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Motivation
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• Improved confinement in NT over PT tokamak experiments is now well established. [Y Camenen+ 2007, 
M Fontana+2018, M Austin+ 2019, A Marinoni+ 2019, S Coda+2022,…]


• Theoretical understanding lacking! TEM/ITG stabilization often invoked to explain improved confinement 
in NT.

- TEM stabilization by precession drift reduction. [A Marinoni+ 2009]

- ITG turbulence and transport for NT remains poorly understood. 


• Previous simulations lacked insights on physical mechanism behind the beneficial effects of NT on ITG . 
Sometimes, not even general agreement on basic trends with !δ

[J M Duff+ 2022] [G Merlo+ 2023]



Questions remain…
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• What causes the reduced linear growth rate for NT? 


• What explains the -trend of heat flux? 


- Relative role of fluctuations amplitude and cross-phase in determining the heat flux for NT? 


- Saturation by zonal flows well known in GK simulations [Z Lin+ 1998,1999,…others]. What happens 
to self-generated zonal flow shear for NT?  

δ



Simulation set up
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• Disclaimer: This is a physics study, not an experimental validation exercise. 


• GENE flux tube simulations of collisionless ITG turbulence with adiabatic electrons. Profiles fixed, 
triangularity varied. 


• Shaping parameters: aspect ratio , safety factor , magnetic shear =1, triangularity 

, triangularity gradient , elongation , elongation gradient 

, squareness =0, squareness gradient , MHD alpha parameter 

, Shafranov shift gradient .   (Standard GA + shaping)


• Reso lu t ions : , , , , , , , , 
, hyp_z=2, hyp_v=0.2


• Gradients: ,  [fixed]

• Collisionless:=> no frictional damping of ZF.

• No neoclassical transport.

a/R = 1/3 q = 2 ̂s

δ = [varied] Sδ =
r ∂δ

∂r

(1 − δ2)
=

δ
(1 − δ2)

κ = 1

Sκ =
r
κ

∂κ
∂r

= 0 ζ Sζ = r
∂ζ
∂r

= 0

αMHD = − q2R
dβ
dr

= 0 R′￼0 = 0

nx = 257 nky
= 48 nz = 64 nv∥

= 48 nμ = 8 Lv∥
= 3 Lμ = 9 Lx = [120 − 140]ρi

ky,minρi = 0.05

a/Ln = 1 a/LT = 4



Linear growth rates are reduced for NT 
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• Growth rates are lower for NT than 
for PT. 


• Why?

• Linear stabi l i ty l inked to 

eigenmode averaged quantities 
, , .⟨ωDy⟩ ⟨k2

⊥⟩ ⟨k2
∥⟩
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Eigenmode averaged magnetic drift frequency is reduced for NT 
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• Eigenmode averaged dr i f t f requency :

, where 


-  is binormal magnetic 

drift frequency


-  is binormal curvature

⟨ωDy⟩ =
∫ dθJB |ϕ |2 ωDy

∫ dθJB |ϕ |2

ωDy = ky
v2

∥ + v2
⊥/2

Ω
𝒦y

𝒦y =
1
B

b⃗ × ⃗∇ B ⋅ ⃗∇ y
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•  less negative for at  NT.

• Broader negative  region for NT.

• But thinner eigenmode width for NT


➡Less negative  for NT. 


➡weaker effective curvature drive for NT, due to reduced sampling of 
the bad curvature regions resulting from a narrow eigenmode 
structure in NT.

𝒦y z = 0
𝒦y

⟨ωDy⟩ →



Local magnetic shear  s̃
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• , where  is the local 

safety factor. 


• More and more negative  in the bad 
curvature region and the poloidal extent 
of the <0 region expands for stronger 
NT shapes 


• easier to twist eddies towards the 
good curvature side as you move 
along the field line better stability 
for NT!

s̃ =
r
ν

∂ν
∂r

ν = IJ/R2
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Nonlinear Heat flux vs Triangularity
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• Turbulent heat diffusivity lower for NT than for 
PT.


• High  contributions (RHS of the spectral 
peak) depleted more for NT. 

ky

• Heat flux Qi = ⟨∑⃗
k

− ky Tk ϕk sin(θT − θϕ)⟩
Cross-phaseAmplitudes



Saturated fluctuation intensity vs Triangularity

9

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
80

90

100

110

120

130

140

150

flu
ct
ua
tio
ns

• Fluctuation intensities are lower for NT than for PT. 


• Fluctuation kinetic energy:  is lower for NT!FKE = ⟨∑
kx,ky

[1 − Γ0i(k2
⊥ρ2

i )] eδϕk

Tiρ⋆
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Transport cross-phase spectra vs Triangularity
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• Cross phases between temperature and potential 
fluctuations  ( ) are weakly sensitive to .


