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Abstract / Objectives

Abstract The observed energy spectra of ac-
celerated particles at interplanetary shocks of-
ten do not match the diffusive shock accelera-
tion (DSA) theory predictions. In some cases,
the particle flux forms a plateau over a wide
range of energies, extending upstream of the
shock for up to seven e-folds before submerg-
ing into the background spectrum. Remark-
ably, at and behind the shock, the flux falls off
in energy as ϵ−1, consistent with the DSA. The
upstream plateau suggests a different than in
the DSA particle transport mechanism. A stan-
dard (linear) DSA solution based on a widely-
accepted diffusive particle transport with an

underlying resonant wave-particle interaction
cannot explain the plateau in the particle flux.
To explain it, we modify the DSA theory in
two ways. First, we include a dependence of
the particle diffusivity κ on the particle flux
F (nonlinear particle transport). Second, we
invoke short-scale magnetic perturbations that
are self-consistently generated by, but not reso-
nant with, accelerated particles. In this solution,
the particle diffusivity increases with energy as
∝ ϵ3/2, simultaneously decaying with the parti-
cle flux as 1/F almost everywhere in the shock
precursor.
Overview Diffusive shock acceleration (DSA)
is the most universal and robust mechanism

whereby particles are accelerated to high ener-
gies in various shocks across the universe. Its
physical and intuitive grounds are accessible.
In particular, the shape of the particle spectrum
behind a passing shock comes from a “back-
of-the-envelope” calculation. It is a power-
law in momentum ∝ p−q, with an index q =

3r/ (r − 1), that merely depends on the shock
compression, r.
This paper considers a DSA disagreement with
the observed spectra. Namely, at interplanetary
shocks observed in situ, e.g., [1], the particle flux
often flattens upstream, whereas the downstream
part agrees with the DSA. Since the disagree-

ment is partial, it helps identify the DSA ele-
ments responsible. In addition, it might shed
light on how the DSA is sped up by waves ex-
cited by the accelerated particles themselves.
Resonant waves typically saturate at a level not
significantly higher than δB/B0 ∼ 1. Other,
macroscopically-driven instabilities may con-
tinue to grow, such as an acoustic instability
driven by the pressure gradient of accelerated
particles. We argue that this nonresonant insta-
bility may result in the spectrum flattening ob-
served ahead of interplanetary shocks. At the
same time, it does not affect the DSA-predicted
spectral slope downstream, as also observed.

Observational Hints and Model Fits
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• The left panel demonstrates disagreements with the "standard"
DSA model on the upstream side of the shock (t < 135.1)

• At the same time, on the downstream side t > 135.1, the par-
ticle flux decreases approximately as ϵ−1 with energy, which is
consistent with the DSA

• Immediately on the upstream side, the low-energy part of the
spectrum decays more steeply with distance from the shock,

which is also qualitatively consistent with the DSA, if the parti-
cle diffusivity grows with energy.

• Further ahead, the disagreements with the DSA become obvi-
ous since the particle intensity does not depend on energy (flat
spectrum)

• In the “standard” DSA high-energy particles diffuse farther up-
stream, which is in stark disagreement with the present obser-
vations

• Right panel shows fits in three energy channels produced using
eq.(3)

• The fits correctly reproduce the observations over the entire
shock precursor and many orders of magnitude in particle in-
tensity

• Deviations of the theoretical curves from the data points may
be caused by

– time dependent effects, which are not included in the model
described below

– magnetic traps that are seen in the bottom plot at the left panel

Acceleration Model

Assumptions

• macroscopic wave generation by the pressure gradient or cur-
rent of accelerated particles upstream

• nonresonant interaction of accelerated particles with self-
generated waves

• nonlinear particle diffusivity (diffusion coefficient depends on
the particles intensity through the wave energy)

Particle diffusion
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Ew- normalized wave energy, related to the particles flux F (ϵ) =

p2 f (p), f -conventional momentum distribution of accelerated
particles, ϵ - particle energy. Since l is a fixed turbulence cor-
relation length, not associated with the resonant wave number
k = r−1

g ∝ 1/
√

ϵ, the energy scaling of κ∥ ∼ ϵ3/2ω2
c , where ωc

is the particle Larmor frequency. Wave energy is related to the
particle flux as follows:
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16π

√
2mϵ3/2

3 (MA − 1) ρV2
A
(F + ψ) . (1)

ψ (ϵ) parameter associated with the background particle and
wave spectra far upstream, MA is the Alfvenic number of the
shock, VA -Alfven velocity, ρ is the plasma density

Particle transport and acceleration
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Solution in terms of F (ϵ)
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Here F0 ∝ ϵ−1 is the downstream flux, Ψ (ϵ) is associated with the
particle injection at the shock front and shock parameters (Mach
number)
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Since for nonresonant wave-particle interactions κ0 ∝ ϵ3/2 the
normalized distance ζ upstream does not depend on energy
series expansion for |(ψ − Ψ) ζ| ≪ 1 and ψ ≪ F0

F ≃ F0
1 − F0ζ

. (4)

For −F0ζ > 1 (ζ < 0 upstream), F ≈ −1/ζ, which is a completely
flat spectrum, as observed
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As seen from this plot, eq.(4) fits the data reasonably well not far
from the shock. To fit the data in the whole upstream region,
somewhat uncertain functions Ψ and ψ need to be included. We
approximate them using a power-law dependence of particle en-
ergy. The result is shown in the previous section.

Conclusions The following two modifications to the DSA the-
ory are required to explain the flat spectra observed ahead of sev-
eral interplanetary shocks

• Dependence of particle diffusivity κ on the particle flux F (non-
linear particle transport)

• Short-scale magnetic perturbations that are self-consistently
generated by, but not resonant with, accelerated particles

• In the resulting DSA solution, the particle diffusivity increases
with energy as ∝ ϵ3/2, simultaneously decaying with the parti-
cle flux as 1/F almost everywhere in the shock precursor
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