How does negative triangularity mitigate
ITG turbulence and transport?

[Under review NF 2024]

Rameswar Singh, P H Diamond and A Marinoni
UCSD

66" APS DPP, Atlanta, October 11, 2024

Acknowledgements: G Merlo & U.S. Department of Energy Award Number DE-FG02-04ER54738.



Motivation

 Improved confinement in NT over PT tokamak experiments 1s now well established. [Y Camenen+ 2007,
M Fontana+2018, M Austin+ 2019, A Marinoni+ 2019, S Coda+2022,...]

e Theoretical understanding lacking! TEM/ITG stabilization often invoked to explain improved confinement
in NT.

- TEM stabilization by precession drift reduction. [A Marinoni+ 2009]
- ITG turbulence and transport for NT remains poorly understood.

* Previous simulations lacked insights on physical mechanism behind the beneficial effects of NT on ITG .
Sometimes, not even general agreement on basic trends with 0!
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Questions remain. ..

e What causes the reduced linear growth rate for NT?
e What explains the o-trend of heat flux?
- Relative role of fluctuations amplitude and cross-phase 1in determining the heat flux for NT?

- Saturation by zonal flows well known 1n GK simulations [Z Lin+ 1998,1999,...others]. What happens
to self-generated zonal flow shear for NT?



Simulation set up

Disclaimer: This 1s a physics study, not an experimental validation exercise.

GENE {lux tube simulations of collisionless ITG turbulence with adiabatic electrons. Profiles fixed,
triangularity varied.

Shaping parameters: aspect ratio a/R = 1/3, safety factor g =2, magnetic shear §=1, triangularity
05

F=" 0
0 = |varied], triangularity gradient S5 = o = , elongation k = 1, eclongation gradient
V(1 =68Y)  /(1-6%

r 0K , o¢
S = > =0, squareness (=0, squareness gradient S, = ra— =0, MHD alpha parameter

K Or r

d
Ay = — qud—'B = 0, Shafranov shift gradient R, = 0. (Standard GA + shaping)
r

Resolutions: n. =257, m, =48, n = 64, n, =48, n, =8, L, =3, L, =9, L =[120-140]p;,

ky minPi = 0.05, hyp_z=2, hyp_v=0.2
Gradients: a/L, = 1, a/L; = 4 [fixed]
Collisionless:=> no frictional damping of ZF.
No neoclassical transport.



Linear growth rates are reduced for NT

e (Growth rates are lower for NT than
for PT.

* Why?
e Linear stability linked to
eicenmode averaged quantities
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Eigenmode averaged magnetic drift frequency 1s reduced for NT

e Eigenmode averaged drift frequency:
[dOIB| ¢ | wp,
() =

>—> Where 0l
|d6JB| @]
vi+vi2 e
_ Wp, =k, o F , is binormal magnetic .04
drift frequency >
_ A= —bxX VB Vy 1s binormal curvature
" B 12

o J lessnegative foratz =0 NT.
o Broader negative & region for NT.
e But thinner eigenmode width for NT

m [cSs negative <a)Dy> for NT. —

1.4 ' ' '
-1 -0.5 0 0.5 1

0.6

0.4

O_

1t

(a)

z/m

= weaker effective curvature drive for NT, due to reduced sampling of
the bad curvature regions resulting from a narrow eigenmode

structure in NT.
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Local magnetic shear §

~ rov ” |
§ = , where v = IJ/R” 1s the local

v oOr
safety factor.

More and more negative § 1n the bad
curvature region and the poloidal extent

of the §<0 region expands for stronger
NT shapes

—easier to twist eddies towards the
g0o0od curvature side as you move
along the field line — better stability
for NT!
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Nonlinear Heat flux vs Triangularity

40 @ 6.5 e Turbulent heat diftfusivity lower for NT than for
| ' PT.

e High k, contributions (RHS of the spectral
peak) depleted more for NT.

L —0 = —0.6
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, Heat tlux Q; = <Z — k, ‘Tk‘ ‘¢k‘ SiH(QT—9¢)>

Amplitudes Cross-phase




Saturated fluctuation intensity vs Triangularity

e Fluctuation intensities are lower for NT than for PT.
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Fluctuation kinetic energy: FKE = < Z [1 — Fol-(kipiz)] - ¢f > 1s lower for NT!
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Transport cross-phase spectra vs Triangularity
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e Cross phases between temperature and potential
fluctuations (6 — 0,) are weakly sensitive to 0.

