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Before I start…

• My own work: plasma dynamics in a stochastic magnetic field

• Motivated by the use of resonant magnetic perturbation in tokamaks

• A bit specialized… ⇒ would like to show something more accessible

• Multiple sources: Prof. Diamond’s notes and other “ancient” papers. 

• Unearth the physical insights buried in algebra.
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Background

Lin 1998 Dif-Pradalier 
2010

• There is a gap between complex reality and well-known simple models.
• To see how geometry constrains plasma dynamics → theories involving geometric effects. 
• Geometry: magnetic configuration (shear & toroidicity)
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• We have seen colorful visualizations of plasma 
turbulence, zonal flow and staircases.

• We are also familiar with simple models, e.g., 
𝜕𝑡 ∇2𝜑 − 𝜑 − ∇𝜑 × ො𝒛 ⋅ ∇ ∇2𝜑 − ln 𝑛0 = 0
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• Definition
• Resonance ‘pins’ turbulence

Resonant 
surfaces

• Line bending
• Stabilization & localization

Magnetic 
shear

• Breaking frozen-in law
• Resistive interchangeResistivity

• Twisted slicing coordinates
• Bridge to toroidal world

Wave-
packet

• Bloch eigenmode equation
• Ballooning mode representation

Ballooning 
mode

• Shear enhanced decorrelation
• Nonlinear coupling
• Indication for avalanche

Beyond

linear theory

Periodic cylinder Torus

Focus on MHD
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but generic



Outline: the message you can get
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Side story: velocity shear                       Advertisements: my own work

Resonance

Shear

Wave-
packet

Toroidicity

How linear modes are modified

How nonlinear coupling is affected

How an emergent state (avalanche) is formed



Resonances

• Poloidal and toroidal periodicity ⇒ 𝜑 ∼ ො𝜑𝑚,𝑛 exp 𝑖 𝑚𝜃 − 𝑛𝜙

• Rotational transform in tokamak:

𝑟𝑑𝜃/𝐵𝜃 = 𝑅𝑑𝜙/𝐵𝜙 ⇒ 𝑞 𝑟 = 𝑑𝜙/𝑑𝜃 = 𝑟𝐵𝜙/𝑅𝐵𝜃 𝑟 = field line pitch

d𝜙

𝑑𝜃
=

𝑚

𝑛
= mode pitch

• When field line pitch = mode pitch, i.e., 𝑞 𝑟𝑚,𝑛 = 𝑚/𝑛 ⇒ resonant surfaces

• At resonant surfaces: 𝑘∥ = 𝒌 ⋅ 𝒃 = 𝑚/𝑞 𝑟𝑚,𝑛 − 𝑛 /𝑅 = 0

resonant surface non-resonant surface

magnetic shear 
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Resonances

• Properties of 𝑘∥ = 0:

• minimize Landau damping 

• minimize line bending (energetically unfavored)

• Resonant surfaces are ideal “habitats” for modes, islands, etc.

• Resonance ‘pins’ turbulence. (modes live on resonant surfaces)

as 𝑘∥ → 0, 𝑣 𝑝 = 𝜔/𝑘∥ → ∞ ≠ 𝑣∥

𝛿𝑊 =
1

2
න 𝑑3𝑥

෩𝑩2

4𝜋
+ 𝑱𝟎 ⋅ 𝝃 × ෩𝑩 + 𝛾𝑝0 ∇ ⋅ 𝝃 2 + 𝝃 ⋅ ∇𝑝0 ∇ ⋅ 𝝃 − 𝝃 ⋅ ∇𝜙 ∇ ⋅ (𝜌0𝝃)

෩𝑩 = ∇ × 𝝃 × 𝑩𝟎 ≅ 𝑩𝟎 ⋅ ∇𝝃 → ෩𝑩2/4𝜋 ∝ 𝐵0
2𝑘∥

2 > 0
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Ideal interchange mode

• Magnetic shear is present in tokamaks. What are effects of magnetic shear on modes?

• Start with the simplest mode: interchange (heavy pressing light)

• In the case of no shear, no resistivity, perfect alignment ⇒ 𝑘∥ = 0 (flute instability) 

Interchange (flute) instability

∇∥𝐽∥ − 𝜕𝑡∇⊥
2 𝜑 + 𝑔𝜕𝑦 𝜌 = 0

𝐸∥ = −𝜕𝑡
ሚ𝐴∥ − ∇∥ 𝜑 = 0

𝐽∥ = ∇⊥
2 𝐴∥

𝜕𝑡 𝜌 + 𝑣𝑟𝜕𝑟 𝜌 = 0

𝛾𝑘
2∇⊥

2 𝜑 = −𝑣𝐴
2∇⊥

2 𝑘∥
2 𝜑 − 𝑔𝑘𝑦

2 𝜑𝜕𝑟 ln 𝜌

𝛾𝑘
2 = 𝑔𝑘𝑦

2/𝐿𝜌𝑘⊥
2 (favor small 𝑘𝑥, large 𝑘𝑦)

efficient for 
radial transport𝑥

𝑦 ⊗ 𝑧
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Effects of magnetic shear on instability

• What happens when magnetic shear is present?

• Modes want to align with field lines

• Field lines are twisted in space

𝑘∥ = 0 at resonant surfaces
𝒌∥ = 𝒌𝜽𝒙/𝑳𝒔 increases with 𝒙

• 𝑘∥ ≠ 0 ⇒ field line bending ⇒ energetically unfavorable ⇒ mode stabilization

𝑥
𝑧

without shear with shear

𝑥
𝑧

When deviate from resonant surface, magnetic 
pitch and mode pitch no longer match ⇒ 𝑘∥ ≠ 0. 

