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Before | start...

My own work: plasma dynamics in a stochastic magnetic field

* Motivated by the use of resonant magnetic perturbation in tokamaks

A bit specialized... = would like to show something more accessible

Multiple sources: Prof. Diamond’s notes and other “ancient” papers.

Unearth the physical insights buried in algebra.
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€, and €, are any two unit vectors perpendicular *o f,

and ¢ is the azimuth (gyrophase) angle in velocity space.

In terms of these variables, the ¥V and ¥, operators in
Eq.(1) become
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With regard to the spatial variables, it is ient to
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which is satisfied by the Maxwellian solution,
0
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where N, is the particle density and T is the temper-
ature. Substitution of this result back into Eq.(5) then
gives
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Here the solution is just F(!) = Fpy + F() | where the
diamagnetic contribution, Fp, is

F = (1/07 % n-vF, W)

and the gyrophase-independent function, l'_-‘m, must be
d ined from the second-order form of Eq.(1).

define them in terms of the magnetic field configura-
tion, i.e.

Taking the ¢-average of this equation then yields the
usual neoclassical result [6],
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We have seen colorful visualizations of plasma Normalized radius: r/p,

turbulence, zonal flow and staircases.
We are also familiar with simple models, e.g.,

0: (V20 — ) — [(Vo x 2) - V][V?p —Inng] = 0
There is a gap between complex reality and well-known simple models.
To see how geometry constrains plasma dynamics — theories involving geometric effects.
Geometry: magnetic configuration (shear & toroidicity)



Outline
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Periodic cylinder — Torus

Resonant KRSl Ballooning
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Bloch eigenmode equation
Ballooning mode representation

Shear enhanced decorrelation
Nonlinear coupling
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e Breaking frozen-in law
Resistive interchange
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Wave- e Twisted slicing coordinates

packet * Bridge to toroidal world but generic




Outline: the message you can get

Resonance
How linear modes are modified
Shear
How nonlinear coupling is affected
Wave-
packet
How an emergent state (avalanche) is formed

Toroidicity

Side story: velocity shear Advertisements: my own work



Resonances

d :
* Poloidal and toroidal periodicity = ¢ ~ @, , exp i(mf — n¢) £ == = mode pitch

n

* Rotational transform in tokamak: 4>| magnetic shear ‘
rd6/Bg = Rd¢ /By :»‘q(r)\= d¢/d6 = rBy /RBy(r) = field line pitch

* When field line pitch = mode pitch, i.e., q(rm n) = m/n = resonant surfaces

- Atresonantsurfaces: k;, =k-b = (m/q(rmn) n)/R—O

Magneticsuliaces resonant surface non-resonant surface




Resonances

* Properties of k; = 0:

* minimize Landaudamping | ask; = 0,v, = w/k; = © # y,

* minimize line bending (energetically unfavored) /\/%

1 B? —
SW = 5] d3x{f—n +Jo - (EXB) +ypo(V- &2+ (§-Vpo)(V-&) — (§- V)V~ (pos‘)}

B =Vx(§xBy) =By-V¢§ > B?/4n < B{k{ > 0

* Resonant surfaces are ideal “habitats” for modes, islands, etc.

* Resonance ‘pins’ turbulence. (modes live on resonant surfaces)



|deal interchange mode

{Vn]n —0,Vip+go,p=0 ] =V34,
Ey=—0A4-V,$ =0 0:p + U 0,(p) = 0
> yiViQ = —viViki® — gk3@0, In(p)

— | vi = gk3/Lyk% | = (favor small k,, large k)

y * ®Z
- N efficient for

Magnetic shear is present in tokamaks. What are effects of magnetic shear on modes?

Start with the simplest mode: interchange (heavy pressing light)

In the case of no shear, no resistivity, perfect alignment = k; = 0 (flute instability)

Interchange (flute) instability

X radial transport



Effects of magnetic shear on instability

* What happens when magnetic shear is present?

