For the same I_p : skewness increases as \overline{n} increases
- > For the close \overline{n} : skewness decreases as I_p increases

1. Motivation: role of turbulence in density limit

2. Turbulence spreading dynamics \rightarrow **density limit**

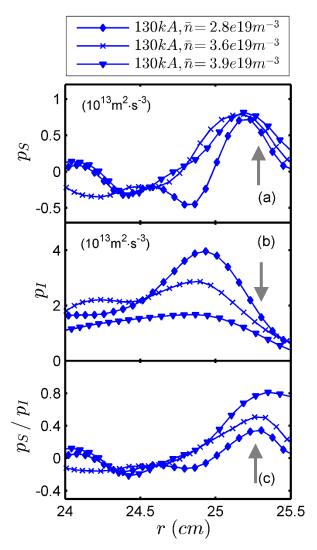
- Density fluctuation events
- Turbulence internal energy evolution
- Connection with $E \times B$ flow shear
- Beyond the diffusion process

• Turbulence intensity flux $\langle \tilde{v}_r \tilde{n}^2 \rangle / 2$

- > For the same I_p : intensity flux increases as \overline{n} increases
- > For the close \overline{n} : intensity flux decreases as I_p increases

$$\partial_t \frac{c_s^2 \langle \widetilde{n}^2 \rangle}{2 \langle n \rangle^2} = \mathcal{P}_I + \mathcal{P}_S$$

Spreading power:


 $\mathcal{P}_{S} = -c_{s}^{2}\partial_{r}\langle \widetilde{v}_{r}\widetilde{n}^{2}\rangle/2\langle n\rangle^{2}$

divergence of turbulence internal energy flux due to spreading

Production power:

$$\mathcal{P}_{I} = \frac{-c_{s}^{2} \langle \widetilde{v}_{r} \widetilde{n} \rangle \partial_{r} \langle n \rangle}{\langle n \rangle^{2}}$$

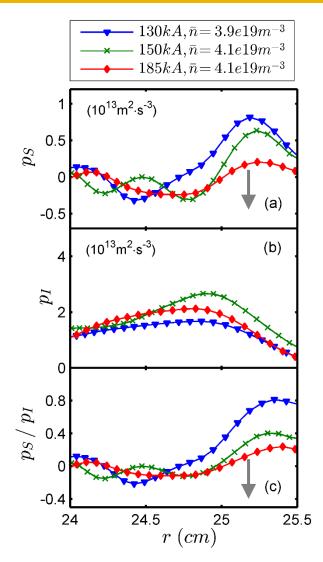
internal energy transfer from
source $\nabla \langle n \rangle$ to turbulence

Dimensionless ratio: $\mathcal{P}_S/\mathcal{P}_I$ turbulence power increment due to spreading relative to local production

> For same I_p : spreading relative to production increases as \overline{n} increases

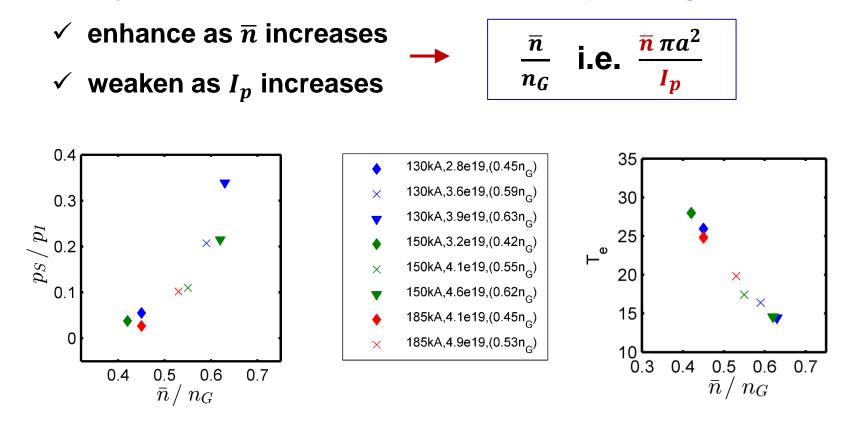
$$\partial_t \frac{c_s^2 \langle \widetilde{n}^2 \rangle}{2 \langle n \rangle^2} = \mathcal{P}_I + \mathcal{P}_S$$