𝑘∥ = 𝒌 ⋅ 𝒃 = 𝑚/𝑞 𝑟 − 𝑛 /𝑅 ቚ
𝑟𝑚,𝑛

= −𝑚𝑞′ 𝑟 𝑥/𝑅𝑞2 = −𝑚 Ƹ𝑠𝑥/𝑅𝑞 = 𝑘𝑦𝑥/𝐿𝑠

Ƹ𝑠 = 𝑟𝑞′/𝑞, 1/𝐿𝑠 ≃ − Ƹ𝑠/𝑅𝑞, 𝑥 = 𝑟 − 𝑟𝑚,𝑛

Suydam criterion: − 8𝜋𝑝′/𝑟 𝑞/𝐵𝑧𝑞′ 2ȁ𝑟𝑚,𝑛
> 0.25 (critical pressure gradient)

• The farther away from the resonance surface, the stronger the line bending effect

mode localization
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Breakdown of the frozen-in law

• Magnetic shear+ flux frozen-in ⇒ field line bending ⇒ stabilization

• Resistivity makes interchange mode get access to free energy again!

flux frozen-in law: magnetic flux through any given moving plasma element does not change. 

Kelvin’s theorem: vorticity through any given moving fluid element does not change.

Kelvin’s theorem broken by viscosity ⇒ Flux frozen-in law broken by resistivity

• With finite resistivity, plasma can detach from field lines.

Detachment is most notable near resonant surfaces.

𝜕𝑡𝑩 = 𝑩𝟎 ⋅ ∇𝒗
𝒂

− 𝒗 ⋅ ∇𝑩𝟎 + 𝜂∇2𝑩/4𝜋
𝑏

𝑎 / 𝑏 ≪ 1 near resonant surfaces as 𝑘∥ → 0
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Resistive interchange mode

• From ideal MHD to resistive MHD ⇒

Ohm’s law:  −𝜕𝑡
ሚ𝐴∥ − ∇∥ 𝜑 = 0 ideal → −∇∥ 𝜑 = 𝜂𝐽∥ (resistive) 

𝛾𝑘
2∇⊥

2 𝜑 −
𝑆𝛾𝑘

𝜏𝐴

𝑘𝜃
2𝑥2

𝐿𝑠
2 𝜑 +

𝑔

𝐿𝜌

𝑘𝑦
2 𝜑 = 0 𝑆 = 𝜏𝑅/𝜏𝐴 ∼ 107 ∼ 109

• For resistive interchange mode:
𝛾 ∼ 𝒪 𝜂1/3 → 𝒪 S−1/3 , 𝑤 ∼ 𝒪 𝑎/𝑆1/3 ≪ 𝑎 localized at resonant surfaces

• Even a small resistivity can result in non-trivial effects!

• These localized modes could be an alternative mechanism account for avalanche.

Harmonic oscillator!
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Modes are ‘pinned’ at resonant surfaces.



Ad 1: Resistive interchange mode in a 
stochastic magnetic field

• Regular magnetic field → stochastic magnetic field
• How does stochastic magnetic field modify the 

dynamics of a single interchange mode?
1. To maintain quasi-neutrality, small-scale 

convective cells (microturbulence) are driven.
2. There is a non-zero 𝑣𝑟

෨𝑏𝑟  correlation.
3. Stochastic magnetic field can enhance effective 

plasma inertia and thus slow down mode growth.
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Cao, M. and Diamond, P.H., 2022. PPCF.



Quasi-mode: motivation

• Resistivity restores instability, but modes are narrow → not effective for mixing. 

• Introduction of quasi-mode, two purposes:

• Broad mode structure → enhanced mixing

• Connecting to ballooning mode, which resides in toroidal geometry

• Ballooning is very important.

∇𝑝
low 𝑝

low 𝑝
high 𝑝

𝜅

H-mode ELMHeating

RMP

leads to generate

suppressconstrain

But a direct study is hard…

resistive 
interchange

quasi-mode

ballooning
mode 
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Quasi-mode: basics

• Nature of quasi-mode: a wave-packet of radially localized interchange-mode 
at different resonant surfaces.

Sketch of the quasi-mode

• Wave packet ⇒      
not an eigenmode 

• Dispersion?
long life-time, can maintain 
its shape before NL phase

• Convective rolls get twisted 
as moving along 𝑧 to keep 
aligned with local field 

aka: twisted slicing mode

𝑥

𝑦

⊗

𝑧
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K.V. Roberts, J.B. Taylor, 1965. PoF.



Quasi-mode: setup

• Basic setup:
• Incompressible plasma
• Finite resistivity 𝜂 → resistive MHD.
• Weak but finite magnetic shear 𝑩𝟎 = 0, 𝑠𝑥, 1 𝐵0.

• Unstably stratified, 𝜕𝑥𝜌0 = 𝛼𝜌0 𝛼 > 0  with downward effective gravity.
• Bounded in 𝑥 by conducting rigid walls at 𝑥 = ±𝐻; unbounded in 𝑦 and 𝑧.
• Low 𝛽 → electrostatic limit.