* Modes want to align with field lines When deviate from resonant surface, magnetic

* Field lines are twisted in space pltCh and mode pltCh no longer match = k" * 0.
ky=k-b=(m/q(r) ~m)/R| =-mq'(r)x/Rq* = ~m3x/Rq = lyx/Ls

mn
=P [, = 0 atresonant surfaces $=rq'/q,1/L, ~ —§/Rq,x =71 —

mn
k, = kgx/Lg increases with x
* k, # 0 = field line bending = energetically unfavorable = mode stabilization
= Suydam criterion: —(8mp’/r)(q/B,q')*l,, > 0.25 (critical pressure gradient)

* The farther away from the resonance surface, the stronger the line bending effect

fx

. . | -y 7
== mode localization : »fx

AAAA:

without shear with shear
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Breakdown of the frozen-in law

* Magnetic shear+ flux frozen-in = field line bending = stabilization

flux frozen-in law: magnetic flux through any given moving plasma element does not change.

Kelvin’s theorem: vorticity through any given moving fluid element does not change.

NNV

Kelvin’s theorem broken by viscosity = Flux frozen-in law broken by resistivity

* With finite resistivity, plasma can detach from field lines.
N\

0B =By -Vv—v-VBy+nV°B/4n (a)/(b) « 1 nearresonant surfaces as k; — 0
(a) (b)

* Resistivity makes interchange mode get access to free energy again!
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Resistive interchange mode

* From ideal MHD to resistive MHD =

Ohm’s law: —at/]" — V"(ﬁ =0 (ldeal) — —V"gb — 7]]" (resistive)

Sv. kZx?
y2vip -0 g4 Tok2g=0  S=1p/ty~ 107 ~ 10°
Ta L |Lp|

* Forresistive interchange mode: T Harmonic oscillator!
y~0(n3)->0(s73), w~0(a/S¥3)«<a localized at resonant surfaces

* Even a small resistivity can result in non-trivial effects!

-—p Modes are ‘pinned’ at resonant surfaces.
] ] ] ] ] ]

e These localized modes could be an alternative mechanism account for avalanche.



Ad 1: Resistive interchange mode in a
stochastic magnetic field

Cao, M. and Diamond, P.H., 2022. PPCF.

(@) Resonant Island , l -
Sur.t‘acc Chain ’ & % _—y
N A
Filamentation A ‘
— , N
J, = const. 5 _.
* Regular magnetic field — stochastic magnetic field —
 How does stochastic magnetic field modify the Oy v ey _
dynamics of a single interchange mode? /"4\ S E
1. To maintain quasi-neutrality, small-scale J » S :\x‘ O
convective cells (microturbulence) are driven. : \ LA e | s
2. Thereis anon-zero (17,,15,,) correlation. ) S P
3. Stochastic magnetic field can enhance effective . \""/ | smallscale
plasma inertia and thus slow down mode growth. |, D, ~ N -
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Quasi-mode: motivation

* Resistivity restores instability, but modes are narrow — not effective for mixing.

* Introduction of quasi-mode, two purposes:

* Broad mode structure — enhanced mixing

 Connecting to ballooning mode, which resides in toroidal geometry

* Ballooning is very important.

leads to generate

Heating H-mode But a direct study is hard...
4 quasi-mode
constrain suppress ”~ ~ .
resistive ballooning

interchange mode
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Quasi-mode: basics

Nature of quasi-mode: a wave-packet of radially localized interchange-mode
at different resonant surfaces. K.V. Roberts, J.B. Taylor, 1965. PoF.

* Wave packet =

not an eigenmode
 Dispersion?

long life-time, can maintain =

its shape before NL phase

* Convective rolls get twisted i
| i |

as moving along z to keep | % I

|

|

aligned with local field

Sketch of the quasi-mode

aka: twisted slicing mode




Quasi-mode: setup

* Basic setup:
* Incompressible plasma

Finite resistivity n — resistive MHD.

Weak but finite magnetic shear By = (0,sx,1)By. (s & 1/Lg,sx <K 1)
Unstably stratified, d,py = ap, (@ > 0) with downward effective gravity.
Bounded in x by conducting rigid walls at x = +H; unbounded in y and z.

* Low 8 — electrostatic limit.