= Transport reduction for NT is pre-dominantly due to
reduction of fluctuation amplitudes.
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Fluctuations auto-correlation and random walk diffusivity

(@

S PPN O P PRSP
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e Auto-correlation time higher for NT: z.(NT) > ©.(PT)

e Radial auto-correlation length lower for NT: [ (NT) < [ .(PT) [Consistent with TCV experiment: M
Fontana+ 2018}
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= Random walk ditfusivity — lower for NT.
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w/(ci/a)

Zonal ExB shearing rates: w — k spectra
0 PT
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e Shearing spectra are highly sensitive to 0.
e No dispersive effect for 6 = — 0.6
e (Clear dispersive effects for 6 = O—propagating zonal flows (New branch)
e Weak dispersion for o = + 0.6

e The spectra roll over at ~GAM frequency
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Zonal ExB shearing rates: spatiotemporal features
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e Spatiotemporal patterns are highly sensitive to o.
e Spatiotemporal shearing pattern more coherent for NT than for PT.
e Propagating shearing fronts — dispersive feature for 6 = 0! Front speed ~ 2.25p,v,,.

e More coherent spatiotemporal shearing pattern for NT — Stronger mean shearing effect for N'T.
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RMS Zonal ExB shearing rates at saturated state

o Zero-frequency RMS shearing rate higher for NT than for PT.

e Total RMS shearing rate and finite frequency RMS shearing rate
decreases with increasing |0 ].
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RMS shearing rate depends on the detail of the shearing spectra at saturated state

e Different o-trend of zero-frequency shearing rate and zonal potential spectra.
e Zonal shear peak at k_p; ~ 0.5 whereas zonal potential peak at k_p. ~ 0.05.

e Shearing peak stronger while potential peak weaker for NT.
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Zonal potential peaks weaker for NT
for PT. But zonal potential 1sn’t the
point.

Shearing peaks stronger for NT than for
PT.
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Figure of Mertit
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Summary

Novel insights into how NT mitigates ITG turbulence and transport
!

WgT. Or wrly, .. as figure of merit.

Reduced linear growth rate for NT

!

Reduced eigenmode averaged magnetic drift frequency.

Reduced heat flux for NT
)

Reduced radial correlation length and increased correlation time due to increased zero-frequency zonal ExB shearing
rate.

o-trend of diffusivity
!

Predominantly determined by o-trend of fluctuation amplitude. Cross-phase effect weak.
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Future work

e Understanding why zero-frequency zonal shearing stronger for NT —requires analysis of Reynolds power

0 <v9>

zonal flow saturation dynamics?

<v 179>. More generally, gyrokinetic nonlinear entropy transfer analysis required. Collisionless

 Analysis using experimental equilibria and profiles and using non-adiabatic electrons and finite
collisionality exploiting both local and flux driven global stmulations.
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For experiments

Measure @ — k spectra of the zonal flow shear. Identify finite frequency components? Spatio-temporal
features of zonal shear, signatures of propagating zonal fronts—BES velocimetry

Study, 1dentify different trends of zero-frequency zonal potential and zonal flow shear with o.

Bi-spectral analysis to 1dentify how dominant interactions change with triangularity ?

0 { vy
Frequency resolved Reynolds power <§ > \7,,\'79> vs triangularity to elucidate turbulence—> zonal flow
r

energy coupling? —BES velocimetry.

Radial correlation length and auto-correlation time of fluctuations and zonal tlows. Calculate FOM wy7. vs
0.
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Back-up shides
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Heat flux avalanches

e Avalanches also seen 1n heat flux space time evolutions.
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Temperature corrugations dynamics

(a)Zonal temperature spectrally anti-correlated with zonal potential I & — qbz,kx. Consequently, zonal ExB

shear wy 1s spatially anti-correlated with zonal temperature curvature VZTZ.

(b)Zonal temperature corrugations are stronger for NT than for PT.
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