• Model equations:

(𝑠 1/𝐿𝑠, 𝑠𝑥 ≪ 1)

𝜌0𝜕𝑡𝒗 = −∇𝑝 + ∇ × 𝑩 × 𝑩0/4𝜋 + ∇ × 𝑩0 × 𝐵/4𝜋 + 𝜌𝑔

𝜕𝑡𝑩 = ∇ × 𝒗 × 𝑩0 + 𝜂∇2𝐵/4𝜋 𝜕𝑡𝜌 = − 𝒗 ⋅ ∇ 𝜌0 = −𝑣𝑥𝛼𝜌0

∇ ⋅ 𝑩 = 0 ∇ ⋅ 𝒗 = 0

𝜌0𝜂
𝜕2∇2𝑣𝑥

𝜕𝑡2
+ 𝑩 ⋅ ∇ 2

𝜕𝑣𝑥

𝜕𝑡
− 𝛼𝑔𝜌0𝜂

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
𝑣𝑥 = 0

combined
How to simplify 𝑩 ⋅ ∇?
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Twisted slicing coordinates

• For magnetic shear

𝑥′ = 𝑥
 𝑦′ = 𝑦 − 𝑥𝑧/𝐿𝑠 − 𝑟0𝑧/𝑅𝑞 𝑟0

 𝑧′ = 𝑧 
𝑡′ = 𝑡

𝒃 ⋅ ∇= ∇∥=
𝜕

𝜕𝑧
+

1

𝑅𝑞 𝑟

𝜕

𝜕𝜃

≈
𝜕

𝜕𝑧
+

𝑟0

𝑅𝑞 𝑟0
−

𝑟𝑞′

𝑅𝑞2 ቚ
𝑟0

𝑥
𝜕

𝜕𝑦

=
𝜕

𝜕𝑧
+

𝑟0

𝑅𝑞 𝑟0
−

Ƹ𝑠

𝑅𝑞
ቚ
𝑟0

𝑥
𝜕

𝜕𝑦
=

𝜕

𝜕𝑧
+

𝑟0

𝑅𝑞 𝑟0
+

𝑥

𝐿𝑠

𝜕

𝜕𝑦

define Ƹ𝑠 =
𝑟𝑞′

𝑞

take expansion at 𝑟0

define1/𝐿𝑠 ≃ − Ƹ𝑠/𝑅𝑞

absorb to 𝜕𝑧

𝜕𝑥 = 𝜕𝑥′ − 𝑧′𝜕𝑦′/𝐿𝑠

 𝜕𝑦 = 𝜕𝑦′

 𝜕𝑧 = 𝜕𝑧′ − 𝑥′𝜕𝑦′/𝐿𝑠 − 𝑟0𝜕𝑦′/𝑅𝑞 𝑟0

𝜕𝑡 = 𝜕𝑡′

∇∥= 𝜕𝑧′

shearing term 
removed!
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Quasi-mode: model equation

• Transform into twisted slicing coordinates

• Look for solutions of the form (not periodic in 𝑧):

• Then we get:

𝜉 = 𝑥, 𝜒 = 𝑦 − 𝑠𝑥𝑧, 𝜁 = 𝑧

𝑣𝑥 = 𝑣 𝜁 exp 𝑖𝑘𝑥𝜉 + 𝑖𝑘𝑦𝜒 exp 𝑝𝑡

1 + 𝜖2𝑞
1

𝑘𝑦
2

𝜕2𝑣

𝜕𝜁2
− 2𝜖2𝑞𝑖𝑠𝜉

1

𝑘𝑦

𝜕𝑣

𝜕𝜁
− 𝜖2 ቈ𝑞 1 + 𝑠2𝜉2 +

𝑝2

𝛼𝑔
𝑠2𝜁2 −

𝑝2

𝛼𝑔

𝑘𝑥
2

𝑘𝑦
2 − 2𝑠𝜁

𝑘𝑥

𝑘𝑦
𝑣 = 0

𝜖2 =
𝛼𝑔𝜌0𝜂

𝑝𝐵0
2 𝑞 =

𝑝2

𝛼𝑔
− 1

𝜖 ∼ 𝑘𝑦Δ
−1

≪ 1 (long mode length)

𝑠𝜉 ≪ 1 (weak shear)𝑘𝑥/𝑘𝑦 ≪ 1 (broad mode structure)

𝑑2𝑣

𝑑𝜁2
−

𝑝𝜌0𝜂

𝐵0
2 𝑠𝑘𝑦

2
𝜁2𝑣 +

𝑝𝜌0𝜂𝑘𝑦
2

𝐵0
2

𝛼𝑔

𝑝2
− 1 𝑣 = 0Equation for quasi-mode:

(𝜁: length along the main field line)
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Quasi-mode: solutions

• Another harmonic oscillator?

• Not a coincidence.

𝑑2𝑣

𝑑𝜁2 −
𝑝𝜌0𝜂

𝐵0
2 𝑠𝑘𝑦

2
𝜁2𝑣 +

𝑝𝜌0𝜂𝑘𝑦
2

𝐵0
2

𝛼𝑔

𝑝2 − 1 𝑣 = 0

𝜁 𝑘∥ ∝ 𝑥 H.O. for 𝑥 → H.O. for 𝑧

• Solution:
𝑣𝑥 𝑥, 𝑦, 𝑧 = 𝑔 𝑥 𝑣𝑗 𝑧 exp 𝑖𝑘𝑦 𝑦 − 𝑠𝑥𝑧

𝑣𝑗 𝜁 = 2−𝑗/2 exp − Τ𝜉2 2 Δ2 𝐻𝑛 𝜁/Δ

𝑝𝑗 =  (𝛼𝑔)2/3
𝜏𝐴𝑘𝑦

2

𝑆𝑠2

1/3

(2𝑗 + 1)−2/3 Δ𝑗 =
1

𝛼𝑔 1/6

𝑆

𝜏𝐴𝑘𝑦
2𝑠

1/3

2𝑗 + 1 1/6 ∝ 𝜂−1/3

broad structure ⇒ efficient for mixing
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Quasi-mode: physical interpretation