* Model equations:
P00 v =—-Vp+ (VX B) X By/4m + (VX By) X B/4m + pg V-B=0 V-uv=0
0,B =V x (vxB,) +nV?B/4n 0,p = —(-V)py = —v,apg
How to simplify B - V?

combined 92V2p, , 0y 52 52
+ (B -V) —t—agp0n< > +azz>vx =0

—
pon atz
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Twisted slicing coordinates

* For magnetic shear

- i, 1 0
b -V=V,= -
1=35, T Rq(r) 90 take expansion at
d o rq’ 0 . rq
~ 9z T (Rq(ro) - Rq? Ir, x> dy define s = 7

a+( v § )a a+( To/+x>a

= — — x| —=— —_— | . ~ _&

0z \Rq(r)) Rqlr~"Jdy 0z \Rq(ry) ' Ls)ay definel/L $/Rq
"

/ ax = axl — Z,ayI/LS

—xz/Ls — 19z/Rq(ry) __, Oy =0y —
0, =0, —x'0y1/Lg — 100, /Rq(79) shearing term
0, = 0, removed!

» absorbto 0,

< R
|
TN R

V=0,

& N
|
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Quasi-mode: model equation

* Transform into twisted slicing coordinates
E=x, x=y-—sxz ({=2z (¢: length along the main field line)

* Look for solutions of the form (not periodic in z):
vy = v({) exp(ik,& + iky)() exp pt
* Then we get:

1 0%v 100 . 2 kZ -~
(1+€,2'q)——— € gw{———e q(1 +,5,352)+Z—95252 ( ~~75¢ )]v =0

k2 d(? - k, 0¢
, _ agpon p2 ky/k, < 1(broad mode structure) s¢ < 1 (weak shear)
= 5 q= —1 -
pB; ag e ~ (ky A) « 1 (long mode length)

: . 2 k2
Equation for quasi-mode: Z(v pp‘m( ky) v+ pp;z Y (a‘g — 1>v -0
0 p




Quasi-mode: solutions

e Another harmonic oscillator?

d*v ppon , pponk§ ag
e (ky)c 5 - 1|r=0

* Not a coincidence.

|€<—>ku°<x| H.O. for x - H.O. for z

e Solution: — broad structure = efficient for mixing

v (x,y,2) = g(x)v;(2) exp|iky (y — sxz)]

v;j({) = 2772 exp(— &2 /2 A*)H,, (/D)

2

1/3
1k
- @ (%) @i s

1

S

&

(ag)/e

(

T4k5s

1/3
) (2j + DV o713
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Quasi-mode: physical interpretation

* Quasi-mode has finite length in the main field direction

<+—p resistive interchange mode
* Physics:

* Magnetic shear — rotation of plasma
filaments when moving up and down.

* Perfect alighment with field ling — infinite
length in the z direction — divergent
rotational kinetic energy

* Adjust to a finite mode length A — plasma
detached from field lines —» enhanced
resistive dissipation

* Balance among E, Eiot, and E g

( )<

top view of the rotation of filaments



Quasi-mode: relation to resistive interchange

* Can show explicitly that quasi-mode is a linear superposition of resistive interchange mode.

* Resistive interchange:

Uy = Vg(x) exp(ykt + ik, y + ikzz)

vy (X) = e I2H;((x - 0)/81) exp(—(x — x0)/257)
1

1
4

: 2 (1,k*\3 2 k 1/ 1,k \3 1
J — 3 A 2i +1) 3 — __Z — 6 A 3 ‘ X
Yi = (ag) (552 k§> (2j+1)3 &, 6k = (ag) 5522 1)

* Summing over modes with same k,, at different resonant surfaces:
u = expiky,y jf(kz) exp[ikzz — X2/25,§] expyrtdk,  1/A ~ sk,6; ~ k

(skyBoz)°
2

=~ §v2mg(x) exp [iky(y — SXZ) — + )/t] — quasi-mode

20



Ad 2: Quasi-mode evolution in a stochastic
magn et|C fleld Cao, M. and Diamond, P.H., 2024. NF.

* How does stochastic magnetic field affect quasi-mode?

* Quasi-mode is a wave-packet of resistive interchange = similar results expected

* But mode structures are quite different = something should change

* Results:
* Appearance of small-scale convective cells.
* Stabilization of quasi-mode via enhanced inertia. Stronger for quasi-mode.
* Turbulent damping arising from microturbulence. Stronger for quasi-mode.
» No-trivial correlation (b, #,). (b, ¥;) is also non-zero.

* Allthe changes can be attributed to the change in mode structure and spatial ordering.

21
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Welcome to the world of the torus

m—1 m m+1

g=‘§ No poloidal
symmetry coupling of
/K bad o> poloidal harmonics
curvature due to toroidicity

superposition of

physical processes resistive
driven by curvatureinthe = interchange
modes

ballooning bad curvature” region

modes/fluctuations where
toroidicity effect matters Y ?