➡Transport reduction for NT is pre-dominantly due to 
reduction of fluctuation amplitudes. 
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Fluctuations auto-correlation and random walk diffusivity
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• Auto-correlation time higher for NT:  


• Radial auto-correlation length lower for NT:   [Consistent with TCV experiment: M 
Fontana+ 2018]


➡Random walk diffusivity  lower for NT.                            

τc(NT) > τc(PT)

lrc(NT) < lrc(PT)
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Zonal ExB shearing rates:  spectraω − k
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PTONT

Dispersive nature
• Shearing spectra are highly sensitive to .


• No dispersive effect for 

• Clear dispersive effects for propagating zonal flows (New branch)

• Weak dispersion for 


• The spectra roll over at GAM frequency

δ
δ = − 0.6

δ = 0→
δ = + 0.6

∼

DispersionGAM

ZFZF

ω ∝ kxρi



Zonal ExB shearing rates: spatiotemporal features
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• Spatiotemporal patterns are highly sensitive to . 

• Spatiotemporal shearing pattern more coherent for NT than for PT.

• Propagating shearing fronts  dispersive feature for ! Front speed .


• More coherent spatiotemporal shearing pattern for NT  Stronger mean shearing effect for NT.

δ

→ δ = 0 ∼ 2.25ρ⋆vth
→
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RMS Zonal ExB shearing rates at saturated state
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• Total RMS shearing rate and finite frequency RMS shearing rate 
decreases with increasing .|δ |

✴
Time averaged  or zero-frequency RMS shearing rate: , where 


✴
Total RMS shearing rate : 


✴
Standard deviation of shearing rate: 

⟨⟨ωE⟩2
t ⟩

1/2

x
= [ 1

Lx ∫ dx ⟨ωE(x, t)⟩2
t ]

1/2

⟨ωE(x, t)⟩t
=

1
T ∫ dtωE(x, t)

⟨⟨ω2
E(x, t)⟩x⟩

1/2

t
= [ 1

T ∫ dt
1
Lx ∫ dxω2

E(x, t)]
1/2

⟨⟨(ΔωE)2⟩
1/2

x ⟩
t
= ⟨⟨(ωE(x, t) − ⟨ωE(x, t)⟩t)

2⟩
1/2

x ⟩
t



RMS shearing rate depends on the detail of the shearing spectra at saturated state
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Zonal potential peaks weaker for NT 
for PT. But zonal potential isn’t the 
point.

• Different -trend of zero-frequency shearing rate and zonal potential spectra.

• Zonal shear peak at  whereas zonal potential peak at .

• Shearing peak stronger while potential peak weaker for NT.

δ
kxρi ∼ 0.5 kxρi ∼ 0.05



Figure of Merit
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• All analyses point at the dimensionless 
parameter   or  as figure of merit.


•  higher for NT than for PT. Nicely 
correlates with the -trend of heat diffusivity. 
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Summary
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• Novel insights into how NT mitigates ITG turbulence and transport




   or  as figure of merit.


• Reduced linear growth rate for NT




 Reduced eigenmode averaged magnetic drift frequency.


• Reduced heat flux for NT




Reduced radial correlation length and increased correlation time due to increased  zero-frequency zonal ExB shearing 
rate.


• -trend of diffusivity

 


Predominantly determined by -trend of fluctuation amplitude. Cross-phase effect weak. 


↓
ωEτc ωE /γmax

↕

↕

δ
↓

δ



Future work  
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• Understanding why zero-frequency zonal shearing stronger for NT requires analysis of Reynolds power 

. More generally, gyrokinetic nonlinear entropy transfer analysis required. Collisionless 

zonal flow saturation dynamics?


• Analysis using experimental equilibria and profiles and using non-adiabatic electrons and finite 
collisionality exploiting both local and flux driven global simulations.

→
∂ ⟨vθ⟩

∂r ⟨ṽrṽθ⟩



For experiments 
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• Measure  spectra of the zonal flow shear. Identify finite frequency components? Spatio-temporal 
features of zonal shear, signatures of propagating zonal fronts BES velocimetry


• Study, identify different trends of zero-frequency zonal potential and zonal flow shear with . 


• Bi-spectral analysis to identify how dominant interactions change with triangularity ?


• Frequency resolved Reynolds power  vs triangularity to elucidate turbulence—> zonal flow 

energy coupling?  BES velocimetry.


• Radial correlation length and auto-correlation time of fluctuations and zonal flows. Calculate FOM  vs 
. 

ω − k
→

δ

∂ ⟨vθ⟩
∂r ⟨ṽrṽθ⟩

→

ωEτc
δ



Back-up slides
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Heat flux avalanches
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• Avalanches also seen in heat flux space time evolutions.
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Temperature corrugations dynamics
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(a)Zonal temperature spectrally anti-correlated with zonal potential . Consequently, zonal ExB 
shear   is spatially anti-correlated with zonal temperature curvature .


(b)Zonal temperature corrugations are stronger for NT than for PT.
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∝ − ϕz,kx
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