• Quasi-mode has finite length in the main field direction
resistive interchange mode

• Physics:
• Magnetic shear → rotation of plasma 

filaments when moving up and down. 
• Perfect alignment with field ling → infinite 

length in the 𝑧 direction → divergent 
rotational kinetic energy

• Adjust to a finite mode length Δ → plasma 
detached from field lines → enhanced 
resistive dissipation

top view of the rotation of filaments

⊙
𝑥

• Balance among 𝐸𝑔, 𝐸𝑡𝑜𝑡, and 𝐸𝑑𝑖𝑠𝑠
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Quasi-mode:  relation to resistive interchange

• Can show explicitly that quasi-mode is a linear superposition of resistive interchange mode.

• Resistive interchange:

𝑣𝑥 = 𝑣𝑔 𝑥 exp 𝛾𝒌𝑡 + 𝑖𝑘𝑦𝑦 + 𝑖𝑘𝑧𝑧

𝑣𝑔
𝑗

𝑋 = 𝑒−𝑗/2𝐻𝑗 (𝑥 − 𝑥0)/𝛿𝒌 exp −(𝑥 − 𝑥0)2/2𝛿𝒌
2

𝛾𝒌
𝑗

= 𝛼𝑔
2
3

𝜏𝐴𝑘4

𝑆𝑠2𝑘𝑦
2

1
3

2𝑗 + 1 −
2
3 𝑥0 = −

𝑘𝑧

𝑠𝑘𝑦

𝛿𝒌 = 𝛼𝑔
1
6

𝜏𝐴𝑘

𝑆𝑠2𝑘𝑦
2

1
3

∝ 𝜂
1
3

1/Δ ∼ 𝑠𝑘𝑦𝛿𝒌 ∼ 𝑘∥𝑢 = exp 𝑖𝑘𝑦𝑦 න𝑓 𝑘𝑧 exp 𝑖𝑘𝑧𝑧 − 𝑋2/2𝛿𝒌
2 exp 𝛾𝒌𝑡 𝑑𝑘𝑧

≅ 𝛿 2𝜋𝑔 𝑥 exp 𝑖𝑘𝑦 𝑦 − 𝑠𝑥𝑧 −
𝑠𝑘𝑦𝛿0𝑧

2

2
+ 𝛾𝑡 →

• Summing over modes with same 𝑘𝑦 at different resonant surfaces:

quasi-mode

𝑥
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Ad 2: Quasi-mode evolution in a stochastic 
magnetic field
• How does stochastic magnetic field affect quasi-mode?

• Quasi-mode is a wave-packet of resistive interchange ⇒ similar results expected

• But mode structures are quite different ⇒ something should change

• Results:

• Appearance of small-scale convective cells.

• Stabilization of quasi-mode via enhanced inertia. Stronger for quasi-mode.

• Turbulent damping arising from microturbulence.  Stronger for quasi-mode.

• No-trivial correlation ෨𝑏𝑟 𝑣𝑥 . ෨𝑏𝑦 𝑣𝑥  is also non-zero. 

• All the changes can be attributed to the change in mode structure and spatial ordering.

21

Cao, M. and Diamond, P.H., 2024. NF.



Welcome to the world of the torus

coupling of 
poloidal harmonics 

due to toroidicity

superposition of 
resistive 

interchange 
modes

• A quasi-mode in a cylinder resembles a ballooning mode in a torus
• Approaches: Bloch eigenmode equation; ballooning mode representation

ballooning

physical processes 
driven by curvature in the 
“bad curvature” region

bad 
curvature

good 
curvature

modes/fluctuations where 
toroidicity effect matters

No poloidal 
symmetry
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Bloch eigenmode equation

• What happens with toroidicity? magnetic drift

𝑣𝐷 = 𝑣𝑅 + 𝑣∇𝐵 = 𝑣∥
2 +

1

2
𝑣⊥

2
𝑚

𝑞

𝑹𝒄 × 𝑩

𝑅𝑐
2𝐵2

𝜃

⊗ 𝑩

𝑹𝒄

𝒗𝑫

𝑣𝐷𝜃
𝑣𝐷𝑟

• Ion continuity equation:

𝜕𝑡 𝑛 + 𝒗𝑫𝒊 ⋅ ∇ 𝑛 + 𝑣𝑟𝜕𝑟𝑛0 + 𝑛0∇ ⋅ 𝒗 + 𝑛0∇∥ 𝑣∥ = 0

𝜕𝑡 𝑣∥ = − 𝑒 ∇∥ 𝜑/𝑚 + Boltzmann electron

−𝜌𝑠
2

𝜕2

𝜕𝑥2
+ 𝑘𝑦

2𝜌𝑠
2 + 1 −

𝜔∗

𝜔
−

𝑘𝜃
2𝑥2

𝐿𝑠
2𝜔2

𝑐𝑠
2 𝜑𝑚 + 𝑇 𝜑𝑚+1 + 𝜑𝑚−1 + 𝑇′ 𝜑𝑚 − 𝜑𝑚−1 = 0

𝜔𝐷𝑖 = 𝒗𝑫𝒊 ⋅ ∇= 𝑣𝐷𝑖 cos 𝜃 𝜕𝑦 + sin 𝜃 𝜕𝑥

𝑘⊥
2𝜌𝑠

2 + 1 − 𝜔∗/𝜔 − 𝑘∥
2𝑐𝑠

2/𝜔2 = 0
drift 

acoustic

𝑇 𝜑𝑚+1 + 𝜑𝑚−1 =
𝑣𝐷𝑖

2
𝜕𝑦(𝜑𝑚+1 + 𝜑𝑚−1)