* A quasi-mode in a cylinder resembles a ballooning mode in a torus
 Approaches: Bloch eigenmode equation; ballooning mode representation
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Bloch eigenmode equation

* What happens with toroidicity? = magnetic drift

1 >mR X B

vp = Vg + vyg = | v + z Vi
p = Vgt Vyp (IIZJ_qRBZ

* |lon continuity equation:
atﬁ + VUpi: Vn + ﬁrarno + Tlov D+ Tlov"ﬁ" =0

d:U; = —le|Vy®/m + Boltzmann electron

le.:vDi.V:vDi(c0596y+sin96x) T T' ~ wp;/w ~ € = L, /R
) Di ~er = LIn

— 92 w*\  kgx? ,
_ps Ox2 + kyps 1- w ] 12 02 s | Om + T(Omer + Om-1) + T (@ — Pm_1) =0
s

. J

Upi
Y T((pm+1 + (pm—l) - 7lay((pm+1 + Om-1)
= [ipi+1—w/w— k”CS/a) =0

drift

. , Upi
acoustic T'(Pms+1 — Pm—1) = fax(¢m+1 — Pm-1)
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Bloch eigenmode equation

. rvations:
Observations 1Dlinearharmonicoscillatorchain

* nremains as good ‘quantum’ number. r- State of equilibrium

* magnetic drift due to toroidicity effect tends @Mﬁﬁxmﬂ,{T\Mﬁ{?ﬂﬁﬁﬁ?‘ ,nm,{}

to linearly couple poloidal harmonics.

* Rewrite the equation into:

Stace of sizgin

' P A PRV
Lin®m + Tm+1Pm+1 + Tip—1Pm-1 =0 "3‘"“"|{?|: @\ /G) Ac?\ Aﬁ
=P equivalent to a tri-diagonal matrix equation \,

.o 0 0 0 0 1. ..o - m—-—1 m m+1
TT,n—Z Lm—l Tm 0 0 0 q)m_l

0 1,n—1 Lm Tm+1 0 0 Om —0 N

0 0 T1;1 Lm+1 Tm+2 0 Pm+1

0 0 0 Ton Lmss Tuus|[ome 99090000

0 0 0 0 U LRI

nq(r)
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Bloch eigenmode equation

* Problem reduces to Bloch eigenmode problem.
* Toroidicity renders problem equivalent to linear chain.
* Toroidicity introduces a new scale— Ar: spacing between two adjacent

harmonics with samen

r —alr m+1 m 1 1 r
Ar n n nlAr nq, ngs kyS

* nlarge, k, large, then Ar small

-—p adjacent harmonics have same ‘shape’ (translational invariance)
Pm-1 = QDm(x + Ar), Pm+1 = QDm(X — Ar)
LmQDm(x) + Tm+1(pm(x - A) + Trln—190m(x + A) =0
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Bloch eigenmode equation

* Fourier transform (with respect to x):

2 2 *
2 2/\2 CS d w 21,2 A vb " n . AN\ A _
— [Ps (kys) ° + W?R2qZ 72 + <1 — 3) + ps ky] Om + Eky(cosn + s sinf)P,, =0

* Recall k; « x, then 1 is again the distance along the main field line.

- |t determines how mode varies along field line = mode structure.
« Ar~tvs. @), /@, i.e., spacing compared to mode width.
* If Arg,, /@, < 1= adjacent harmonics strongly overlap = “strong” Ballooning

o If Aro), /@, > 1= “weak” ballooning expand ¢@,,,(x + Ar)
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Ballooning mode representation

Ballooning mode: k; > k. In slowly varying medium, the eikonal form is:

Y & x: magnetic flux coordinate

X
@ = FQ@, x) exp [in (( — f Vd)(')] x < 0:poloidal angle-like variable
¢: toroidal angle

F is a slowly varying function. v(y,y) =d{/dy q = $vdy/2n n>»1

No poloidal symmetry = m is no longer a good ‘quantum’ number Connor, J.W., Hastie, R.J. and
Taylor, J.B., 1979.