Spreading power:


 $\mathcal{P}_{S}=-c_{s}^{2}\partial_{r}\langle\widetilde{\nu}_{r}\widetilde{n}^{2}
angle/2\langle n
angle^{2}$

divergence of turbulence internal energy flux due to spreading

Production power:


$$\mathcal{P}_{I} = \frac{-c_{s}^{2} \langle \widetilde{v}_{r} \widetilde{n} \rangle \partial_{r} \langle n \rangle}{\langle n \rangle^{2}}$$

internal energy transfer from
source $\nabla \langle n \rangle$ to turbulence

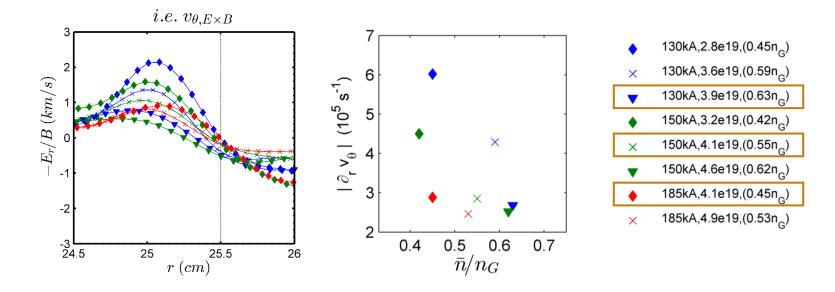
Dimensionless ratio: $\mathcal{P}_S/\mathcal{P}_I$ turbulence power increment due to spreading relative to local production

> For close \overline{n} : spreading relative to production decreases as I_p increases

Density fluctuation events and turbulence spreading ratio:

Increasing turbulence spreading leads to the edge cooling

1. Motivation: role of turbulence in density limit

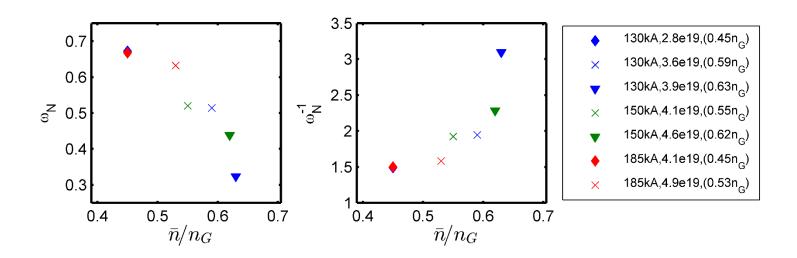

2. Turbulence spreading dynamics \rightarrow **density limit**

- Density fluctuation events
- Turbulence internal energy evolution
- Connection with $E \times B$ flow shear
- Beyond the diffusion process

Connection with $E \times B$ flow shear

• $E \times B$ poloidal flow at plasma edge

- > For the same I_p : flow shearing rate decreases as \overline{n} increases
- > For the close \overline{n} : flow shearing rate doesn't change as I_p increases

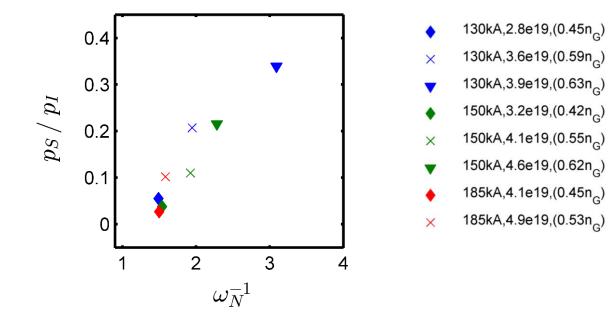

> Flow shear itself is not responsible for increased turbulence spreading as \overline{n}/n_{G} increases

Connection with $E \times B$ flow shear

- Turbulence suppression criterion: poloidal flow shear is lager than random diffusive scattering rate of the ambient turbulence (BDT model)
 - > Normalized $E \times B$ flow shearing rate