𝑇′ 𝜑𝑚+1 − 𝜑𝑚−1 =
𝑣𝐷𝑖

2
𝜕𝑥(𝜑𝑚+1 − 𝜑𝑚−1)

𝑇, 𝑇′ ∼ 𝜔𝐷𝑖/𝜔 ∼ 𝜖𝑇 = 𝐿𝑛/𝑅
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Bloch eigenmode equation

• Observations:
• 𝑛 remains as good ‘quantum’ number.
• magnetic drift due to toroidicity effect tends 

to linearly couple poloidal harmonics.

• Rewrite the equation into:
𝐿𝑚𝜑𝑚 + 𝑇𝑚+1𝜑𝑚+1 + 𝑇𝑚−1

′ 𝜑𝑚−1 = 0

⋯ ⋯ 0 0 0 0
𝑇𝑚−2

′ 𝐿𝑚−1 𝑇𝑚 0 0 0

0 𝑇𝑚−1
′ 𝐿𝑚 𝑇𝑚+1 0 0

0 0 𝑇𝑚
′ 𝐿𝑚+1 𝑇𝑚+2 0

0 0 0 𝑇𝑚+1
′ 𝐿𝑚+2 𝑇𝑚+3

0 0 0 0 ⋯ ⋯

⋯
𝜑𝑚−1

𝜑𝑚

𝜑𝑚+1

𝜑𝑚+2

⋯

= 0

equivalent to a tri-diagonal matrix equation

1D linear harmonic oscillator chain

24



Bloch eigenmode equation

• Problem reduces to Bloch eigenmode problem. 
• Toroidicity renders problem equivalent to linear chain.
• Toroidicity introduces a new scale→  Δ𝑟: spacing between two adjacent 

harmonics with same 𝑛

𝑞 𝑟𝑚+1,𝑛 − 𝑞 𝑟𝑚,𝑛

Δ𝑟
=

𝑚 + 1

𝑛
−

𝑚

𝑛
/Δ𝑟 =

1

𝑛Δ𝑟
= 𝑞′ ⇒ Δ𝑟 =

1

𝑛𝑞′
=

𝑟

𝑛𝑞 Ƹ𝑠
=

1

𝑘𝑦 Ƹ𝑠

• 𝑛 large, 𝑘𝑦  large, then Δ𝑟 small

𝜑𝑚−1 = 𝜑𝑚 𝑥 + Δ𝑟 , 𝜑𝑚+1 = 𝜑𝑚 𝑥 − Δ𝑟

𝐿𝑚𝜑𝑚 𝑥 + 𝑇𝑚+1𝜑𝑚 𝑥 − Δ + 𝑇𝑚−1
′ 𝜑𝑚 𝑥 + Δ = 0

adjacent harmonics have same ‘shape’ (translational invariance) 

25



Bloch eigenmode equation

• Fourier transform (with respect to 𝑥):

𝜌𝑠
2 𝑘𝑦𝑠

2
Ƹ𝜂2 +

𝑐𝑠
2

𝜔2𝑅2𝑞2

𝑑2

𝑑 Ƹ𝜂2
+ 1 −

𝜔∗

𝜔
+ 𝜌𝑠

2𝑘𝑦
2 ො𝜑𝑚 +

𝑣𝑏

𝜔
𝑘𝑦 cos Ƹ𝜂 + 𝑠 Ƹ𝜂 sin Ƹ𝜂 ො𝜑𝑚 = 0

• Recall 𝑘∥ ∝ 𝑥, then 𝜂 is again the distance along the main field line.

It determines how mode varies along field line → mode structure.

• Δ𝑟−1 vs. 𝜑𝑚
′ /𝜑𝑚, i.e., spacing compared to mode width.

• If Δ𝑟𝜑𝑚
′ /𝜑𝑚 < 1 ⇒ adjacent harmonics strongly overlap ⇒ “strong” Ballooning

• If Δ𝑟𝜑𝑚
′ /𝜑𝑚 > 1 ⇒ “weak” ballooning expand 𝜑𝑚 𝑥 + Δ𝑟

26



Ballooning mode representation

• Ballooning mode: 𝑘⊥ ≫ 𝑘∥. In slowly varying medium, the eikonal form is:

𝜑 = 𝐹 𝜓, 𝜒 exp 𝑖𝑛 𝜁 − න
𝜒

𝜈𝑑𝜒′

𝜓 𝑥: magnetic flux coordinate
𝜒 𝜃: poloidal angle-like variable
𝜁: toroidal angle

𝐹 is a slowly varying function. 𝜈 𝜓, 𝜒 = 𝑑𝜁/𝑑𝜒 𝑞 = ∮ 𝜈𝑑𝜒/2𝜋

• No poloidal symmetry → 𝑚 is no longer a good ‘quantum’ number

• Warning: still have poloidal periodicity → 𝜑 𝜒 = 0 = 𝜑 𝜒 = 2𝜋

𝑛 ≫ 1

𝐹 𝜓1, 𝜒 = 0 = 𝐹 𝜓1, 𝜒 = 2𝜋 exp −𝑖𝑛 න
2𝜋

𝜈 𝜒′, 𝜓1 𝑑𝜒′

𝐹 𝜓2, 𝜒 = 0 = 𝐹 𝜓2, 𝜒 = 2𝜋 exp −𝑖𝑛 න
2𝜋

𝜈 𝜒′, 𝜓2 𝑑𝜒′

𝜓2 = 𝜓1 + 𝑑𝜓varies a little varies a little varies a lot

• Reconcile 𝑘⊥/𝑘∥ with periodicity in a sheared magnetic field: ballooning mode representation. 