Warning: still have poloidal periodicity = ¢ (y = 0) = @(y = 2m)

2T ]
F(1,x =0) = F(1, x = 2m) exp —inf vy, Y)dy'
varies a littlel varies a littlel _i/aries a lotl 1/)2 = 1/11 + dl/’

27T
F(Wyx = 0) = F(po, x = 210) exp | —in f (e o)dx’

Reconcile k, /k; with periodicity in a sheared magnetic field: ballooning mode representation.




28

Ballooning mode representation

» Basicidea: if ¢(n, x) is a solution of a 2D eigenvalue problem -
Not restricted to

L(n.x)9(n,x) = Ap(n.x), 7 € (—0,) ballooning mode!

p(6,2) = ) e~m j e p(n X)dn, 6 € (0.27]

m

then

is a periodic eigen solution for periodic operator L(6 = 0) = L(0 = 2m), i.e.,
L8, x)p(08,x) = Ap(1,x).
Proof: for simplicity and without loss of generality, suppose L(08,x) = d/06

05 = D0 (6,2) = Y (=im = Ve [ ™o, x)d

- Z e f (—im — De™ @, x)dn = Z e™m? f e'™(8, — 1)@, x)dn

m m
 Poloidal periodicity is relaxed for ¢(n, x) = safe to use eikonal form for @ (n, x).
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Ballooning mode representation

* The eikonal form of $(n, x):

¢

ql/
= @y(n, x) exp [in <( —qn +'[/9kdq)]
0
V4

—p P(0,x,() = z pl(ng—mo) j ©o(n, x) exp [i gm ~ nql 77] dn

m

n
@M, x,{) = F(n,x) exp [in <C—f vdn’)
No

9k,m 8k.m+1 0k,m+2
-t pt——»

- 7 is distance along field line. W,,(,Jm
* Recall quasi-mode v, = g(x)v;(2) exp[iky(y — sz)] >

m-1 m m+1 m+2  nq(r)

superposition of
quasi-modes  pg(pidal

o6.0= [ 2, expl=im(® = mlorx)dn = (0 = 2. x) <=

harmonics

<0(9,x)=z ~ime f @o(n, x) expli(m —ng)nl dn = z ""e‘qom(m nq(x), x)r

m




Beyond linear theory

30
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Magnetic shear enhanced decorrelation

* Forthe sheared magnetic field in tokamak:

—~

B-Vy =0 1) is magnetic density flux b,-: stochastic magnetic field

d By 0 _ 0 _ magnetic diffusivit
WL B0 5y Gy . d

0z By dy or . ~ (2

. — — 5 T Dy = |brk| 7T5(k||)
5, = —i 7 il/;:}&p_l_xat/) DOI/)_O -
k™ kz — kng/BO Tk or 0z LS E)y M dr2 B Z
Transform to twisted slicing coordinates:

— P 2
oY , A _
62’_DM<kx_kyL_s) 1/J=0:>1/)kocexp<—

Perturbed
field line

Perturbed
field line

)2
ky Dy z?
312

1/3

k},°D . . L o

l. = ( 3’3L2M> : decorrelation length in the main field direction.
S

)1/ 3 Unperturbed

. o 2
For electron, can define decorrelation time as 7, = (kj’, DM/3L§vfhe feld line



How geometry affects nonlinear coupling

A frequently encountered operator:

~

b-Vo,=-V,AxZ-V,D, = z,éikﬁxk,z (k' x k) expli(lk+ k") - 1]
kk'

Need to evaluate the coupling factorz - (k' X k).

For resistive interchange mode: Ty = Xp Uy exp[i(kxx + kyy + ikzz)]

2- (k' x k) = (kiky, — kjky) £ 0.

For quasi-mode: ¥y, = v,(2z) exp ik, (y — sxz)
z-(ky Xk,)=—kyk,sz+ kjykysz=0.

=—=P The coupling factor between two wave-packets is 0.

32



How geometry affects nonlinear coupling

Saturation mechanism of a mode?

* Transfer to other mode = dissipation
* Use up free energy = feedback on the mean profile

= No energy transfer between modes

= Can only feed back on the mean gradient.

=% Relax to near marginality

* (n): plateau formation?

* (@): zonal mode?

33
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How geometry affects nonlinear coupling

. Frieman, E.A. and Chen, L., 1981. PoF.
* For ballooning mode:

_ 0 Mn
U,(0,x,¢) = z gi(n@-—mo) j vo(n, x) exp [i <mnn — nf vdn’)] dn,,

mn

* The coupling factor becomes

! Qv |
c=2-(k’l><kl)ocnn’j —dn 9=2
n, 0%
Nn and n,,r are coordinates along the main field line /p\

of two different modes.