 $(D_t \cong \langle \tilde{v}_r^2 \rangle \tau_{ac})$

$$\omega_N = \left| \frac{\partial v_{\theta}}{\partial r} \right| \frac{1}{4D_t} k_{\theta} l_{cr}^3 > 1$$

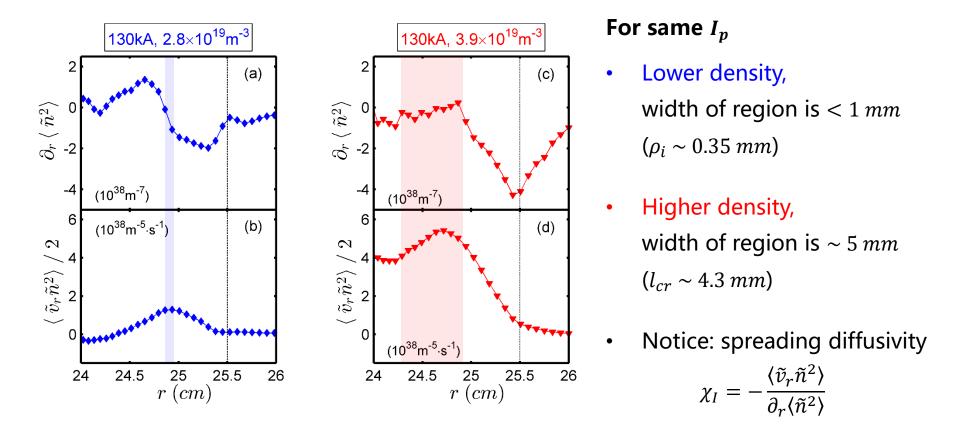


 $\succ \omega_N^{-1}$ is consistent with Greenwald scaling parameter \overline{n}/n_G

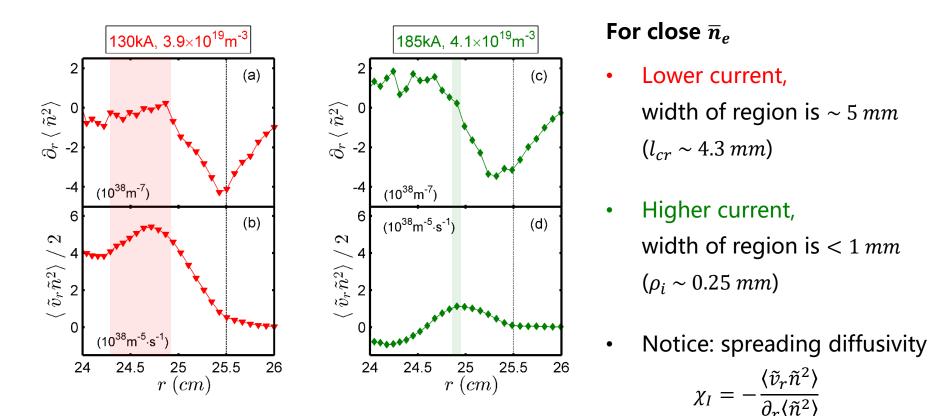
✓ H. Biglari, P. H. Diamond, and P. W. Terry 1990 Physics of Fluids B 2,1

Connection with $E \times B$ flow shear

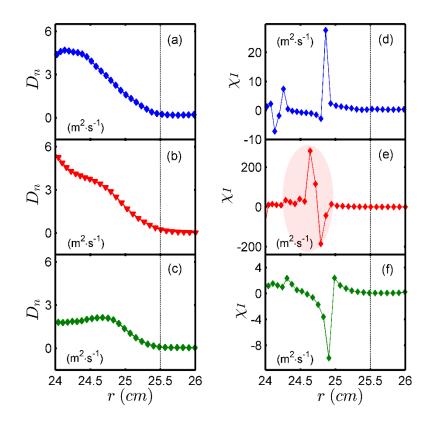
• Turbulence enhancement parameter ω_N^{-1}