27

Connor, J.W., Hastie, R.J. and 
Taylor, J.B., 1979. 



Ballooning mode representation

• Basic idea: if ො𝜑 𝜂, 𝑥  is a solution of a 2D eigenvalue problem 

𝐿 𝜂, 𝑥 ො𝜑 𝜂, 𝑥 = 𝜆 ො𝜑 𝜂, 𝑥 , 𝜂 ∈ −∞, ∞

then 
𝜑 𝜃, 𝑥 = 

𝑚

𝑒−𝑖𝑚𝜃 න
−∞

∞

𝑒𝑖𝑚𝜂 ො𝜑 𝜂, 𝑥 𝑑𝜂 , 𝜃 ∈ 0,2𝜋

is a periodic eigen solution for periodic operator 𝐿 𝜃 = 0 = 𝐿 𝜃 = 2𝜋 , i.e., 

𝐿 𝜃, 𝑥 𝜑 𝜃, 𝑥 = 𝜆𝜑 𝜂, 𝑥 .

Proof: for simplicity and without loss of generality, suppose 𝐿 𝜃, 𝑥 = 𝜕/𝜕𝜃

𝜕𝜃 − 𝜆 𝜑 𝜃, 𝑥 = 

𝑚

−𝑖𝑚 − 𝜆 𝑒−𝑖𝑚𝜃 න
−∞

∞

𝑒𝑖𝑚𝜂 ො𝜑 𝜂, 𝑥 𝑑𝜂

= 

𝑚

𝑒−𝑖𝑚𝜃 න
−∞

∞

−𝑖𝑚 − 𝜆 𝑒𝑖𝑚𝜂 ො𝜑 𝜂, 𝑥 𝑑𝜂 = 

𝑚

𝑒−𝑖𝑚𝜃 න
−∞

∞

𝑒𝑖𝑚𝜂 𝜕𝜂 − 𝜆 ො𝜑 𝜂, 𝑥 𝑑𝜂

• Poloidal periodicity is relaxed for ො𝜑 𝜂, 𝑥  ⇒ safe to use eikonal form for ො𝜑(𝜂, 𝑥).

28

Not restricted to 
ballooning mode!



Ballooning mode representation

• The eikonal form of ො𝜑 𝜂, 𝑥 :

ො𝜑 𝜂, 𝑥, 𝜁 = 𝐹 𝜂, 𝑥 exp 𝑖𝑛 𝜁 − න
𝜂0

𝜂

𝜈𝑑𝜂′ = 𝜑0 𝜂, 𝑥 exp 𝑖𝑛 𝜁 − 𝑞𝜂 + න
0

𝑞

𝜃𝑘𝑑𝑞

𝜑 𝜃, 𝑥, 𝜁 = 

𝑚

𝑒𝑖 𝑛𝜁−𝑚𝜃 න
−∞

∞

𝜑0 𝜂, 𝑥 exp 𝑖 𝑚 − 𝑛𝑞
𝑘∥

𝜂 𝑑𝜂

𝜂 is distance along field line.

𝜑 𝜃, 𝑥 = න
−∞

∞



𝑚

exp −𝑖𝑚 𝜃 − 𝜂 ො𝜑 𝜂, 𝑥 𝑑𝜂 = 

𝑁

ො𝜑(𝜃 − 2𝜋𝑁, 𝑥)
superposition of 
quasi-modes

𝜑 𝜃, 𝑥 = 

𝑚

𝑒−𝑖𝑚𝜃 න
−∞

∞

𝜑0 𝜂, 𝑥 exp 𝑖 𝑚 − 𝑛𝑞 𝜂 𝑑𝜂 = 

𝑚

𝑒−𝑖𝑚𝜃 𝜑𝑚 𝑚 − 𝑛𝑞 𝑥 , 𝑥

poloidal 
harmonics

• Recall quasi-mode 𝑣𝑥 = 𝑔 𝑥 𝑣𝑗 𝑧 exp 𝑖𝑘𝑦 𝑦 − 𝑠𝑥𝑧

29
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Beyond linear theory



Magnetic shear enhanced decorrelation

• For the sheared magnetic field in tokamak:

𝑩 ⋅ ∇𝜓 = 0 𝜓 is magnetic density flux

⇒
𝜕𝜓

𝜕𝑧
+

𝐵𝜃

𝐵0

𝜕𝜓

𝜕𝑦
+ ෨𝑏𝑟

𝜕𝜓

𝜕𝑟
= 0

⇒ ෨𝜓𝑘 =
−𝑖

𝑘𝑧 − 𝑘𝜃𝐵𝜃/𝐵0

෨𝑏𝑟,𝑘

𝜕

𝜕𝑟
ത𝜓

𝜓 = ത𝜓 + ෨𝜓

⇒
𝜕 ത𝜓

𝜕𝑧
+

𝑥

𝐿𝑠

𝜕 ത𝜓

𝜕𝑦
− 𝐷𝑀

𝜕2 ത𝜓

𝜕𝑟2
= 0 

Transform to twisted slicing coordinates:

𝜕 ത𝜓

𝜕𝑧′
− 𝐷𝑀 𝑘𝑥

′ − 𝑘𝑦
′

𝑧′

𝐿𝑠

2

ത𝜓 = 0 ⇒ ത𝜓𝑘 ∝ exp −
𝑘𝑦

′ 2
𝐷𝑀𝑧3

3𝐿𝑠
2

𝐷𝑀 = 

𝑘

෨𝑏𝑟𝑘
2

𝜋𝛿 𝑘∥

magnetic diffusivity

𝑙𝑐 =
𝑘𝑦

′ 2
𝐷𝑀

3𝐿𝑠
2

1/3

 : decorrelation length in the main field direction.

