Zonal Flow Screening in Negative Triangularity Tokamaks

[Singh and Diamond 2022 Nucl. Fusion (accepted)]

Rameswar Singh and P H Diamond

CASS, University of California San Diego

APS DPP, October 19, 2022, Spokane

Acknowledgement: This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.

Effect of triangularity on confinement, fluctuations and L-H transition

Key Issues

- Improved confinement:
 - Linear TEM stabilization was linked to improved confinement [Marinoni *et al* 2009] role of zonal flows overlooked.
 - What about ITG and Zonal flows?
- L-H transition:
 - Threshold power for NT>> Threshold power for PT (why?)
 - Linked to loss of access to 2nd stability region of n = ∞ ideal MHD ballooning modes. [Saarelma *et al* PPCF 2021, Nelson *et al* NF 2022]
 - <u>Caveat</u>: H mode is NOT always in 2nd stable region.
 - What about role of zonal flows ?
 - Mean ExB shearing in NT ? (In progress)

L-H trigger by zonal flows is well established for PT

[Kim and Diamond 2003, L Schmitz *et al* 2012, G D Conway *et al* 2011, G Tynan *et al* 2013, P Manz *et al* 2012, G S Xu *et al* 2011, Z Yan and G R McKee *et al* 2014]

What happens to zonal flows in NT?

Expectations from conventional wisdom

Enhanced zonal flow residual !?

Reduced neoclassical transport

What happens to zonal flows in negative triangularity?

- Get beyond linear theory \rightarrow saturated state
- ITG \rightarrow saturation by zonal flows dominant [Z Lin, ...]
- Zonal intensity spectral evolution:

$$\frac{\partial}{\partial t}\chi_k\left\langle \left\|\phi_k\right\|^2\right\rangle = \Re\sum_{\substack{k=\overrightarrow{p}+\overrightarrow{q}}}\hat{z}\cdot\overrightarrow{p}\times\overrightarrow{q}\left(q^2-p^2\right)\left\langle\phi_k^\star\phi_p\phi_q\right\rangle$$
Triplet correlation

- **ZF** drive is screened by χ_k .
- What happens to χ_k in NT ?

Rosenbluth-Hinton residual zonal flow

from flux surface due to gyro motion

Due to departure of guiding center from flux surface due to magnetic drift

Shaping factor

• Calculated for Miller's parametrized up-down symmetric equilibrium.

Classical and Neo-classical susceptibility

The collisionless residual zonal flow level $\phi_k(\infty) = \phi_k(0) \frac{\chi_{k,cl}}{\chi_{k,cl} + \chi_{k,neo}}$

- $\chi_{k,cl}$ increases with decreasing δ . Notice $\chi_{k,cl}(\delta^{-}) > \chi_{k,cl}(\delta^{+})$.
- $\chi_{k,neo}$ increases with decreasing δ . Notice $\chi_{k,neo}(\delta^-) > \chi_{k,neo}(\delta^+)$.

Zonal flow screening length $l_z = \sqrt{\chi_{tot}}/k_r^2$ is bigger for δ^- than for δ^+ !

Zonal flow residual is lower for -ve δ than that for +ve δ

GENE simulations support the theoretical prediction

A closer look at Neo-classical susceptibility

- Dominant contribution to $\chi_{k,neo}$ from trapped orbits.
- Trapped part of the spectrum is elevated on decreasing δ .
- Passing part of the spectrum is weakly affected by δ .

Pitch angle spectrum of Neo-classical susceptibility

Why $\chi_{k,neo}$ \uparrow when banana width \downarrow ?