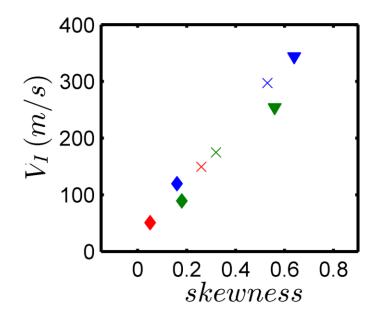
1. Motivation: role of turbulence in density limit


2. Turbulence spreading dynamics \rightarrow **density limit**

- Density fluctuation events
- Turbulence internal energy evolution
- Connection with $E \times B$ flow shear
- Beyond the diffusion process


• A region in plasma edge, turbulence intensity flux $\langle \tilde{v}_r \tilde{n}^2 \rangle / 2$ is large, but turbulence intensity gradient $\partial_r \langle \tilde{n}^2 \rangle$ is near zero

• A region in plasma edge, turbulence intensity flux $\langle \tilde{v}_r \tilde{n}^2 \rangle / 2$ is large, but turbulence intensity gradient $\partial_r \langle \tilde{n}^2 \rangle$ is near zero


- Difference between particle diffusivity and energy spreading diffusivity
 - > Diffusivity of turbulent particle flux $\langle \tilde{n}\tilde{v}_r \rangle = -D_n \partial_r \langle n \rangle$
 - > Diffusivity of turbulence spreading $\langle \tilde{v}_r \tilde{n}^2 \rangle = -\chi_I \partial_r \langle \tilde{n}^2 \rangle$

$$- 130 \text{kA}, 2.8 \times 10^{19} \text{m}^{-3} (0.45 \text{n}_{\text{G}})$$
$$- 130 \text{kA}, 3.9 \times 10^{19} \text{m}^{-3} (0.63 \text{n}_{\text{G}})$$
$$- 185 \text{kA}, 4.1 \times 10^{19} \text{m}^{-3} (0.45 \text{n}_{\text{G}})$$

- *χ_I* is not equal to *D_n* (in both magnitude and sign)
- χ_I is large where $\partial_r \langle \tilde{n}^2 \rangle$ is near zero and $\langle \tilde{v}_r \tilde{n}^2 \rangle$ is large
- χ_I increases significantly as \bar{n}/n_G increases (Both \bar{n} and I_p involved)

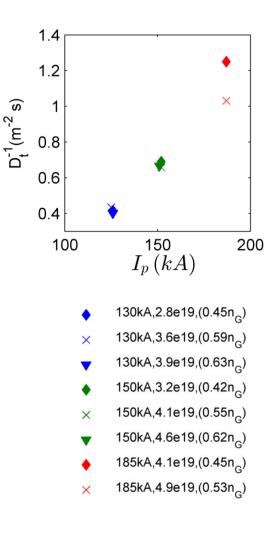
• "Mean jet velocity" of turbulence spreading $V_I = \frac{\langle \tilde{v}_r \tilde{n}^2 \rangle}{\langle \tilde{n}^2 \rangle}$

Show linear correlation with skewness of density fluctuation (blob relevant....)

✓ A. A. Townsend 1948 Momentum and energy diffusion in the turbulent wake of a cylinder

1. Motivation: role of turbulence in density limit

2. Turbulence spreading dynamics \rightarrow **density limit**


- Density fluctuation events
- Turbulence internal energy evolution
- Connection with $E \times B$ flow shear
- Beyond the diffusion process

• Summary

- Density fluctuation events and turbulence spreading strength enhance as \overline{n} increases while weaken as I_p increases
- Increasing turbulence spreading coincides with the edge cooling approaching the density limit
- ► Turbulence enhancement parameter ω_N^{-1} , which takes both $E \times B$ flow shear and turbulence random diffusive scattering into account, is consistent with Greenwald scaling \overline{n}/n_G

• Future plan

- Physical understanding of the plasma current dependency of turbulence spreading and particle transport.
- Non-diffusive process of turbulence spreading and its relations to blobs/holes.
- The correlation between turbulence spreading dynamics and power dependence of density limit.

Thank you!

China National Nuclear Corporation