31

෨𝑏𝑟: stochastic magnetic field

For electron, can define decorrelation time as 𝜏𝑐 = 𝑘𝑦
′ 2

𝐷𝑀/3𝐿𝑠
2𝑣𝑡ℎ𝑒

3 1/3
 



How geometry affects nonlinear coupling

• A frequently encountered operator:

32

෩𝒃 ⋅ ∇ 𝑣𝑥 = −∇⊥
ሚ𝐴 × ො𝒛 ⋅ ∇⊥ 𝑣𝑥 = 

𝒌,𝒌′

ሚ𝐴𝒌 𝑣𝑥𝒌′ ො𝒛 ⋅ 𝒌⊥
′ × 𝒌⊥ exp 𝑖 𝒌 + 𝒌′ ⋅ 𝒓

• Need to evaluate the coupling factor ො𝒛 ⋅ 𝒌⊥
′ × 𝒌⊥ .

• For resistive interchange mode: 𝑣𝑥 = σ𝒌⊥
𝑣𝑥𝒌 exp 𝑖 𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑖𝑘𝑧𝑧

ො𝒛 ⋅ 𝒌⊥
′ × 𝒌⊥ = 𝑘𝑥

′ 𝑘𝑦 − 𝑘𝑦
′ 𝑘𝑥 ≠ 0.

• For quasi-mode: 𝑣𝑥𝒌 = 𝑣𝑛 𝑧 exp 𝑖𝑘𝑦 𝑦 − 𝑠𝑥𝑧

ො𝒛 ⋅ 𝒌⊥
′ × 𝒌⊥ = −𝑘𝑦

′ 𝑘𝑦𝑠𝑧 + 𝑘𝑦
′ 𝑘𝑦𝑠𝑧 = 0.

The coupling factor between two wave-packets is 0.



How geometry affects nonlinear coupling
33

No energy transfer between modes

Relax to near marginality

Can only feed back on the mean gradient.

Saturation mechanism of a mode?

• Transfer to other mode ⇒ dissipation

• Use up free energy ⇒ feedback on the mean profile

• 𝑛 : plateau formation?

• 𝜑 : zonal mode?



How geometry affects nonlinear coupling

• For ballooning mode:

34

𝑣𝑥 𝜃, 𝑥, 𝜙 = 

𝑚,𝑛

𝑒𝑖 𝑛𝜙−𝑚𝜃 න
−∞

∞

𝑣0 𝜂, 𝑥 exp 𝑖 𝑚𝜂𝑛 − 𝑛 න
𝜂𝑛

𝜈𝑑𝜂′ 𝑑𝜂𝑛

• The coupling factor becomes

𝑐 = ො𝒛 ⋅ 𝒌⊥
′ × 𝒌⊥ ∝ 𝑛𝑛′ න

𝜂𝑛

𝜂
𝑛′ 𝜕𝜈

𝜕𝑥
𝑑𝜂

𝜂𝑛 and 𝜂𝑛′  are coordinates along the main field line 
of two different modes.

• Ballooning is strongest near outer mid-plane. If modes are 
concentrated in the outer mid-plane, coupling would be weak.

    
⇒ competition between stability and nonlinear coupling. 
⇒ feedback on the gradient (mean field evolution)

ballooning strongest

Frieman, E.A. and Chen, L., 1981. PoF.



Indication for avalanche

• Mode overlapping ⇒ avalanche

35

• Two ways to have avalanche:
1.Coupling of Localized modes

• resistive interchange → wave-packet
• poloidal harmonics → ballooning
• Similarity to sand-pile model: unit size 

much smaller than system size
𝜌∗ ∼ Δ/𝑎 ≪ 1, 𝛿/𝐿 ≪ 1

2.Interactions of ballooning mode
• Which one is the criminal remains unclear…

𝛿

sand pile model

Δ

vs.



Summary

• We explain how geometry affects turbulence, instability, and transport.

• In periodic cylinder:
• Field pitch = mode pitch → resonant surfaces → habitat for instability

• Magnetic shear → mode stabilization and localization + enhanced decorrelation

• Resistivity → detachment of fluids from fields → restoration of instability

• Wave-packet → broader structure → enhanced mixing & reduced mode coupling

• In torus:
• Toroidicity → coupling of poloidal harmonics → ballooning mode

• Bloch eigenmode equation & ballooning mode representation

• Stability vs. nonlinear coupling

36

an alternative picture for avalanche



Side story: velocity shear

• Operator 𝑩 ⋅ ∇ is important!