* Ballooningis strongest near outer mid-plane. If modes are
concentrated in the outer mid-plane, coupling would be weak.
= feedback on the gradient (mean field evolution)

= competition between stability and nonlinear coupling.

ballooning strongest



Indication for avalanche

* Mode overlapping = avalanche

* Two ways to have avalanche:

Z

1.Coupling of Localized modes

* resistive interchange — wave-packet - T i =FiFasy )
* poloidal harmonics — ballooning }

Zl'\ Sy Zn"'z

« Similarity to sand-pile model: unit size i P
much smaller than system size S ——‘_]
pr ~AJa K1, 0/L K1 - — Z4
2.Interactions of ballooning mode X N

* Which one is the criminal remains unclear... sand pile model
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Summary

* We explain how geometry affects turbulence, instability, and transport.
* |[n periodic cylinder:

* Field pitch = mode pitch — resonant surfaces — habitat for instability

* Magnetic shear - mode stabilization and localization + enhanced decorrelation

* Resistivity —» detachment of fluids from fields — restoration of instability

* Wave-packet — broader structure - enhanced mixing & reduced mode coupling

e |ntorus: an alternative picture for avalanche

T

* Toroidicity — coupling of poloidal harmonics — ballooning mode

* Bloch eigenmode equation & ballooning mode representation

* Stability vs. nonlinear coupling
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Side story: velocity shear

* Operator B -V isimportant!

e Similarin structure to velocity shear

« Rewrite B - V in detail: b lines
5. v 0 Be(r) 0 — magnetic | 2

— . f 0
ROD + B,r 90 +b-V surfaces R
=0,+09/Rq(r) +b -V

ez t,r & x, rdf < dy = analogous to:

‘U\

shearing term

dy = 0, + 0, (x)0, + T -V

* Shear flow also enters Landau resonance, i.e., 1/|w — k, (v, (x))]



Side story: Velocity shear

* How to simplify d; + 7,,(x)d,,? Goldreich, P. and Lynden-Bell, D., 1965.

* Shearing coordinates (same as twisted slicing coordinates)

= a natural way to describe fluctuations in shear

x:x .X,:.X ax:axl—vyta
y =y —1,(0)t linear shea.r y' =y —vyxt Oy = 0,

z' =7z local expansion z' =z 0, = 0y

t'=t t'=1t 0r = 0pr — Dyx' 0,

0 + Uyx0dy, = 0 ﬁ;x@yr n vy -0y = 0y === shearing term eliminated!

SS,

« Can connect wave numbers in shearing coordinates and usual coordinates:
- = = = =

rexpik’ - x' = c,expi(k’ - x — kj,7,xt)
crexpik’ - x' = cprexpi X yUyX edd\00§j

= kx = kDIC — k:;ﬂ?),,t eddy tlltlng - - shearﬂow

time
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Side story: velocity shear

* For diffusion with the presence of linear shear flow

02 02 c: passive scaler
[_ ¥ vyx ay " (6962 " 03/2)] ¢=0 D: diffusivity
Transform to shearing coordinates: shear enhanced
5 diffusion
{?+D[(k’—k’ ')’ +k'2]}ck,—o=> 4
co = ook exp(—k00)exp| - [ D 0~y 30) | o exp | - 525

\

* Eddy tilting amplifies the effect of diffusion. 1/3
D—I
Looks familiar? Shear enhanced homogenization! 1/7ae = <3in>




40

Side story: velocity shear

* Foranisolated simply connected domain of 2D incompressible flow enclosed by a closed

Z
i 0w Co
Sreamiine =+ vp x 2 Vo —V-vWw =0 O
whenv — 0, w = w(¢) is the static solution— allows arbitrarily fine-scale structure
Prandtl and Batchelor: when v # 0, the final state is w(¢) — const. ‘y
X

* What is the rate of homogenization?

dy ddy
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1/3
= U3’157‘ - (8y?) = U3;2(5T>2t2 = U&ZDTt3/3 = 1/Tmix ~ ( )
develop strong
Vw at boundary

3 x—» @ x—» J @ &

initial state ‘fast mixing’ to band-like structures ‘slow mixing’ to homogenization




Thank you
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