Trapped orbits are thinner for $\delta < 0$

Trapped fraction increases with decreasing triangularity

- Smaller banana width \rightarrow smaller polarization
- Larger trapped fraction \rightarrow larger polarization
- Polarization reduction by banana width reduction is offset by polarization enhancement by trapped fraction enhancement.
- Hence, bananas are thinner in -ve δ than +ve δ , yet $\chi_{k,neo}(\delta^-) > \chi_{k,neo}(\delta^+)!$

Summary of Theory

[Singh and Diamond 2022 Nucl. Fusion (accepted)]

- Neoclassical susceptibility is higher in δ^- despite of reduction in banana width. This is due to increase in trapped fraction in δ^- .
- This means zonal flow screening length increases in δ^- .
- As a result, zonal flow residual is reduced in δ^- compared to δ^+ .
- A bigger screening length, implies weaker zonal flows for fixed drive.
 - → Weaker regulation of turbulence and transport by zonal flow in δ^- .
 - ⇒ Caution: Zonal flow physics is not exclusively determined by screening! Reynolds stress cross-phase vs δ ?

Lessons

• Can NOT attribute negative triangularity core transport improvement to simple elements of zonal flow physics.

Implications

- ZF reduction consistent with trend of increased power threshold in NT. Quantitative analysis/prediction of $P_{th,L\rightarrow H}$ needed.
- This also requires knowledge of how mean ExB shearing rate affected when $\delta \rightarrow -\delta$? (In progress)

Suggestions

• Compare zonal flow radial correlation length, zonal flow shear strength for $\delta > 0$ and $\delta < 0$. Reynolds power vs δ .

Back up slides

Effect of triangularity on mean ExB shearing rate

- Peak shearing bifurcates at $\delta = 0$ into 2 peaks for $\delta \rightarrow -\delta$.
- Peak shears move toward the good curvature region and shearing rate at $\theta = 0$ decreases with increasing NT.
- Poloidal width of shear increases \rightarrow FSA ExB shear for NT > PT.
- But shear peaks away from the region where fluctuations are ballooned.
 - →L→H initiated at location away from $\theta = 0$! (Experiments ?)
 - ➡ Shearing efficiency reduced!
 - Consistent with increased $P_{th,L\rightarrow H}$!
 - ➡ 2D L-H transition model needed!

Trapped Electron Mode reduction in negative triangularity by modification of toroidal precession drift frequency

Higher $\overline{\omega}_d/\omega$ linked to growth rate and nonlinear flux reduction for $\delta < 0$.

Bounce averaged kinetic equation: $\overline{g} = \frac{\omega - \omega_{\star e}(1 + \eta_e(E/T_e - 3/2))}{\omega - \overline{\omega_d}(E, \hat{s})} \frac{e\overline{\phi}}{T_e} e^{-E/T_e}$ Electron density response: $\frac{\delta n_e}{n} = (1 - i\delta) \frac{e\phi}{T_e}$ $\delta = -\Im 2 \frac{(2\epsilon)^{1/2}}{\pi^{1/2}} \int d\left(\frac{E}{T}\right) \left(\frac{E}{T}\right)^{1/2} \overline{g} = (2\pi\epsilon)^{1/2} \left(\frac{\omega}{\overline{\omega_d}}\right)^{1/2} e^{-\left(\frac{\omega}{\overline{\omega_d}}\right)} \left[\frac{\omega_{\star e}}{\overline{\omega_d}} \left\{1 + \eta_e\left(\frac{\omega}{\overline{\omega_d}} - \frac{3}{2}\right)\right\} - \frac{\omega}{\overline{\omega_d}}\right]$ Ion density response: $\frac{\delta n_i}{n} = \frac{\omega_{\star T_i}}{\omega} \left(\frac{k_{\parallel} v_{ihi}^2}{\omega^2} - k_{\perp}^2 \rho_i^2 - \frac{\omega_{di}}{\omega}\right) \frac{e\phi}{T_i}$ Solving perturbatively (for $\delta \ll 1$) the dispersion relation yields the growth rate: $\frac{\gamma}{\omega_r} = \frac{\delta}{3}$

What about ITG and zonal flows?

Ratio of heat flux with zonal flows suppressed to heat flux with self-consistent zonal flows.