• Similar in structure to velocity shear

• Rewrite 𝑩 ⋅ ∇ in detail:

• 𝑧 𝑡, 𝑟 𝑥, 𝑟𝑑𝜃 𝑑𝑦 ⇒ analogous to:

• Shear flow also enters Landau resonance, i.e., 1/ 𝜔 − 𝑘𝑦 𝑣𝑦 𝑥

𝒃 ⋅ ∇=
𝜕

𝑅𝜕𝜙
+

𝐵𝜃 𝑟

𝐵0𝑟

𝜕

𝜕𝜃
+ ෩𝒃 ⋅ ∇

= 𝜕𝑧 + 𝜕𝜃/𝑅𝑞 𝑟 + ෩𝒃 ⋅ ∇

𝑑𝑡 = 𝜕𝑡 + ҧ𝑣𝑦 𝑥 𝜕𝑦 + 𝒗 ⋅ ∇

shearing term

𝑣

37



local expansion

Side story: Velocity shear

• How to simplify 𝜕𝑡 + ҧ𝑣𝑦 𝑥 𝜕𝑦?

• Shearing coordinates (same as twisted slicing coordinates)

⇒ a natural way to describe fluctuations in shear

𝑥′ = 𝑥
𝑦′ = 𝑦 − ҧ𝑣𝑦 𝑥 𝑡

𝑧′ = 𝑧
𝑡′ = 𝑡

linear shear
𝑥′ = 𝑥
𝑦′ = 𝑦 − ҧ𝑣𝑦

′ 𝑥𝑡

𝑧′ = 𝑧
𝑡′ = 𝑡

𝜕𝑥 = 𝜕𝑥′ − ҧ𝑣𝑦
′ 𝑡′𝜕𝑦′

𝜕𝑦 = 𝜕𝑦′

𝜕𝑧 = 𝜕𝑧′

𝜕𝑡 = 𝜕𝑡′ − ҧ𝑣𝑦𝑥′𝜕𝑦′

𝜕𝑡 + ҧ𝑣𝑦
′ 𝑥𝜕𝑦 = 𝜕𝑡′ − ҧ𝑣𝑦𝑥′𝜕𝑦′ + ҧ𝑣𝑦

′ 𝑥′𝜕𝑦 = 𝜕𝑡′ shearing term eliminated!

38

• Can connect wave numbers in shearing coordinates and usual coordinates:
𝑐𝑘′ exp 𝑖𝒌′ ⋅ 𝒙′ = 𝑐𝑘′ exp 𝑖 𝒌′ ⋅ 𝒙 − 𝑘𝑦

′ ҧ𝑣𝑦
′ 𝑥𝑡

⇒  𝑘𝑥 = 𝑘𝑥
′ − 𝑘𝑦

′ ҧ𝑣𝑦
′ 𝑡 eddy tilting

Goldreich, P. and Lynden-Bell, D., 1965. 



Side story: velocity shear

• For diffusion with the presence of linear shear flow

𝜕

𝜕𝑡
+ ҧ𝑣𝑦

′ 𝑥
𝜕

𝜕𝑦
− 𝐷

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
𝑐 = 0 

Transform to shearing coordinates:
𝜕

𝜕𝑡′
+ 𝐷 𝑘𝑥

′ − 𝑘𝑦
′ ҧ𝑣𝑦

′ 𝑡′ 2
+ 𝑘𝑦

′ 2
𝑐𝑘′ = 0 ⇒

𝑐𝑘′ = 𝑐0 exp 𝑖𝑘𝑦
′ 𝑦′ exp −𝑘𝑦

′ 2
𝐷𝑡 exp − න

𝑡

𝑑𝑡′𝐷 𝑘𝑥
′ − 𝑘𝑦

′ ҧ𝑣𝑦
′ 𝑡′ 2

∝ exp −
𝑘𝑦

′ 2
𝐷 ҧ𝑣𝑦

′ 𝑡3

3

𝑐: passive scaler

𝐷: diffusivity

• Eddy tilting amplifies the effect of diffusion.

shear enhanced 
diffusion

Looks familiar? Shear enhanced homogenization! 1/𝜏𝑑𝑒 =
𝐷 ҧ𝑣𝑦

′

3𝐿𝑦
2

1/3
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Side story: velocity shear

• For an isolated simply connected domain of 2D incompressible flow enclosed by a closed 

streamline

• What is the rate of homogenization?

𝜕𝜔

𝜕𝑡
+ ∇𝜙 × Ƹ𝑧 ⋅ ∇𝜔 − ∇ ⋅ 𝜈∇𝜔 = 0

when 𝜈 → 0, 𝜔 = 𝜔 𝜙  is the static solution→ allows arbitrarily fine-scale structure

Prandtl and Batchelor: when 𝜈 ≠ 0, the final state is 𝜔 𝜙 → 𝑐𝑜𝑛𝑠𝑡. 

𝑧𝑐0

develop strong 
∇𝜔 at boundary

𝑥

𝜔

𝑥

‘fast mixing’ to band-like structures

𝜔

‘slow mixing’ to homogenizationinitial state

𝜔
𝑥

𝑥

𝑦

𝑑𝑦

𝑑𝑡
= 𝑣𝑦 𝑟

𝑑𝛿𝑦

𝑑𝑡
= 𝑣𝑦

′ 𝛿𝑟 → 𝛿𝑦2 ≅ 𝑣𝑦
′ 2

𝛿𝑟 2𝑡2 ≅ 𝑣𝑦
′ 2

𝐷𝑟𝑡3/3 → 1/𝜏𝑚𝑖𝑥 ∼
𝑣𝑦

′ 2
𝐷𝑟

3𝐿𝑦
2

1/3

𝑣𝑦

40
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Thank you
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